Image Formation
and Cameras
Guest Professor: Dr. Ana Murillo
Computer Vision I
CSE 252A
Lecture 4

Camperveriant

Projective geometry provides an elegant means for handling these different situations in a unified way and homogenous coordinates are a way to represent entities (points \& lines) in projective spaces.

Equation of Perspective Projection

Cartesian coordinates:

- We have, by similar triangles, that ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) -> (f ' $\mathrm{x} / \mathrm{z}, \mathrm{f}^{\prime} \mathrm{y} / \mathrm{z}, \mathrm{f}^{\prime}$)
- Establishing an image plane coordinate system at C^{\prime} aligned with i and j , we get $(x, y, z) \rightarrow\left(f^{\prime} \frac{x}{z}, f^{\prime} \frac{y}{z}\right)$
CS252A, Fall 2012
Computer Vision I

Projective Geometry

- Axioms of Projective Plane

1. Every two distinct points define a line
2. Every two distinct lines define a point (intersect at a point)
3. There exists three points, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ such that C does not lie on the line defined by A and B.

- Different than Euclidean (affine) geometry
- Projective plane is "bigger" than affine plane - includes "line at infinity"

Projective transformation

- Also called a homography
- This is a mapping from 2-D to 2-D in homogenous coordinates
- 3×3 linear transformation of homogenous coordinates

$$
\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{21} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

- Points map to points
- Lines map to lines

Mapping from a Plane to a Plane under Perspective is given by a projective transform H

Computer Vision I

Planar Homography: Pure Rotation

CS252A, Fall 2012 Computer Vision I

More applications: OCRs, scan,...

252A, Fall 2012 Computer Vision I

- Take perspective projection equation, and perform Taylor series expansion about some point $\mathrm{P}=\left(x_{0}, y_{0}, z_{0}\right)$.
- Drop terms that are higher order than linear.
- Resulting expression is affine camera model

Vanishing Point

- In the projective space, parallel lines meet at a point at infinity.
- The vanishing point is the perspective projection of that point at infinity, resulting from multiplication by the camera matrix.
- Perspective

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\frac{f}{z}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Assume that $f=1$, and perform a Taylor series expansion about $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$

$$
\begin{aligned}
{\left[\begin{array}{l}
u \\
v
\end{array}\right] } & =\frac{1}{z_{0}}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]-\frac{1}{z_{0}^{2}}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]\left(z-z_{0}\right)+\frac{1}{z_{0}}\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left(x-x_{0}\right) \\
& +\frac{1}{z_{0}}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left(y-y_{0}\right)+\frac{1}{2} \frac{2}{z_{0}^{3}}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]\left(z-z_{0}\right)^{2}+\cdots
\end{aligned}
$$

- Dropping higher order terms and regrouping.
$\left[\begin{array}{l}u \\ v\end{array}\right] \approx \frac{1}{z_{0}}\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]+\left[\begin{array}{lll}1 / z_{0} & 0 & -x_{0} / z_{0}^{2} \\ 0 & 1 / z_{0} & -y_{0} / z_{0}^{2}\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\mathbf{A p}+\mathbf{b}$

Affine camera model in Euclidean Coordinates
$\left[\begin{array}{l}u \\ v\end{array}\right] \approx \frac{1}{z_{0}}\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]+\left[\begin{array}{lll}1 / z_{0} & 0 & -x_{0} / z_{0}^{2} \\ 0 & 1 / z_{0} & -y_{0} / z_{0}^{2}\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\mathbf{A p}+\mathbf{b}$
Rewrite affine camera model
in terms of Homogenous Coordinates
$\left[\begin{array}{l}u \\ v \\ w\end{array}\right] \approx\left[\begin{array}{cccc}1 / z_{0} & 0 & -x_{0} / z_{0}^{2} & x_{0} / z_{0} \\ 0 & 1 / z_{0} & -y_{0} / z_{0}^{2} & y_{0} / z_{0} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$

CS252A, Fall 2012
Computer Vision 1

The projection matrix for scaled orthographic projection

- Parallel lines project to parallel lines
- Ratios of distances are preserved under orthographic projection

Other camera models

- Generalized camera - maps points lying on rays and maps them to points on the image plane.

Omnicam (hemispherical)
Light Probe (spherical)

Scaled orthographic projection

Starting with Affine Camera Model, take Taylor series about $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)=\left(0,0, \mathrm{z}_{0}\right)-$ a point on the optical axis

- That is the z coordinate is dropped, and the image a scaling of the x and y coordinates, where the scale is $\mathbf{1} / \mathbf{z}_{\mathbf{0}}$, the depth of the point of the expansion.

Beyond the pinhole Camera

