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ABSTRACT
Open Wi-Fi networks offer a chance to have ubiquitous, mo-
bile connectivity by opportunistically leveraging previously
deployed resources. Open Wi-Fi access points are densely
deployed in many cities, offering high bandwidth at no cost
to the mobile node. Unfortunately, Wi-Fi networks are rid-
dled with coverage holes, resulting in poor network perfor-
mance, even if planned for blanket coverage. To back this
claim, we present the results of a measurement study of a
small city’s Wi-Fi network—both planned and unplanned—
using mobile nodes, verified with data collected from a sec-
ond city. We find that holes can be broadly classified into
two categories: (1) permanent holes due to a lack of Wi-Fi
coverage; and (2) transient holes that are due to mobility and
channel characteristics. We show that these holes have a se-
vere, adverse effect on the performance of network transport
protocols.

Unfortunately, fixing these holes by adding WiFi base sta-
tions is an expensive and difficult process–there is not always
the connectivity, power, and legal authority, to place equip-
ment. Instead, by enhancing the network with a broader area,
but still unlicensed, backbone channel we can patch holes in
connectivity. This broad area network is low-bandwidth, but
as we show in this paper, the backbone radio has a multiplica-
tive effect on bandwidth because it keeps the mobile user’s
TCP’s congestion window open and preventing retransmis-
sion timeouts on the high-bandwidth Wi-Fi channel. This
effect comes with no modifications to the TCP protocol or
stack, making it a generally deployable solution. Moreover,
the low bandwidth radio has low energy consumption, al-
lowing us to cover holes with solar-powered devices. We
evaluate the effectiveness of this system, named Epsilon, for
improving the performance of TCP/UDP sessions for a wide
range of application workloads. We show that Epsilon pro-
duces a 2x to 13x improvement in TCP throughput while
providing nearly ubiquitous connectivity at low cost.

1. INTRODUCTION
There are several methods of providing reliable, ubiquitous

connectivity for mobile devices. Cellular deployments, in-
cluding 3G, EVDO, and GPRS, offer commercial, fee-based
coverage of large areas. Unfortunately, such infrastructure is
costly and difficult to manage, and its installation and opera-
tion is reserved for a handful of large carriers. And due to the
costs involved — a recurring fee of about US$50 per month
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Figure 1: The fraction of 100x100 m2 regions in our city where
vehicles have open Wi-Fi access points.

per device — its use is limited to persons that can afford it,
and usually for only one mobile device.

At the same time, open WiFi access points (APs) are gain-
ing in popularity [24] and are present in cities large [9,24] and
small [6]. The major advantage of these organically deployed
APs is cost — while 3G price plans will vary, open WiFi is
by definition free to mobile users. Accordingly, open WiFi
removes a significant impediment to pervasive computing.
Figure 1 shows the availability of open WiFi APs in a section
of our city. From Aug 07–Oct 08, at least 75% of 62500
regions each 0.01 km2, supported open WiFi Internet access.

The disadvantage of WiFi access is robustness. Although
WiFi links can have higher peak downstream bandwidths than
3G, it is a shorter-range radio, which leads to both coverage
holes and areas of high loss rates, even in networks planned
for blanket coverage [4, 18]. In networks where mobile users
are subject to longer periods without connectivity, a myriad
of ad hoc and disruption tolerant networking (DTN) proto-
cols have been proposed that leverage the mobile nodes to
deliver data [10]. While ad doc networks and DTNs provide
connectivity where there was none, delivery delays depend
on the mobility of other users. Typically, popular interactive,
delay-sensitive applications cannot be reliably supported.

In this paper, we propose to enhance existing deployments
of WiFi networks by adding small amounts of infrastructure.
Specifically, we propose a system called Epsilon, which uses
a novel approach of placing very low-bandwidth, long-range,
radios wherever holes are present. The low-rate backbone
acts as a bridge to an 802.11 AP. Connections from the mo-
bile user are striped across both channels to smooth hand-off.
Combined with an Internet proxy, clients can then hold TCP
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connections across open APs, making applications more pre-
dictable. Because the radios are longer range than WiFi,
fewer devices and a smaller cost is required to cover a large
area.

Our experiments show, perhaps counter-intuitively, that
the second radio has a multiplicative effect on the overall
bandwidth: a 115 kpbs backbone covering 802.11 holes tens
of seconds long can increase the aggregate TCP throughput
of the mobile devices by several hundred percent. This para-
dox is explained by the ability of the low-bandwidth channel
to keep the TCP sender’s window large despite connectivity
problems, enabling quick recovery when a WiFi connection
returns. Further, this enhancement works with no modifica-
tions to TCP, making it easy to deploy in existing systems.

How much does network performance increase for mobile
users of unplanned WiFi networks enhanced with inexpensive,
low-bandwidth infrastructure? To quantitatively answer this
question, we first analyze the prevalence of coverage holes in
our outdoor WiFi testbed and one outdoor testbed in another
city. Our experiments show that both permanent and transient
holes are rampant in WiFi mobile network with disruption
lengths of 5 seconds to 15 minutes. Then we quantify how
TCP performance is improved by filling holes with the low-
bandwidth bridge. Our results are based on data transfers
over an operational prototype and a workload based on traces
of WiFi connectivity by mobile nodes. We show that while
existing solutions [9] can increase TCP throughput by a factor
of 2x when a node is associated to an access point (effectively
a gain of 15% when there are disruptions), using Epsilon,
TCP throughput can increase for mobile users by 1.2x to
13.0x.

2. CONNECTIVITY MEASUREMENT STUDY
To motivate the need for Epsilon, we have conducted a

measurement study of a wide-area, municipal Wi-Fi network,
including a few dozen planned APs, and hundreds of organic,
open WiFi networks. We have also validated the results of
this study against traces from a network in a second city.
Our results show that coverage holes are rampant in both
environments.

Previous work has studied disruptions, both short term [5]
and long-term [21]. Our study has three significant differ-
ences. First, we study link layer and application layer per-
formance together, while previous work handled these layers
in isolation [18]. Second, we measure coverage holes in
both managed and unplanned Wi-Fi deployments, whereas
most previous work concentrates on self-deployed, managed
APs [18]. Finally, our analysis defines holes as a period of
time when we can not hear beacons from any access point;
in other words, we explore the effects of using one of many
multi-AP technologies, including FatVAP [15], Juggler [20],
or ViFi [5]. Most previous work calculated connectivity in
terms of a single AP.

However, studying coverage using beacons alone embodies
an opportunistic view of connectivity—APs may not really

Figure 2: The map of the route followed by our transit cars. The red
dots depict the locations of open access points from kismet. The
white regions show the areas without any Wi-Fi connectivity.

provide open access as many use web-based passwords of
MAC address access control. Thus we can also measure
holes using a more conservative measure: connect to APs
and attempt to send data to a known host on the Internet.
The holes in the network are bounded by these two kinds of
measurements, one pessimistic and one optimistic.

Unfortunately, found that none of the available software
which provide for simultaneous selection of multiple access
points, could either be used over our equipment and operating
system, had not been publicly released, or was not robust.
Thus, our measurements of real connectivity is only limited
to one AP at a time.

2.1 Measurement Methodology
Our measurements and evaluations are based on experi-

ments we performed using more than 30 vehicles in a city
with planned Wi-Fi Internet access points (APs) as well as
third-party open Wi-Fi. The vehicles carry a Linux system
(2.6.22.14 kernel), Atheros AR413 Wi-Fi card (with a 3 dBi
antenna and the MadWiFi driver), and a GPS unit based on
the SIRF Star III chipset. We have collected two measure-
ments sets:

Measurement Set I: We configured the vehicles to asso-
ciate with available Wi-Fi APs and immediately test end-to-
end connectivity using ICMP ping to an known Internet
host. For a fraction of all contacts, the vehicles initiate TCP
sessions with the same host. The result of these trials is a log
of each vehicle-to-AP contact in terms of duration, locations,
vehicular speed, and the amount of data transferred. The
vehicles select APs for association based on highest received
signal strength indication. APs that are open but do not offer
end-to-end connectivity are blacklisted for efficiency. The
vehicles also log association failure events such as failure to
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Figure 3: The a cumulative distribution function of the disruption
lengths in our testbed. The data is based on associations with open
access points from transit vehicles over a period of a month.

obtain DHCP leases. In sum, our data represents approxi-
mately 9500 driving hours in the month of February 2009.
During this period the vehicles saw 10056 unique open Wi-Fi
access points. Given that the measurement connects to one
AP at a time, and sometimes incurs delay in client-driven
hand-off, this is a pessimistic view of connectivity.

Measurement Set II: For a more focused set of measure-
ments, we used two vehicles traversing a shorter route, shown
in Figure 2. Unlike the DHCP/ping experiments, the beacon
measurements circumvent the impact of AP selection mech-
anism and provide for analysis of the effects of transient
factors, including interference, mobility, and channel charac-
teristics. The route includes residential and downtown areas
of dense AP coverage, as well as areas with relatively sparse
coverage. We used kismet to collect GPS-stamped 802.11
beacons from open Wi-Fi access points. These link layer bea-
cons include the timestamp, received signal strength, channel
noise, BSSID of the access points, and authentication infor-
mation. The vehicles logged about 10 hours of data on five
different days in 2009.

To generalize our results to other cities, we repeat our
beacon analysis on the VanLAN data set [5]. The publicly
available data set contains timestamped 802.11 beacons mea-
sured by a van over a period of five days from over 800 access
points. Though the data does not reveal any information on
whether the APs are secured, we optimistically assume that
all the APs are open. This is consistent with using beacons
as an optimistic measure of connectivity.

2.2 Coverage Holes
A myriad of factors can cause coverage holes, including

mobility, 802.11 channel characteristics, association failures,
and lack of Wi-Fi coverage. Using our measurement data, we
detail the significance of each of these factors. We separate
coverage holes into two broad categories. Permanent holes
are periods of time when the mobile node is outside radio
range of any open access point. Transient holes are periods
of time when a node is within range of one or more access
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Figure 4: The cumulative distribution function of the duration of time
mobile nodes in our network could remain connected to the Internet
using open Wi-Fi access points.
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Figure 5: The cumulative distribution function of the disruption
lengths calculated from link layer Wi-Fi beacons from open access
points. The disruption periods correspond to times when no beacons
were heard by the mobile node. Both large (greater than 10 seconds)
and small disruption (less than 2 seconds) occur in both VanLan
data-set and our collected traces.

points but does not receive beacons from any APs due to
packet loss or other problems.

Coverage holes can be identified by the time between con-
secutive successful associations from a mobile node. The
duration of coverage holes is dependent on vehicle speed as
well as environmental factors, such as shadowing. Figure 3
shows the distribution of the length of the holes in our mobile
network based on Measurement Set I.

Permanent Holes.
Both planned and unplanned Wi-Fi networks can have

areas where permanent coverage holes are present. Figure 2
shows a map of our network overlayed with available (open)
Wi-Fi access points observed in Measurement II. In white,
the map shows large areas of the network where there is no
AP coverage.

The distribution of the length of disruptions, as shown as
the solid curve in Figure 3, is highly skewed with a few long
disruptions and a large number of smaller disruptions. The
absolute lengths of the holes is high: the median length is 50
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Figure 6: A box plot of the vehicle speed and TCP throughput
observed at the vehicles of our testbed. The small correlation between
the two demonstrates that mobility is not a primary cause of the
transient holes in our network.

seconds with a 90th percentile of 500 seconds. In order to
filter out the overhead of transient association failures (such
as getting a dhcp lease) in identification of the holes, we
have calculated the distribution of the time between two con-
secutive associations events (successful or not) and depicted
it as the dashed curve in Figure 3. The result shows that while
a fraction of holes are due to transient association failures, a
large fraction of them occur because vehicles do not see any
open access points.

To eliminate the effect of association overheads (such as
getting a dhcp lease), we consider the solid line in Figure 3.
For this experiment, we define a hole as the time between
two association events (successful or otherwise). This filters
out the overhead of transient association failures. While a
fraction of holes are due to transient association failures, a
large fraction of holes occur because vehicles did not see any
open access points. We compare the distribution of lengths of
time with and without connectivity in Figure 3 and Figure 4.
The median connection and disruption lengths (for permanent
holes) are comparable (median of 20 seconds). In the next
section, we show that such disruptions can have an adverse
effect on the performance of TCP and UDP.

In Measurement II, the median duration of the coverage
holes was 10 seconds, though the 90th percentile is 150
seconds. This skewed distribution is due to areas of dense AP
coverage and other areas with no AP coverage, characteristic
of unplanned Wi-Fi deployments. Using a similar technique
to analyze the VanLAN data set reveals a similar distribution
of permanent coverage holes, as shown in Figure 5.

Transient Holes.
While permanent holes occur primarily due to lack of

Wi-Fi coverage, other factors such as channel interference,
congestion, and mobility could lead to transient holes even
when the mobile node is associated and transferring data
using an open access point. To study these transient effects,
we look at effect of mobility and channel characteristics.

Figure 6 shows the correlation between TCP throughput
and the speed of the vehicle. The result shows that variations
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Figure 7: Number of wireless clients using open access points in
our network at a particular instance of time. Small number of clients
rules out AP congestion as a primary cause of transient holes.

in speed does not have a significant effect on the amount of
throughput obtained by the mobile vehicles. Hence, while
mobility can cause transient holes during connection events,
remaining likely causes of these holes are channel charac-
teristics (interference)or possibly congestion at the access
points.

To examine other factors creating transient holes, we an-
alyze the 802.11 beacons collected in Measurement Set II.
Figure 5 shows the distribution of holes greater than two
seconds. Comparing to the distribution of permanent holes,
we see that a large fraction of the holes are small. Given that
every AP transmits beacons at the rate of once every 100ms,
a two second interval would correspond to a period of time
when at least 20 beacons are lost in succession (assuming
only one AP within range). This interval reliably detects
holes in coverage. Comparing the distributions in Figure 5,
we find that a fraction of the disruptions are small (order of
2-3 seconds) and are likely due to transient effects. A similar
result can be seen in the same figure for the VanLAN data
set.

Figure 7 shows the distribution of the number of unique
clients actively sending data to an access point during our
experiments. The data was collected by sniffing packets
to and from an access point as part of our Measurement
Set II. From the figure we see that the median number of
clients transferring data with the open access points is small,
hence congestion is likely not the cause of transient holes.
Therefore, we attribute the cause of transient holes to channel
characteristics such as interference from other sources in the
unlicensed band, and physical obstructions.

3. PERFORMANCE IMPACT
TCP and UDP streams suffer differently from disruptions

in connectivity. Because of TCP’s congestion control mech-
anisms, a mild disruption can engage slow start, strangling
throughput. UDP simply suffers the minimum of the avail-
able capacity and offered packet rate. In this section, we (i)
quantify the loss of throughput for TCP based on traces of
mobility and coverage holes in our environment; and (ii) we
present a model of TCP disruption that allows us to analyti-
cally determine the effect from coverage holes and provides
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Figure 8: The decrease in TCP throughput for four minute TCP ses-
sions in Measurement Set I. For this figure the disruptions correspond
to times in between associations (successful or otherwise)

insight into how to use a background channel to improve
throughput. Our results show that a small amount of back-
ground bandwidth is sufficient to overcome timeouts, keeping
the TCP window open for the next Wi-Fi connection.

In some ways, disruptions are similar to random packet
losses that cause similar TCP over-reactions [3]. However,
when compared to common RTTs, the relative length of dis-
ruptions due to coverage holes and “disruptions” due to ran-
dom packet losses, have very different effects—coverage
holes have a more deleterious effect on throughput and re-
quire different mechanisms to solve.

3.1 Performance Study
To isolate the effect of coverage holes on TCP and UDP,

we performed a series of trace-driven experiments based on
Measurement Set I. To provide repeatable experimentation
we conducted the experiments in an indoor environment with
a stationary node connecting to a WiFi AP. We implemented
a proxy at the client that uses ip queue to drop packets
whenever the trace recorded a disruption. We then started
a large TCP transfer to download data from a host on the
network. In these experiments, we assume that the outdoor
WiFi network supports hand-offs, and a fixed IP address,
negating the need to reestablish the TCP connection, even in
the face of disruptions; we revisit connection establishment
in later sections.

The results of the experiment are shown in Figure 8. As
a point of reference, we plot the bars corresponding to TCP
performance when there are not disruptions. We see that due
to constant TCP timeouts and congestion control management
TCP throughput decreases by a factor of 16 in the presence
of disruptions, even though the disruptions would ideally
decrease throughput by a factor of 2.

These empirical results are fully dependent on the mobility
and connectivity patterns of our vehicles. In a second set of
experiments, we isolated the dependence on the connection
and disconnection times on TCP throughput. We use the
same experimental set up as above, except that we strictly
control the periods of connection and disconnection.

Figure 9 shows that when the connection is never disrupted,
TCP throughput is about 2,600 Kbps. In this experiment, we
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Figure 9: The figure shows the throughput for different flavors of
TCP as a function of the disruption period. The connected period is
chosen uniformly at random between 0-30 seconds. The ideal line
corresponds to the best case TCP throughput achievable given the
disruption lengths.
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Figure 10: The throughput for different flavors of TCP as a function
of the connected period. The disruption period is chosen uniformly at
random between 0-30 seconds.

increase the period of disruptions from 0 to 60 seconds. We
chose the length of connections uniformly at random from
0–30 seconds long. In this scenario, TCP performance falls
sharply; for example, when disruptions are 30 seconds long,
TCP throughput falls by a factor of 12. Compare this factor
with the ideal decrease of 3, i.e., proportional to the periods
of connectivity. Note that the figure shows the throughput of
TCP Reno and TCP Cubic. While TCP Cubic is the default
TCP implementation in the 2.26 Linux kernel, TCP-Reno
is the most popular version of TCP. Figure 10 shows the
dual experiment: the connection period is the independent
variable, going from 0 to 30 seconds on the x-axis. The
length of disruption is chosen uniformly at random from 0–30
seconds. Again we see that disruptions decrease throughput
disproportionately to the “ideal” curve that is strictly based
on the proportion of connectivity to disconnectivity.

3.2 A Model of TCP Disruption
The drop in TCP throughput is due to TCP’s inability to

adjust the proper timeout values and RTT after a connection
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returns. In this section, we derive tw: the amount of time that
TCP stalls due to a disruption of length Td. Our analytical
framework is a model of TCP-Reno. We extend the well-
known model defined by Padhye et al. [22] to include the
effects of disruptions.

A simplified description of TCP is that it has two states
of operation: congestion avoidance and slow start. A con-
gestion window sets the number of segments (i.e., packets)
that are sent each round trip time. During the congestion
avoidance state, the congestion window size increases ad-
ditively as long as no packets are lost. When a loss oc-
curs, the window size is reduced multiplicatively by a fac-
tor of two. A timer that waits for a corresponding ack de-
termines whether a packet is lost. The timeout is set as
RTO = f(EstimatedRTT,DevRTT ), where f() is a lin-
ear function of the estimated RTT and the deviation in RTT.
If a loss leads to a timeout, TCP doubles the timeout value, re-
duces the congestion window size to 1 packet, and enters the
slow start state. During slow start the window size increases
exponentially until TCP enters the congestion avoidance state
again.

In our model of disruptions, we let Td be the length of dis-
ruption, and we assume that Td is sufficiently long to generate
a TCP timeout. For the Wi-Fi scenarios in which we are in-
terested, the Internet RTT is often 100–200 ms or less; hence,
our model is appropriate for disruptions of 100–200 ms or
longer (assuming low variation in the RTT). When a disrup-
tion occurs and TCP times out, the congestion window size is
reduced to 1, the first unacknowledged packet in the window
is retransmitted, and the timeout value is doubled. If time-
outs continue to occur, the timer length grows exponentially
until the disruption period ends and an acknowledgment is
received.

We follow the same notation as Padhey et al [22]: Let
T0 be the value of retransmission timeout, RTO, before the
first timeout occurs; and let k be the number of timeouts
before the disruption period ends. The sum duration of first
k timeout values is given by Lk below [22]. Note that TCP
fixes its maximum increase to the timeout value to 64T0.

Lk =

{
(2k − 1)T0 for k ≤ 6
(63 + 64(k − 6))T0 for k ≥ 7

(1)

The number of timeouts k for a period Td is therefore given
by

k =

{
dlog2(Td

T0
+ 1)− 1e for Td ≤ (26 − 1)T0

dTd+321T0
64T0

e otherwise
(2)

When the disruption ends, TCP does not immediately start
transferring data because it has no way of knowing if a good
connection to the destination is available. Instead it waits for
the retransmission timer, which unfortunately increases in
length exponentially during the length of the disconnection.

Specifically, after the disruption ends, the client waits for
a period of time tw = Lk − Td before it can start sending

data. Moreover, TCP is in a slow start state at this time. The
value of tw is given by the following equation, partially via
substitution of Eq. 2 into Eq. 1.

tw =

{
(2dlog2(

Td
T0

+1)−1e+1 · T0)− Td for Td ≤ 63T0

(63 + 64(dTd+321T0
64T0

e − 6))T0 − Td otherwise
(3)

The time tw is wasted by TCP. Interestingly, tw is linear
in the disruption length Td when Td ≤ (26 − 1)T0. Hence,
if the length of a connected period is equal to the length of a
disrupted period, and this sequence repeats itself, TCP would
never be able to recover from the aftermath of disruptions.
This scenario would lead to nearly zero throughput (see Fig-
ure 9 for experimental validation), something that is common
in mobile networks where nodes move from one access point
to another with disruptions in between.

4. COVERING HOLES WITH A LOW BAND-
WIDTH BRIDGE

The measurement study in the last section has two primary
conclusions. (i) Coverage holes are common even in dense
organic access point networks. These holes can be classified
as permanent holes that exist due to poor AP coverage or
transient holes that can occur due to factors such as channel
characteristics, and association failures. (ii) These cover-
age holes have a severe adverse effect on performance of
continuous TCP (and UDP) sessions. Hence, a large suite
of applications such as web browsing, web search, instant
messaging, and voice is likely to perform very poorly in
such environments. For TCP we found that the performance
degradation comes primarily from long timeouts and small
congestion window sizes after the disruption occurs.

4.1 Patching Options
Patching coverage holes is challenging and non-trivial, al-

though there are a number of existing proposals. For example,
Vi-Fi [5] addresses transient holes by coordinating retrans-
missions by APs; it is unlikely that such a solution can be
easily deployed in an unplanned Wi-Fi network where APs
are unlikely to coordinate, and it does not address permanent
holes. Similarly, client-based solutions that leverage diversity,
such as FatVAP [15], can only be applied to areas where mul-
tiple access points are available and do not address permanent
holes.

Another option is to avoid Wi-Fi and use very long range
cellular/3G access; such networks impose a recurring cost for
each device that the user carries, and are unavailable to a town
or campus. For example, a municipality cannot offer free
3G access within its downtown, commercial area, nor can a
University offer free 3G access on its campus; it’s simply not
an option. WiMax installations to cover large areas require
a license, large towers, and carrier grade hardware (and will
not be devoid of coverage holes).
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Range 600 m
Max Data Rate 115.2 Kbps
UDP Throughput 47 Kbps
Lowest Transmit Power 1 mW
Highest Transmit Power 1 W
Receive Power 360 mW

Table 1: Characteristics of the Digi-XTend radios.
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Figure 11: Validation of the analytical model for disruptions with
empirical data. We find that the error between the model and experi-
mental results is less than 20% on an average.

Finally, the most obvious way to cover WiFi holes is to add
WiFi infrastructure, but that has its own challenges [7,13]. In
general, moderately covering a large area with medium range
WiFi APs is much less expensive than completely covering
the area so that no performance problems are present [18].

In sum, we desire an inexpensive, long-range solution —
off-the-shelf, unlicensed 900 MHz radios offer both charac-
teristics. Moreover, they have a small energy profile and can
be supported by solar panels and still be portable. What such
radios lack is bandwidth. A summary of the characteristics
of the 900 MHz Digi-XTend radio is given in Table 1. As we
demonstrate in this section, the benefits of the low-bandwidth
radio bridges are well beyond their offered bandwidth.

4.2 Modeling the Benefits of Low Bandwidth
Bridges

At first thought, it seems counter-intuitive to augment a
WiFi network with a radio with a data rate that is 1

20 as large.
This approach is explained by our model in the previous
section, which shows that one of the primary factors affecting
TCP performance is the exponential growth of timeouts. The
timeouts result in a stalled period after connections are re-
established, a period that can grow linearly with the disruption
length. Moreover, TCP has to restart from a window size of
one (slow start) after this period.

Hence, our goal for the low-bandwidth bridge is to avoid
this wasted period by keeping TCP in congestion avoidance
through the period of WiFi disconnection and into a recon-
nection. As we show in this section, the throughput gains
are substantial. Moreover, the bandwidth of 44 kbps offered
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Figure 12: Comparison of using a high bandwidth radio such as
3G against using a low bandwidth Digi-XTend radio. We find that the
additional benefits of the 3G’s higher bandwidth is less than 14% on
average.

for TCP and 47 Kbps for UDP (see Table 1) is significant,
especially in the presence of larger coverage holes. VoIP
codecs such as G.726 and G.728 require bit rates of less than
50 Kbps and would work well using just the Digi-XTends.
To make our discussion concrete, presently we analytically
demonstrate the performance benefits that a low-bandwidth
augmentation can provide.

We derive a very simplified model for the aggregate send-
rate with and without using a second radio. The mobile node
starts on WiFi AP RA, switches to low-bandwidth bridge RX

for the period Td of WiFi disruption, and switches again to
WiFi AP RB when it is available. When the nodes switches
from RX to RB , it takes time recovery time tr before TCP
reaches congestion avoidance using RB .

We treat tr = 0; this simplification is valid since, with
RX in place, the mobile node will not switch out of con-
gestion avoidance when it begins using RB . We assume a
simple model for occurrence of coverage holes where the
disrupted period is Td followed by a period of connectivity,
TO, followed by another disruption period of Td and so on.
For the two radio system, the expected send rate is given by
Equation 5. Note that Bl is the steady state send rate of the
second radio and Bh is the steady-state send rate of Wi-Fi
(from Equation 33 in [22]).

S = Td ∗Bl(pl, RTTh) + TO ∗Bh(ph, RTTh) (4)

The RTT for Wi-Fi is RTTh, and the RTT of the second
radio is RTTl. The packet loss probability for the WiFi chan-
nel is ph and the packet loss probability for the second radio
channel is pl. For the system which uses only the WiFi radio,
the average send rate of the system is the following.

S = Td ∗Bl(pl, RTTh)+(TO− tw)∗Bh(ph, RTTh), (5)

where tw is derived in Equation 3.
Figure 11 show the experimental validation of this model.

The experimental line is the same as Epsilon line in Figure 16.

7



The model parameters, such as RTT over WiFi and the loss
probability, are measured using the same setup as Figure 16.
From the figure we find that the error between the model and
the experiment is less than 20% on average. The deviations
are because we assume steady state behavior even for small
coverage holes.

Now, we use this model to compare the benefit of using
a low bandwidth Digi-XTend radios and a high-bandwidth
Sierra Wireless 3G modem. We measure values for p and
RTT for both radios using iperf on UDP sessions to an
Internet host. We see that the benefit of using a radio like 3G
is small, less than 15% on an average. This is because the
wasted time tw is same for both 3G and Digi-XTends. Since
both radios can put TCP into congestion avoidance before
moving to Wi-Fi, the only gain that 3G has over Digi-XTends
is the additional bandwidth provided during the disruption
period. Therefore, with longer disruption periods 3G has
better performance over Digi-XTends.

The other benefit of the Digi-XTend radio is that it sup-
ports several efficient cyclic sleep modes and has low-power
transmit modes. The receive power of the radio is 360 mW
(three times less than WiFi and 3G) while the average trans-
mit power is around 500 mW (also three times less than Wi-Fi
and 3G). We are presently working on porting our system to
solar power mote class devices using XTends for nomadic
deployments.

The primary decision that has to be made by the mobile
node is when to switch between the two radios. Multiplexing
or striping schemes for managing the single TCP stream over
both radios will result in performance that is governed by
the low bandwidth channel and will be affected greatly by
the fluid connectivity changes. We expect the systems to be
available simultaneously only at times. Epsilon, in its present
implementation detects disruptions in situ and switches to the
900MHz radio whenever a disruption is detected. Disruption
in WiFi connectivity can be detected by the absence of end-
to-end connectivity (losing consecutive pings) or through
lack of link-layer acknowledgments. We expect that the loss
of connectivity using link-layer information can be detected
quickly (on the order of 10s of milliseconds).

5. EPSILON: IMPLEMENTATION
The main components of the Epsilon architecture are shown

in Figure 13. The core architecture is proxy-based, similar
to the MAR system [23]. There are three types of nodes in
network: (1) the mobile node router, (2) bridge nodes, (3)
and an Internet proxy. In this section, we describe the design
and implementation of the software modules.

5.1 Mobile node router
Each mobile node in the network is assumed to have two

radios: a Wi-Fi radio and a Digi-XTend radio. Epsilon uses
a user-space proxy at each mobile client. When a disruption
is detected, the proxy sends packets over the low bandwidth
channel; otherwise it forwards them on Wi-Fi.

Netfilter 
(ip_queue)

User Space Proxy
Radio Splitter

Packet Encapsulation

Digi-XTendWi-Fi

IP-Packets

Bridge node

Mobile node

Wi-Fi
Aggregating Flows

Rewrite Source Address
Rewrite Destination Address

TCP

Costum MAC

INTERNET

XTend Packet Decapsulation
Send to Internet Proxy

Internet Proxy

Open Access Point

Digi-XTend

TCP

Netfilter 
(ip_queue)

IP-Packets

Figure 13: An overview of the Epsilon system architecture.

As the mobile node associates with different access points,
the IP address associated with its outbound wireless interface
changes. To mask the effect of these changes, Epsilon uses
a virtual dummy interface (eth2) and forces all application
packets to be routed through this interface. The interface is
assigned a static IP address which is unique for every mobile
node. However, a single static route is set to the Internet
proxy through the actual outbound interface (wlan0). The
proxy uses Netfilter and ip queue to capture IP pack-
ets from the kernel. If the mobile node proxy decides to route
packets over Wi-Fi, it encapsulates the captured IP packet in
another IP packet and sends it to the Internet proxy over a
TCP connection. Otherwise, the IP packet is encapsulated in
a Digi-XTend packet and transferred over the 900 MHz link
to the bridge.

5.2 Bridge Nodes
The bridge node is a Linux box equipped with a 900 MHz

Digi-XTend radio as well as a Wi-Fi radio. It acts as an
intermediary between the mobile nodes and the Internet proxy.
When receiving a packet over the Digi-XTend radio, the
bridge first decapsulates it to get the raw IP packet, and then
encapsulates it again in another IP packet. The bridge will
then forward the packet over a TCP connection to the proxy.
The reverse of the process occurs when it receives a packet
from the Internet proxy.

5.3 Internet proxy
The Internet proxy acts as an aggregation point for packets

being received from or sent to the bridge or mobile node.
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The following example demonstrates how the Internet
proxy is used in Epsilon. Consider a mobile user sending a
query to google.com. The IP packets sent from the bridge
and the mobile node (encapsulated in other IP packets) have
the address of the virtual interface of the mobile node as their
source and google.com as their destination addresses. The
Internet proxy rewrites the source address of the packets with
its own address, recalculates the IP/TCP checksum and then
sends the packets to the destination (here, google.com)
using a raw socket. On the other hand, the packets received
from google.com are queued using a iptable hook and
trapped at the Internet proxy using ip queue. The des-
tination address of the packets is then rewritten with the
destination address of the virtual interface of the mobile node.
The packets are then sent over a previously established TCP
connection with the mobile node or to the bridge from where
they are sent to the mobile node over the Digi-XTends. The
packets are decapsulated at the mobile node and then sent
to the application using raw sockets. The mobile node re-
initiates TCP connection with the Internet proxy every time
it associates with a new open access point.

6. SYSTEM EVALUATION
We evaluate Epsilon by focusing on the following key

questions.

1. By how much does Epsilon improve throughput of TCP
sessions?

2. What performance benefits does Epsilon have for appli-
cations, such as HTTP transfers?

3. How does Epsilon impact the performance of UDP
sessions that require uninterrupted connectivity?

For evaluating these factors, we use transport-layer disrup-
tion traces from our mobile testbed. Moreover, to extend our
results to other testbeds, we evaluate more general scenarios
using synthetic workloads.

6.1 Evaluation Methodology
We have built a prototype of the Epsilon bridge node using

the same hardware deployed on our mobile nodes, described
in Section 2.1. In our evaluation, we compare two systems:
Epsilon: our proposed dual-radio and bridge system; and
Wi-Fi: a system that uses only the Wi-Fi radio.

For our experimental evaluation, we use traces of con-
nectivity durations collected from our testbed to carry out
trace-driven emulations on an indoor experimental setup. The
computer representing the mobile node begins a TCP/UDP
transfers to a site on the Internet using the Wi-Fi network.
Based on the traces of connectivity, the user-space proxy
drops outgoing and incoming packets on the Wi-Fi interface.
If the mobile node decides to use the XTend radio, it connects
and transfers data to an implementation of an Epsilon bridge
node, also placed in our building.
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Figure 14: The TCP improvement produced by Epsilon. Epsilon
produces an improvement of 6x in TCP throughput over a system
which does not use the Digi-XTend radio.

While we are currently working towards deploying Ep-
silon on our mobile nodes, the trace-based emulations helps
us understand the gains in performance that Epsilon provides
for TCP and UDP sessions. Although the experimental setup
is static and indoors, the effects of isolated disruptions are
captured in the real world traces we have collected from our
testbed in February 2009. Moreover, we saw in Section 2 that
throughput is not correlated to speed, hence our results should
be generally applicable to mobile environments. Accordingly,
the experimentation using trace-driven emulation has two ma-
jor advantages. First, it provides us the flexibility to produce
repeatable results and to try out various approaches without
redeployment in the testbed; and second, using a full imple-
mentation on real hardware provides a comparison platform
that has accurate system delays and other key performance
parameters. In our experimentation, we assume that the mo-
bile node immediately knows when a disruption occurs, starts
dropping packets on the WiFi interface and starts sending
packets over the Digi-XTend radio. This is a safe assumption
to make since the time within loss of WiFi connectivity can
be detected is usually very small—for example, our experi-
ments show that pinging the base station to which the node
was associated can take less than 10 ms or detecting link
layer retransmissions takes less than 10 ms. Given that the
RTT for Wi-Fi can be 100-200 ms, assuming that detection
of disruption is instantaneous is a reasonable approximation.

6.2 TCP and UDP performance
We measured TCP performance using an iperf server

running on a remote Internet host, and an iperf client run-
ning on the emulated mobile node. All experiments are based
on 4-minute long sessions initiated continuously during the
experiment by the client’s iperf software. The proxy on
the emulated mobile node drops packets when connectivity
is absent.

The results in Figure 14 show a 6x improvement in aver-
age TCP throughput for Epsilon over just WiFi, i.e., from
200 Kbps to 1200 Kbps. Note that the additional TCP
throughput that the Digi-XTends can provide is limited to
50 Kbps —-hence the extra 950 Kbps is an outcome of the
900MHz radio preventing TCP timeouts (hence minimizing
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Figure 15: The length of non-disrupted UDP sessions with and
without Epsilon. Epsilon increases the length of uninterrupted UDP
sessions by a factor of 8.5x.

Metric Wi-Fi Epsilon
Web-pages downloaded 796 1187

HTTP timeouts 203 61

Table 2: Improvement produced by Epsilon for web transfers. Ep-
silon downloads 40% more web-pages and has less than 3x timeouts.

the wasted time tw), prevents TCP from moving into slow
start, and keeps the TCP in congestion avoidance. However,
there is large variance in the Epsilon bar (shown by the error
bars). Since, we run 4-minute TCP sessions and in our mo-
bile testbed we have disruptions greater than 4 minutes, some
TCP sessions fall into regimes where there is only 900MHz
connectivity—gaining throughput of less than 50 Kbps.

To measure UDP performance, we modify the client iperf
to initiate a 30-minute UDP session. The bandwidth of the
connection is limited during the experiment to 500 Kbps.
Figure 15 shows the length of non-disrupted periods experi-
enced by UDP. We define the ON period as the time when the
bandwidth is above 40 Kbps. Such a bandwidth is sufficient
for applications such as VoIP and is close to what a GPRS
connection can provide. From the results we find that Epsilon
is able to increase the average length of the ON periods by a
factor of 8.5x. Another result (not presented in the paper due
to space limitations) show that Epsilon reduces the length
of the OFF periods by a factor of 13x. These improvements
are simple to explain. Epsilon, with the help of the 900MHz
radio, provides near ubiquitous connectivity in the presence
of disruption holes. Applications that require low bandwidth
but continuous connectivity can get an order of magnitude
improvement using Epsilon’s infrastructure.

6.3 Application performance
Our evaluation of TCP and UDP streams show order of

magnitude improvement using Epsilon. Here we capture the
performance of specific applications over Epsilon. We evalu-
ated HTTP performance since it is the basis of popular Web
browsing, Web email, and Web search applications. Instant
messaging, file transfers, and other applications that rely on
continuous, long-running TCP streams, will achieve improve-

Figure 16: The figure shows TCP throughput as a function of
the Off period with and without Epsilon. The disruption duration is
varied and the ON period is chosen uniformly at random between
0-30 seconds.

ments at least as good or better than HTTP-based applications
using short-lived TCP connections.

In our web transfer experiments, we chose 10 popular web-
pages and fetched their content using wget. The web-pages
were spread across sources in U.S., Europe, and Asia. This
two-hour experiment was based on two key performance
metrics: the number of web-pages successfully downloaded;
and the number of HTTP timeouts. The number of time-
outs is proportional to the Web browsing experience a user
would have. This is because timeouts lead to broken images,
unloaded web-pages, and error messages.

Table 2 shows the relative benefits of using the Epsilon sys-
tem for many Web application. Epsilon is able to download
more than 40% extra pages and experience 3x less timeouts.
While web transfers involve short TCP transfers and are prob-
ably the worst case for Epsilon as compared to Wi-Fi, we
still see a substantial improvement in performance using the
additional radio.

6.4 Synthetic Workloads
While these performance improvements in TCP, UDP, and

application performance demonstrate Epsilon’s benefits, the
results are specific to our testbed. To generalize the re-
sults to other scenarios, we evaluated our system using a
parametrized, synthetic connectivity trace.

For generating the synthetic trace, we simply vary two
parameters. The on period is when connectivity is not dis-
rupted, and the off period is when connectivity is disrupted.
We performed the experiments using the same iperf-based
sessions from our emulated client node to an Internet host.
Figure 16 shows TCP performance as a function of the off
period. The on period is chosen uniformly at random between
0–30 seconds. As the disruption periods increase the benefits
of using Epsilon also increase. When the length of the off
period is comparable to the on period we see a 4.6x improve-
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Figure 17: The figure shows TCP throughput as a function of the
disruption-free/connected period with and without Epsilon. The dis-
ruption period is chosen uniformly at random between 0-30 seconds.

ment using Epsilon. Figure 17 shows the benefits of Epsilon
as the on period varies. The right hand side of the graph
represents a very dense deployment of APs while the left
hand corner represents a sparse distribution of access points.
Cabernet [9] reports a median duration of 4 seconds for the
on period and an off period (i.e., the median time between
Wi-Fi encounters) as 32 seconds. For these values, the results
in Figure 16 show that Epsilon can provide a 13.8x improve-
ment in TCP throughput. While the best known system [9]
reports 2x improvement to TCP when associated with access
points (effectively a 15% improvement when there are dis-
ruptions) Epsilon produces more than an order of magnitude
improvement to TCP.

7. RELATED WORK
Epsilon builds on related work in the field of mobile net-

working, TCP for wireless, measurements of Wi-Fi connec-
tivity from mobile nodes, and mobile network hand-off. Here
we compare and contrast Epsilon with most related literature.

Measurement Studies of Wi-Fi connectivity.
Studies of Wi-Fi connectivity have been performed for

application layer connectivity [11, 12, 21] and link layer con-
nectivity [18]. Other works have focused on the performance
of managed Wi-Fi access points [1, 8, 14, 17, 19]. While
many studies consider simplified scenarios under controlled
environments, our measurement study uses data from an un-
planned Wi-Fi network. Moreover, we combine transport
layer connectivity with link layer connectivity data to draw
a general concrete set of conclusions on the presence and
causes of coverage holes. We take a step further and design
Epsilon, which uses a longer-range, low-bandwidth, inexpen-
sive Digi-XTend radio and a simple history-based prediction
algorithm to patch coverage holes.

Improving TCP for wireless .
A large body of work is related to altering TCP to perform

better in a wireless lossy environment [2, 9]. These works
build solutions that differentiate congestion in the wired link
from losses on the wireless link. Hence, they prevent TCP
from reducing its congestion window when there is a packet
loss as opposed to congestion in the wired network. Epsilon
is complementary to these schemes, as it addresses longer
term outages rather than link layer packet loss. Other so-
lutions propose modification of access points to improve
performance of TCP/UDP in wireless networks [5, 16]. We
argue that such a solution is not always feasible, given that
most access points are installed by third-party individuals.
Although Epsilon proposes using additional infrastructure to
enhance Wi-Fi mobile network, the enhancement is an addi-
tion of cheap, easily deployable Digi-XTend radios. Other
solutions such as FatVAP [15], and Juggler [20] use client
side modifications to associate with multiple access points. In
this work, we show that despite using beacons from multiple
APs as those works suggest, coverage holes are prominent.
Moreover, these solutions are limited to covering transient
holes.

Hand-off and Masking disruption.
Several papers advance fast hand-offs in wireless networks [23,

25]. These solutions are plausible in a Wi-Fi network only
if the length of disruptions are short. Contrary to this, in
our measurement study we observe large disruptions (on the
order of minutes) due to a lack of Wi-Fi coverage. Such dis-
ruptions can not be masked by using faster hand-off schemes.
Epsilon provides a general solutions to patching all types of
holes—small and large, transient and permanent.

Disruption tolerant networking.
A large body of work concentrates on designing delay

tolerant solutions in a mobile setting [6]. While certain
applications are delay tolerant such as low priority email
and data collection, other applications such as web search,
instant messaging, and high priority email require continuous
connectivity and uninterrupted TCP sessions. Our solution
would work equally well for delay tolerant and delay sensitive
applications.

8. FUTURE WORK
As a part of future work, we plan to deploy solar pow-

ered Epsilon nodes which would provide connectivity for
mobile nodes far from the Epsilon bridge. We have built the
hardware prototype for these nodes using a tinynode mote, a
custom power supply board (with current accumulator ICs
to monitor energy consumption), and a Digi-XTend radio.
Such a network of solar powered nodes would help patch
large coverage holes. However, a major challenge to their
deployment is energy management on the nodes.

The amount of energy consumed at these nodes is directly
proportional to the amount of data they receive and send
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over the 900MHz channel. Hence, reducing the quantity of
data sent using the 900MHz radio can significantly reduce
the energy burden on the nomadic nodes. While the present
incarnation of Epsilon switches to the Digi-XTends whenever
Wi-Fi is not available, we have analytically shown that for
disruptions smaller than RTTl (round trip time of the low
bandwidth radio), it is not useful to switch to the 900MHz
radio. This is because the transient time ts, before TCP learns
the correct RTT of the low bandwidth radio can be shown to
be at least RTTl if the window size at the beginning of the
disruption is 1. If the window size is greater than 1 the time
before TCP converges to the correct RTT is at least 2·RTTl.
However, implementing this switching algorithm requires
accurately predicting coverage holes.

We have implemented and performed some preliminary
evaluation of a history based coverage holes detection algo-
rithm which learns the duration of coverage holes in 100x100
m2 grid. We calculated the expected period of disruptions in
a region as the exponentially weighted average of the disrup-
tion lengths recently observed and the expected disruption
length from history. While our prediction scheme has high
accuracy of detecting holes (a median error of less than 5
seconds) in our mobile testbed, our preliminary evaluation
shows that we can achieve about 18% reduction in the amount
of data that can be transferred at the cost of 10% reduction in
average bandwidth. The energy savings is small since in our
network coverage holes are large. However, for denser net-
works, such as VanLan, we conjecture that our energy savings
would be much higher. We plan to evaluate our algorithm on
denser networks as part of future work.

9. CONCLUSION
While a great number of cities have an organic network

open WiFi access points, coverage holes limit the robustness
of opportunistic access by mobile users. Similarly, it is diffi-
cult to prevent holes in planned networks without very dense
deployments. A measurement study of our own network
shows large coverage holes, although open WiFi is available
in 75% of the city. Connectivity traces from a second city
show similar problems. Epsilon is our proposal to enhance
existing deployments of WiFi networks, planned or organic,
by placing low-bandwidth, long-range, solar-powered radios
wherever holes are present, bridging a connection to near by
802.11 AP.

Our experiments show that a low bandwidth second radio
has a multiplicative effect on the overall bandwidth for the
mobile user. Our use of the Digi-XTend 115 kpbs radio to cov-
ering 802.11 holes can increase the aggregate TCP throughput
by 1.2–13x, well beyond the data it carries. This large benefit
is due to the ability of the low-bandwidth channel to keep the
TCP sender’s window large despite connectivity problems.
Further, this enhancement requires no modifications to TCP,
making it easy to deploy in existing systems.
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