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Image Formation  
and Cameras 

Guest Professor: Dr. Ana Murillo 
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CSE 252A 
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Equation of Perspective Projection 

Cartesian coordinates: 
•  We have, by similar triangles, that (x, y, z) -> (f’ x/z, f’ y/z, f’) 
•  Establishing an image plane coordinate system at C’ aligned with i 

and j, we get 
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Projective geometry provides an elegant 
means for handling these different 
situations in a unified way and 
homogenous coordinates are a way to 
represent entities (points & lines) in 
projective spaces. 

CS252A, Fall 2012 Computer Vision I 

Projective Geometry 
•  Axioms of Projective Plane 

1.  Every two distinct points define a line 
2.  Every two distinct lines define a point (intersect 

at a point) 
3.  There exists three points, A,B,C such that C 

does not lie on the line defined by A and B. 
•  Different than Euclidean (affine) geometry 
•  Projective plane is “bigger” than affine 

plane – includes “line at infinity” 

Projective 
Plane 

Affine 
Plane = + Line at 

Infinity 
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Conversion 
Euclidean -> Homogenous -> Euclidean 
In 2-D 
•  Euclidean -> Homogenous: 

(x, y) -> k (x,y,1) 

•  Homogenous -> Euclidean: 
(x, y, z) -> (x/z, y/z) 

In 3-D 
•  Euclidean -> Homogenous: 

(x, y, z) -> k (x,y,z,1) 

•  Homogenous -> Euclidean: 
(x, y, z, w) -> (x/w, y/w, z/w) 

X 

Y (x,y) 

(x,y,1) 
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The equation of projection: 
Euclidean & Homogenous Coordinates 

Cartesian coordinates: 

€ 

(x,y,z)→( f x
z
, f y

z
)

€ 

U
V
W

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

1 0 0 0
0 1 0 0
0 0 1

f 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

X
Y
Z
T

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

Homogenous Coordinates 
and Camera matrix 
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Projective transformation 
•  Also called a homography 
•  This is a mapping from 2-D to 2-D in 

homogenous coordinates 
•  3 x 3 linear transformation of homogenous 

coordinates 

•  Points map to points 
•  Lines map to lines 
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Figure borrowed from Hartley and Zisserman “Multiple View Geometry in computer vision” 

Mapping from a Plane to a Plane under 
Perspective  is given by a projective transform H 

x’ = Hx     H is a 3x3 matrix,  
                  x is a 3x1 vector of  
                    homogenous coordinates 
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Application: Panoramas 
Coordinates between pairs of images are related by projective transformations 

Transforms 
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Figure borrowed from Hartley and Zisserman “Multiple View Geometry in computer vision” 

Planar Homography: Pure Rotation 

x’ = H2X = H2(H1
-1

 x) = (H2H1
-1)x 
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Figure borrowed from Hartley and Zisserman “Multiple View Geometry in computer vision” 

Planar Homography 

x =H1X 
x’ =H2X 

x’ = H2X = H2(H1
-1

 x) = (H2H1
-1)x 
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More applications: OCRs, scan,… 
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Region of interest 

H matrix? 

Corresponding points 

Augmented reality 
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Vanishing Point 
•  In the projective space, parallel lines meet 

at a point at infinity. 

•  The vanishing point is the perspective 
projection of that point at infinity, resulting 
from multiplication by the camera matrix. 
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Some applications … 

Figure from “Handling Urban Location Recognition as a 2D Homothetic Problem” 
G. Baatz, K. Koser1, D. Chen, R. Grzeszczuk, M. Pollefeys ECCV 2010. CS252A, Fall 2012 Computer Vision I 

Simplified Camera Models 
Perspective 
Projection 

Scaled 
Orthographic 
Projection 

Affine 
Camera 
Model 

Orthographic 
Projection 

Approximation  

Particular case 
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Affine Camera Model 

•  Take perspective projection equation, and perform 
Taylor series expansion about some point P= (x0,y0,z0). 

•  Drop terms that are higher order than linear. 
•  Resulting expression is affine camera model 

Appropriate  
in Neighborhood 
About (x0,y0,z0) 
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•  Perspective 

•  Assume that f=1, and perform a Taylor series 
expansion about (x0, y0, z0) 
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•  Dropping higher order terms and regrouping. 
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Rewrite affine camera model 
in terms of Homogenous Coordinates 

Affine camera model in Euclidean Coordinates 
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Scaled orthographic projection 
Starting with Affine Camera Model, take Taylor series about 
(xo, y0, z0) = (0, 0, z0) – a point  on the optical axis  

(0, 0, z0)  

–  That is the z coordinate is dropped, and the image a scaling of the x and y 
coordinates, where the scale is 1/z0, the depth of the point of the expansion. 
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The  projection matrix for scaled 
orthographic projection 
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•  Parallel lines project to parallel lines 
•  Ratios of distances are preserved under orthographic projection  
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For all cameras? 
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Other camera models 
•  Generalized camera – maps points lying on rays 

and maps them to points on the image plane. 

Omnicam (hemispherical) Light Probe (spherical) 
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Some Alternative “Cameras” 



5 

CS252A, Fall 2012 Computer Vision I 

Beyond the pinhole Camera 
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Beyond the pinhole Camera 
Getting more light – Bigger Aperture 
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Pinhole Camera Images with Variable 
Aperture    

1mm 

.35 mm 

.07 mm 

.6 mm 

2 mm 

.15 mm 
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Limits for pinhole cameras 
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The reason for lenses 
We need light, but big pinholes cause blur.  
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Lenses 
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Thin Lens 

O 

•  Rotationally symmetric about optical axis. 
•  Spherical interfaces. 

Optical axis 
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Thin Lens: Center 

O 

•  All rays that enter lens along line pointing at  
  O emerge in same direction. 

F 
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Thin Lens: Focus  

O 

Parallel lines pass through the focus, F 

F 
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Thin Lens: Image of Point  

O 

–  All rays passing through lens and starting at P 
converge upon P’ 
–  So light gather capability of lens is given the area of 
the lens and all the rays focus on P’ instead of become 
blurred like a pinhole 

F 

P 

P’ 
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Thin Lens: Image of Point  

O F 

P 

P’ Z’ 

f 

Z 

Relation between depth of Point (Z) 
and the depth where it focuses (Z’) 
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Thin Lens: Image Plane  

O F 

P 

P’ 

Image Plane 

Q’ 

Q 

A price: Whereas the image of P is in focus, 
     the image of Q isn’t. 
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Thin Lens: Aperture  

O 

P 

P’ 

Image Plane •  Smaller Aperture 
  -> Less Blur 
•  Pinhole -> No Blur 
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Field of View  

O 
Field of View 

Im
age Plane 

f 

– Field of view is a function of  f and size of image plane. 
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Deviations from this ideal are aberrations 
     Two types 

2. chromatic 

1. geometrical 
  spherical aberration 
  astigmatism 
  distortion 
  coma 

Aberrations are reduced by combining lenses 

Compound lenses 

Deviations from the lens model 
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Spherical aberration 

Rays parallel to the axis do not converge 

Outer portions of  the lens yield smaller  
focal lengths 
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Astigmatism 
An optical system with astigmatism is one where rays that propagate in 

two perpendicular planes have different focus. If an optical system 
with astigmatism is used to form an image of a cross, the vertical and 
horizontal lines will be in sharp focus at two different distances.  

object 
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Distortion 
magnification/focal length different  
for different angles of inclination 

Can be corrected! (if parameters are know) 

pincushion 
(tele-photo) 

barrel 
(wide-angle) 
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Chromatic aberration 
(great for prisms, bad for lenses) 
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Chromatic aberration 

rays of different wavelengths focused  
in different planes 

cannot be removed completely 
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–  Only part of the light reaches the sensor 
–  Periphery of the image is dimmer 

Vignetting 
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Human eye 


