EQUATION SHEET
 Principles of Finance
 Final Exam

Financial Statement Analysis

Net cash flow $=$ Net income + Depreciation and amortization

DuPont equation: ROA=Net profit margin \times Total assets turnover

$$
=\frac{\text { Net income }}{\text { Sales }} \times \frac{\text { Sales }}{\text { Total assets }}
$$

DuPont equation: ROE $=\quad$ ROA \times Equity multiplier

$$
\begin{aligned}
& =\frac{\text { Net income }}{\text { Total assets }} \times \frac{\text { Total assets }}{\text { Common equity }} \\
& =\left[\begin{array}{c}
\text { Profit } \\
\text { margin }
\end{array} \times \begin{array}{c}
\text { Total assets } \\
\text { turnover }
\end{array}\right] \times \begin{array}{c}
\text { Equity } \\
\text { multiplier }
\end{array} \\
& =\left[\frac{\text { Net income }}{\text { Sales }} \times \frac{\text { Sales }}{\text { Total assets }}\right] \times \frac{\text { Total assets }}{\text { Common equity }}
\end{aligned}
$$

The Financial Environment

Net proceeds from issue = Amount of issue - Flotation costs $=($ Amount of issue $) \times(1-$ Flotation costs $)$

Amount of issue $=\frac{\text { Amount needed }}{(1-\text { Flotation costs })}=\frac{(\text { Net proceeds })+(\text { Other cos ts })}{(1-\text { Flotation costs })}$

Time Value of Money

Lump-sum (single) payments:
$F V_{n}=P V(1+r)^{n}$

$$
P V=\frac{F V_{n}}{(1+r)^{n}}=F V_{n}\left[\frac{1}{(1+r)^{n}}\right]
$$

Annuity payments:

$$
\begin{aligned}
& \text { FVA }_{n}=P M T\left[\sum_{t=0}^{n-1}(1+r)^{t}\right]=P M T\left[\frac{(1+r)^{n}-1}{r}\right] \\
& \text { FVA }(D U E)_{n}=P M T\left\{\left[\sum_{t=0}^{n-1}(1+r)^{t}\right] \times(1+r)\right\}=P M T\left[\left\{\frac{(1+r)^{n}-1}{r}\right\} \times(1+r)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { PVA }_{n}=\operatorname{PMT}\left[\sum_{t=1}^{n} \frac{1}{(1+r)^{t}}\right]=P M T\left[\frac{1-\frac{1}{(1+r)^{n}}}{r}\right] \\
& \text { PVA(DUE })_{n}=\operatorname{PMT}\left\{\sum_{t=1}^{n}\left[\frac{1}{(1+r)^{t}}\right] \times(1+r)\right\}=P M T\left[\left\{\frac{1-\frac{1}{(1+r)^{n}}}{r}\right\} \times(1+r)\right]
\end{aligned}
$$

Perpetuities:

Present value of a perpetuity $=P V P=\frac{\text { Payment }}{\text { Interest rate }}=\frac{P M T}{r}$

Uneven cash flow streams:

$\mathrm{FVCF}_{\mathrm{n}}=C F_{1}(1+r)^{\mathrm{n}-1}+\ldots+C F_{n}(1+r)^{0}=\sum_{\mathrm{t}=0}^{\mathrm{n}-1} \mathrm{CF}(1+r)^{\mathrm{t}}$
$\mathrm{PVCF}_{n}=\mathrm{CF}_{1}\left[\frac{1}{(1+r)^{1}}\right]+\ldots+\mathrm{CF}_{\mathrm{n}}\left[\frac{1}{(1+r)^{n}}\right]=\sum_{\mathrm{t}=1}^{\mathrm{n}} \mathrm{CF}\left[\frac{1}{(1+r)^{\mathrm{t}}}\right]$

Interest rates (yields):

Periodic rate $=r_{\text {PER }}=\frac{\text { Stated annual interest rate }}{\text { Number of interest payments per year }}=\frac{r_{\text {SIMPLE }}}{m}$
$\begin{gathered}\text { Number of } \\ \text { int erest periods }\end{gathered}=n_{\text {PER }}=\binom{$ Number }{ of years }$\times\binom{$ Number of interest }{ payments per year }$=n_{\text {YRS }} \times m$

$$
\begin{aligned}
& \text { Effective } \\
& \text { annual rate }
\end{aligned}=E A R=r_{\text {EAR }}=\left(1+\frac{r_{\text {SIMPLE }}}{m}\right)^{m}-1.0=\left(1+r_{\text {PER }}\right)^{m}-1.0
$$

Annual percentage rate $=A P R=r_{\text {PER }} \times m$

COST OF MONEY

$\begin{aligned} \text { Dollar return } & =(\text { Dollar income })+\quad \text { (Capital gains) } \\ & =(\text { Dollar income })+(\text { Ending value }- \text { Beginning value })\end{aligned}$
Yield $=\frac{\text { Dollar return }}{\text { Beginning value }}=\frac{\text { Dollar income }+ \text { Capital gains }}{\text { Beginning value }}$
$=\frac{\text { Dollar income }+(\text { Ending value }- \text { Beginning value })}{\text { Beginning value }}$
Rate of return $=r=$ Risk-free rate + Risk premium $=r=r_{R F}+R P$
Rate of return $=r=r_{R F}+R P=r_{R F}+[D R P+L P+M R P]$

$$
=\left[r^{\star}+I P\right]+[D R P+L P+M R P]
$$

$\mathrm{r}_{\text {Treasury }}=\mathrm{r}_{\mathrm{RF}}+\mathrm{MRP}=\left[\mathrm{r}^{*}+\mathrm{IP}\right]+\mathrm{MRP}$
$\begin{gathered}\text { Yield on an } \\ n \text {-year bond }\end{gathered}=\frac{\binom{\text { Interest rate }}{\text { in Year 1 }}+\binom{\text { (nterest rate }}{\text { in Year 2 }}+\cdots+\binom{\text { Interest rate }}{\text { in Year n }}}{n}=\frac{R_{1}+R_{2}+\cdots+R_{n}}{n}$

Valuation Concepts

General valuation model:

$\begin{aligned} & \text { Value of } \\ & \text { an asset }\end{aligned}=V_{0}=P V$ of $C F=\frac{\hat{C F}_{1}}{(1+r)^{1}}+\cdots+\frac{\hat{C F}_{n}}{(1+r)^{n}}=\sum_{t=1}^{n} \frac{\hat{C F}_{t}}{(1+r)^{t}}$

Bond Valuation:

$\underset{\text { Value }}{\text { Bond }}=V_{d}=\frac{\text { INT }}{\left(1+r_{d}\right)^{1}}+\ldots+\frac{\operatorname{INT}+M}{\left(1+r_{d}\right)^{N}}=\operatorname{INT}\left[\frac{1-\frac{1}{\left(1+r_{d}\right)^{N}}}{r_{d}}\right]+M\left[\frac{1}{\left(1+r_{d}\right)^{N}}\right]$
Adjust $\mathrm{r}_{\mathrm{d}}, \mathrm{N}$, and INT if interest is paid more than once per year.
$V_{d}=\frac{I N T}{(1+Y T M)^{1}}+\ldots+\frac{I N T}{(1+Y T M)^{N}}+\frac{M}{(1+Y T M)^{N}}$
$V_{d}=\frac{\text { INT }}{(1+Y T C)^{1}}+\ldots+\frac{I N T}{(1+Y T C)^{N}}+\frac{M}{(1+Y T C)^{N}}$
$r_{d}=Y T M=$ Bond yield $=\underset{\text { yield }}{\text { Current }}+\underset{\text { yield }}{\text { Capital gains }}=\frac{I N T}{V_{d 0}}+\frac{V_{d 1}-V_{d 0}}{V_{d 0}}$

YTM $=$ Yield to maturity

YTC = Yield to call

Stock Valuation:

$\begin{aligned} & \text { Stock } \\ & \text { value }\end{aligned}=\mathrm{V}_{\mathrm{s}}=\hat{P}_{0}=\frac{\hat{\mathrm{D}}_{1}}{\left(1+\mathrm{r}_{\mathrm{s}}\right)^{1}}+\cdots+\frac{\hat{\mathrm{D}}_{\infty}}{\left(1+\mathrm{r}_{\mathrm{s}}\right)^{\infty}}=\sum_{\mathrm{t}=1}^{\infty} \frac{\hat{\mathrm{D}}_{\mathrm{t}}}{\left(1+r_{\mathrm{s}}\right)^{\mathrm{t}}}$

Constant growth stock: $P_{0}=\frac{D_{0}(1+g)}{r_{s}-g}=\frac{\hat{D}_{1}}{r_{s}-g}$
Nonconstant growth stock: $P_{0}=\frac{\hat{D}_{1}}{\left(1+r_{s}\right)^{1}}+\frac{\hat{D}_{2}}{\left(1+r_{s}\right)^{2}}+\cdots+\frac{\hat{D}_{n}+\hat{P}_{n}}{\left(1+r_{s}\right)^{n}}$; where $\hat{P}_{n}=\frac{\hat{D}_{n}\left(1+g_{\text {norm }}\right)}{r_{s}-g_{\text {norm }}}$
$\mathrm{g}_{\text {norm }}=$ normal, or constant growth

$$
\hat{r}_{s}=\text { Stock yield }=\binom{\text { Dividend }}{\text { yield }}+\binom{\text { Capital gains }}{\text { yield }}=\frac{\hat{D}_{1}}{P_{0}}+g=\left(\frac{\hat{D}_{1}}{P_{0}}\right)+\left(\frac{\hat{P}_{1}-P_{0}}{P_{0}}\right)
$$

$\underset{\text { value added }}{\text { Economic }}=E V A=E B I T(1-T)-\left[\binom{\right.$ Average cost }{ of funds }$\times\binom{$ Invested }{ capital }$]$

Risk and Rates of Return

$\begin{gathered}\text { Expected rate } \\ \text { of return }\end{gathered}=\hat{r}=P r_{1} r_{1}+P r_{2} r_{2}+\ldots+P r_{n} r_{n}=\sum_{i=1}^{n} P r_{r_{i}}$

$$
\text { Standard deviation }=\sigma=\sqrt{\sigma^{2}}=\sqrt{\sum_{i=1}^{n}\left(r_{i}-\hat{r}\right)^{2} \operatorname{Pr}_{i}}
$$

Variance $=\sigma^{2}=\sum_{i=1}^{n}\left(r_{i}-\hat{r}\right)^{2} P r_{i}$
Estimated $\sigma=\mathrm{s}=\sqrt{\frac{\sum_{\mathrm{t}=1}^{\mathrm{n}}\left(\ddot{r}_{\mathrm{t}}-\bar{r}\right)^{2} \operatorname{Pr}_{\mathrm{t}}}{\mathrm{n}-1}}$
$\bar{r}=\frac{\ddot{r}_{1}+\ddot{r}_{2}+\cdots+\ddot{r}_{n}}{n}=\frac{\sum_{t=1}^{n} \ddot{r}_{t}}{n}$

Coefficient of variation $=C V=\frac{\text { Risk }}{\text { Return }}=\frac{\sigma}{\hat{r}}$
$\hat{r}_{P}=w_{1} \hat{r}_{1}+w_{2} \hat{r}_{2}+\ldots+w_{N} \hat{r}_{N}=\sum_{j=1}^{N} w_{j} \hat{r}_{j}$
$\beta_{P}=w_{1} \beta_{1}+w_{2} \beta_{2}+\ldots+w_{N} \beta_{N}=\sum_{j=1}^{N} w_{j} \beta_{j}$
Return $=$ Risk-free return + Risk Premium $=r_{R F}+R P$

$$
\begin{aligned}
\mathrm{RP} & =\text { Return }-\mathrm{r}_{\mathrm{RF}} \\
\mathrm{RP} \text { Investment } & =\mathrm{RPM}_{\mathrm{M}} \times \beta_{\text {Investment }} \\
\text { IInvestment } & =\mathrm{r}_{\mathrm{RF}}+\mathrm{RP}_{\text {Investment }} \\
& =\mathrm{r}_{\mathrm{RF}}+\left(\mathrm{RP}_{\mathrm{M}}\right) \beta_{\text {Investment }} \\
& =\mathrm{r}_{\mathrm{RF}}+\left(\mathrm{rM}_{\mathrm{M}}-\mathrm{r}_{\mathrm{RF}}\right) \beta_{\text {Investment }}
\end{aligned}
$$

Capital Budgeting

Evaluation techniques:

Payback $=\left(\begin{array}{c}\text { Number of years just } \\ \text { before full recovery of } \\ \text { original investment }\end{array}\right)+\left(\begin{array}{c}\text { Amount of the initial investment that is } \\ \text { unrecovered at the start of therecovery year } \\ \text { Total cash flow generated } \\ \text { during the recovery year }\end{array}\right)$
Traditional payback—unadjusted cash flows are used
Discounted payback—discounted cash flows, or present values, are used
$N P V=\mathrm{CF}_{0}+\frac{\hat{C F}_{1}}{(1+r)^{1}}+\cdots+\frac{\hat{C F}_{n}}{(1+r)^{n}}=\sum_{t=0}^{n} \frac{\hat{C F}_{t}}{(1+r)^{t}}$
$\mathrm{CF}_{0}+\frac{\hat{\mathrm{CF}}_{1}}{(1+\mathrm{IRR})^{1}}+\cdots+\frac{\hat{\mathrm{CF}}_{\mathrm{n}}}{(1+\mathrm{IRR})^{n}}=\sum_{\mathrm{t}=0}^{\mathrm{n}} \frac{\hat{\mathrm{CF}}_{\mathrm{t}}}{(1+\mathrm{IRR})^{\mathrm{t}}}=0$

$$
\mathrm{IRR}=\text { internal rate of return }
$$

MIRR: PV of cash outflows $=\frac{F V \text { of cash inflows }}{(1+M I R R)^{n}}=\frac{T V}{(1+M I R R)^{n}} ; \quad \sum_{t=0}^{n} \frac{\operatorname{COF}_{t}}{(1+r)^{t}}=\frac{\sum_{t=0}^{n} \operatorname{CIF}_{t}(1+r)^{t}}{(1+M I R R)^{n}}$

Cash Flow Estimation

Net cash flow $=$ Net income + Depreciation $=$ Return on capital + Return of capital
$\underset{\text { operating cash flow }}{t}$ Supplemental $=\Delta$ Cash revenues $_{t}-\Delta$ Cash $^{\text {Sexpenses }}{ }_{t}-\Delta$ Taxes $_{t}$

$$
\begin{aligned}
& =\Delta \text { NOI }_{t} \times(1-\mathrm{T})+\Delta \text { Depr }_{t} \\
& =\left(\Delta \mathrm{NOI}_{t}+\Delta \text { Depr }_{t}\right) \times(1-\mathrm{T})+\mathrm{T}\left(\Delta \text { Depr }_{t}\right)
\end{aligned}
$$

Cost of Capital

$\begin{gathered}\text { After-tax component } \\ \text { cost of debt }\end{gathered}=\binom{$ Bondholders' required }{ rate of return }$-\binom{$ Tax savings }{ associated with debt }$=r_{d}-r_{d} \times T=r_{d}(1-T)=Y T M(1-T)$
$\underset{\text { of preferred stock }}{\text { Component cost }}=r_{p s}=\frac{D_{p s}}{P_{0}(1-F)}=\frac{D_{p s}}{N P_{0}}$
$\underset{\text { of retained earnings }}{\text { Component cost }}=r_{s}=r_{R F}+\left(r_{M}-r_{R F}\right) \beta_{s}=\frac{\hat{D}_{1}}{P_{0}}+g=\hat{r}_{S}$
$\begin{gathered}\text { Component cost } \\ \text { of new equity }\end{gathered}=r_{e}=\frac{\hat{D}_{1}}{P_{0}(1-F)}+g=\frac{\hat{D}_{1}}{N P}+g$

$$
\begin{aligned}
\text { WACC } & =\left[\left(\begin{array}{c}
\text { Proportion } \\
\text { of } \\
\text { debt }
\end{array}\right) \times\left(\begin{array}{c}
\text { After-tax } \\
\text { cost of } \\
\text { debt }
\end{array}\right)\right]+\left[\left(\begin{array}{c}
\text { Proportion } \\
\text { of preferred } \\
\text { stock }
\end{array}\right) \times\left(\begin{array}{c}
\text { Cost of } \\
\text { preferred } \\
\text { stock }
\end{array}\right)\right]+\left[\left(\begin{array}{c}
\text { Proportion } \\
\text { of common } \\
\text { equity }
\end{array}\right) \times\left(\begin{array}{c}
\text { Cost of } \\
\text { common } \\
\text { equity }
\end{array}\right)\right] \\
& =\quad+\quad W_{\text {dT }} r_{d T} r_{\text {ps }}+\quad w_{s}\left(r_{s} \text { or } r_{e}\right)
\end{aligned}
$$

$\begin{gathered}\text { WACC } \\ \text { Break Point }\end{gathered}=\frac{\text { Total dollar amount of lower cost of capital of a given type }}{\text { Proportion of this type of capital in the capital structure }}$

Planning and Control

Full capacity sales $=\frac{\text { Sales level }}{\binom{\text { Percent of capacity used }}{\text { to generate sales level }}}$

Operating Breakeven Analysis

Sales Total operating $=$ Total + Total revenues ${ }^{=}$costs ${ }^{=}$variable costs ${ }^{+}$fixed costs

$$
(P \times Q)=T O C=(V \times Q)+F
$$

$Q_{\mathrm{OPBE}}=\frac{\mathrm{F}}{\mathrm{P}-\mathrm{V}}=\frac{\mathrm{F}}{\text { Contribution margin }}$

$$
S_{\mathrm{OpBE}}=\frac{\mathrm{F}}{1-\left(\frac{\mathrm{V}}{\mathrm{P}}\right)}=\frac{\mathrm{F}}{\text { Gross profit margin }}
$$

$\left.\begin{array}{c}\text { Degree of } \\ \text { operating leverage }\end{array}=\mathrm{DOL}=\frac{\text { Percentage change in NOI }}{\text { Percentage change in sales }}=\frac{\left(\frac{\Delta \mathrm{NOI}}{\mathrm{NOI}}\right)}{\left(\frac{\Delta \text { Sales }}{\text { Sales }}\right)}=\frac{\left(\frac{\Delta \mathrm{EBIT}}{\mathrm{EBIT}}\right)}{\left(\frac{\Delta \text { Sales }}{\text { Sales }}\right)}=\frac{\left(\frac{\Delta \mathrm{EBIT}}{\mathrm{EBIT}}\right)}{\left(\frac{\Delta \mathrm{Q}}{\mathrm{Q}}\right)}{ }^{2}\right)$
$D O L=\frac{(Q \times P)-(Q \times V)}{(Q \times P)-(Q \times V)-F}=\frac{S-V C}{S-V C-F}=\frac{\text { Gross profit }}{E B I T}$

Financial Breakeven Analysis

$E P S=\frac{\text { Earnings available to common stockholders }}{\text { Number of common shares outstanding }}=\frac{\left(\text { EBIT-I) }(1-T)-D_{p s}\right.}{\operatorname{Shrs}_{C}}=0$
$E B I T_{\text {FinBE }}=I+\frac{D_{\text {ps }}}{(1-T)}$
$\begin{gathered}\text { Degree of } \\ \text { financial leverage }\end{gathered}=\mathrm{DFL}=\frac{\text { Percent change in EPS }}{\text { Percent change in EBIT }}=\frac{\left(\frac{\Delta E P S}{E P S}\right)}{\left(\frac{\Delta E B I T}{E B I T}\right)}$
$D F L=\frac{E B I T}{E B I T-I}=\frac{E B I T}{E B I T-[\text { Financial BEP }]}$
Financial BEP $=I+\frac{D p s}{(1-T)}$
$D F L=\frac{E B I T}{E B I T-I}$
When there is no preferred stock.
$\begin{gathered}\text { Degree of } \\ \text { total leverage }\end{gathered}=\mathrm{DTL}=\frac{\left(\frac{\Delta \mathrm{EPS}}{\mathrm{EPS}}\right)}{\left(\frac{\Delta \text { Sales }}{\text { Sales }}\right)}=\frac{\left(\frac{\Delta \mathrm{EBIT}}{\mathrm{EBIT}}\right)}{\left(\frac{\Delta \text { Sales }}{\text { Sales }}\right)} \times \frac{\left(\frac{\Delta \mathrm{EPS}}{\mathrm{EPS}}\right)}{\left(\frac{\Delta \mathrm{EBIT}}{\mathrm{EBIT}}\right)}=\mathrm{DOL} \times \mathrm{DFL}$

$$
\begin{aligned}
D T L & =\frac{\text { Gross Profit }}{\text { EBIT }} \times \frac{\text { EBIT }}{\text { EBIT - [Financial BEP] }}=\frac{\text { Gross Profit }}{\text { EBIT - [Financial BEP] }} \\
& =\frac{S-V C}{E B I T-I}=\frac{Q(P-V)}{[Q(P-V)-F]-I} \quad \text { When there is no preferred stock. }
\end{aligned}
$$

