
CSE610 Week 4: Qubit Representations and Physical States
 
A qubit is a physical system whose state  is described by a pair  of complex numbers such that 𝜙 a, b( )

.  The components of the pair index the basic outcomes and .  There are two ways |a|  +  |b|  =  12 2 0 1

we can gain knowledge about the values  and :a b
 

• We can prepare the state from the known initial state  by known quantum e  =  1, 00 ( )

operations, which here can be represented by  matrices.2 ×  2

• We can measure the state (with respect to these basic outcomes), in which case:
– We either observe , whereupon the state becomes , or we observe , in which case the 0 e0 1

state becomes .e  =  0, 11 ( )

– The probability of observing  is , of getting  is .  This is called the Born Rule, 0 |a|2 1 |b|2

after Max Born.
 
If both  and  are real numbers, then we can picture the qubit as a point on the unit circle in :a b R
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If  then , so .   And  so .  Note that 𝜃 =
𝜋

3
𝜃 =  cos

1

2
|a|  =  0.252 𝜃 = b =  sin

2

3
|b|  =  0.752

 and .  What the measurement does is project onto the standard basis.  a =  𝜙 0 b =  𝜙 1

 
We can get different probabilities by projecting onto a different basis.  Note that
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and squaring that gives just over .  Thus, this particular quantum state  gives a higher probability 0.933 𝜙

of one result when measured in the  basis---and a near-zero probability of the other result.  ,+ -
 
What happens to  after a measurement?  The full picture is much debated, but the local happening is 𝜙

clear:  becomes the basis state corresponding to the result obtained.  The fact that we---humans---𝜙
can elect to measure in a particular choice of basis will be a major component of quantum 
communication protocols and the CHSH Game on-tap later in Chapter 14.  The "election" part is as 
easy as twirling a polaroid filter (if that is free will, mind you).
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The qubit state  represents 𝜙 =  a, b[ ] ae + be  =  a 1, 0 + b 0, 1  =  a + b0 1 [ ] [ ] 0 1

(transpose notation omitted here)

+
-



 
(1) That the particles' states become basis states in the particular measurement frame is shown by the 
Stern-Gerlach experiment.   In the setup, the measurable physical state "spin up" is denoted by  ↑

and can be treated like .  There is a distinct physical state called "spin down" and denoted by , 0 ↓

which plays the role of .  These are the only two distinguishable outcomes that manifest when a 1

magnetic field acts on the particle (relative to the orientation of the field; incidentally, "spin" is not-
rotation per-se).  Once a particle "chooses" between   or , that is its state upon going through ↑ ↓

a second Stern-Gerlach device with the same orientation.  
 

 
(2) But if the second device changes the orientation, then the particles once again behave 
nondeterministically with respect to the changed orientation.  This is shown more cheaply using 
polarizing filters, except for not being able to identify the particles (of light) individually.

 
The individual photons do not "lose mojo" after their orientation "collapses" onto the basis state.   It 
appears that way because of the physical fact that those photons giving the opposite outcome are 
absorbed by the filter.  
 

 

 

S

N

N

S

N

S

Source

𝜃

𝜃sin2 𝜃cos2

motion through filter

absorbed:
polarized up
entering light



 

 
In the second situation, the first filter produces light that is polarized up.  The second filter absorbs 

 of that light and the other  is passed through with diagonal polarization (analogous to  =  cos2 𝜋

4
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the  basis state).  The third filter absorbs  again of that light.  Positioning the middle filter at any +
1

2

angle  between  and  allows  of the light from the first filter to go through.  This 𝜃 0
𝜋

2
𝜃 ⋅ 𝜃cos2( ) sin2( )

goes to zero as  approaches either  or  and is maxed for .   The Born Rule in action!𝜃 0 90∘ 𝜃 = 45∘

 
 
For most work with quantum circuits, we may suppose that a single measurement is taken at the end, 
and the output is read from the basis state  that is returned.  Or we may run a circuit multiple times, y
thus sampling  from the output distribution.  The principle of deferred measurement, which we will y
see soon in Chapter 6, makes this be "without loss of generality" in most computing situations.  
Quantum communication protocols, however, require a fuller formulation of measurement via linear 
algebra.  This will come hand in hand with mixed states, which "are" classical probability distributions 
over unit vectors which are quantum pure states.  Doing this is facilitated by the Bloch Sphere 
representation of qubits. 
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The Bloch Sphere
 
Last Thursday's lecture showed the limitations of the Cartesian picture for viewing even the simple 
computation .  So we will study one that gives a different picture of physical reality.  a, b  =  HTH[ ]T 0

 
The first point is that the complex numbers  and  involve  real numbers, but the a = x + iy b = u + iv 4

requirement  imposes one constraint, thus essentially cutting the "real degrees of |a| + |b| = 12 2

freedom" down to .  A second factor cuts it down to .  The following definition will be useful for 3 2

quantum states of multiple qubits as well:
 
Definition: Two quantum states  are equivalent if there is a unit complex number  such that 𝜙,𝜙' c

.  𝜙' =  c𝜙
 

For example,  is equivalent to , but neither is equivalent to , nor any of 1

2
-1, 1( ) 1, -1

1

2
( ) 1, 1

1

2
( )

these to our basic states  and .  In the line for the matrix ,  is simply equivalent to just 1, 0( ) 0, 1( ) Y ie1
,  to ,  to , and .  We could also regard  as equivalent toe1 -ie0 e0 -i𝜇 𝜇 i𝜋 Y

,iY =  
0 1

-1 0

which makes clearer that it is a combination of  and  (indeed, ).  Finally, to X Z iY =  ZX =  -XZ

finish the line for , . Z Ze  =  - e  ≡  e1 1 1

 
Regarding our saying equivalence, note that if , thenc = a + bi
 

,  =   =   =   =   = a -  bi =  
1

c

1

a + bi

a -  bi

a + bi a - bi( )( )

a -  bi

a  +  b2 2

a -  bi

1
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which is the complex conjugate of  and is likewise a unit complex number.  Since  the c 𝜙 =  𝜙'c⏨
relation is symmetric.  That the product of two unit complex numbers is a unit complex number makes it 
transitive, and being reflexive is immediate with , so this is an equivalence relation.c =  1

 
A unit complex number can be written in polar coordinates as  for some angle , which c =  ei𝛾 𝛾
represents a "global phase."  Thus, dividing out by this equivalence relation emphasizes the relative 
phase  of the two components.  So let us write our original quantum state  in polar coordinates as 𝜑 𝜙

 where now  are real numbers between  and .  Choose , then ae , bei𝛼 i𝛽 a, b 0 1 𝛾 =  -𝛼

 with .  Since , the value of  is forced once we specify .  c𝜙 =  a, bei𝜑 𝜑 =  𝛽 -  𝛼 a  +  b  =  12 2 b a

So  and  are enough to specify the state.  These are the  true degrees of freedom.a 𝜑 2

 
We can uniquely map points  to the sphere by treating  as a longitude and  (rather than ) as a,𝜑( ) 𝜑 a2 a
a latitude where the north pole is , the equator is , and the south pole is .  Then the latitude gives 1 0.5 0

the probability of getting the outcome .  All states that give equal probability of  and  fan out along 0 0 1

the equator.  The north pole is  and the south pole is .  And again:0 1

 

 



•  is called , the "plus" state.1, 1  =   +  
1

2
( )

1

2
0 1 +

•  is called , the "minus" state.1, -1  =   -  
1

2
( )

1

2
0 1 -

 
Here they all are, graphed on the Bloch Sphere:

Among web applets displaying Bloch spheres for qubits is https://quantum-circuit.com/home (free 
registration required).  Here is its graph for the  state.  It is more usual to show the  axis out + x

toward the reader and  at right, but that is less convenient IMHO for picturing  and .y + -
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Some algorithms, however, are IMHO easier to picture using the original planar diagram:

For one thing, this makes it easier to tell that  and  are orthogonal vectors, that  and  are 0 1 + -

likewise orthogonal vectors, and that the orthonormal basis  is obtained by a linear ,+ -

transformation (indeed, a simple rotation) of the standard basis .  ,0 1

 
A downside, however, is that this diagram gives extra points for equivalent space, whereas the Bloch 
sphere is completely non-redundant.  The Bloch sphere is also "more real" than the way we usually 
graph complex numbers via Cartesian coordinates.  In fact, every unitary  matrix  induces a 2 × 2 U
rotation of the Bloch sphere and hence fixes an axis, so the axes of the sphere are in 1-to-1 
correspondence with lossless quantum operations on a single qubit.  Whereas, the planar diagram 
gives a cut-down picture of how  acts as a rotation without fully showing you its axis.  H

 
The axis of the  gate goes through the origin and the point corresponding to the pure state H

.  With this vector, the latitude is That's the number  =  cos ,𝜂
𝜋

8
sin

𝜋

8
 =  0.85355339...cos2 𝜋

8
 

we got from the  computation.  Note: the latitude looks like it should be "3/4" but it's not.  The HTH

equator is  and the diagonal point is  of the way up from equator to the pole, so the latitude is 0.5
1

2

 as required.0.5 +  0.5  =  0.85355339...
1

2
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