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Functional and logic languages have many similarities, but there are significant differ

ences between them that the integration of functional and logic languages is a challenging 

problem. The approach presented in this paper is called equational programming. We 

show that equations can be used to define many features of functional languages, such 

as abbreviations, patterns, set abstraction and infinite objects, as well as those of logic 

languages, such as the ability to invert functions, unify terms, and compute with logical 

variables and partially-defined values. A language called EqL is described that embod

ies this equational approach. The formal semantics of equations is given in terms of the 

complete set of solutions and the operational semantics is given in terms of two sets of 

reduction rules: -t-reductions and ~-reductions. We refer to the latter form of reduction 

as obiect refinement. Equations are solved by gradually refining the values bound to the 

variables of the equation. This approach is amenable to parallel execution and also offers 

advantages in comparison to related techniques such as narrowing. 
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I. Introduction 

Logic and functional languages have emerged as two promising disciplines in pro

gramming languages because of their high-level declarative specifications, elegant mathe

matical properties, and potential for highly parallel execution. Despite these similarities, 

each has strengths not readily possessed by the other. For example, functional languages 

support infinite data structures and higher-order functions, whereas logic languages sup

port partially-defined values and nondeterministic specifications. Thus, the integration or 

"unification" of functional and logic programming has become a problem of considerable 

interest recently. 

Most of the existing approaches to the integration of functional and logic languages 

may be considered to fall into two classes: 

1. Languages that extend a logic language with functional capabilities. Within this class, 

one may further distinguish two subclasses: 

• Languages that are based on Hom clauses, such as Funlog [8Y84], Eqlog [GM84], 

Qlog [K82], and the languages proposed by Tamaki [T84] and Barbuti et al [BBLM84]. 

• Languages that are based on full first-order logic, such as Tablog [MMW84] and the 

language described by Hansson, et al [HHT82]. 

2. Languages that extend a functional language with logic capabilities. In comparison 

with languages of the preceding class, these languages are generally smaller, but less 

expressive. One may again distinguish two classes here: 

• Languages like LOGLI8P [R882], HOPE with absolute set abstraction [D83], and 

8cheme/L [80885] that support both deterministic as well as nondeterministic pro

grams. 

• Languages like FPL [BDL82], FGL+LV [L85], Qute [8883], and HA8L [H84] that 

support only deterministic programs. 

This paper proposes a novel approach to the problem of unifying functional and logic 

languages. The difference between our proposed approach and those listed above is that we 

use equations to attain the expressiveness of languages in the first class and the simplicity 

of languages in the second. We consider equations because they can be used to define, in 

a uniform way, common subexpressions, patterns, and infinite data structures, found in 

functional languages such as FGL, HOPE, ML, and KRC [KJLR80, BM880, M84, T81], 

as well as to invert functions, unify terms and compute with partially-defined values as in 
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logic languages like Prolog (WPP77]. In fact, it is possible to define any Horn clause using 

equations. In addition, it is possible to directly express negation using equations. It is 

worth noting that unification in logic languages is really a special form of equation solution. 

Variables in such equations are logical variables, which obtain their values as a result of 

solving equations. We refer to the programming paradigm arising from programming with 

such equations as equational programming. 

This paper also describes a novel execution strategy called object refinement. It is 

well-known that the evaluator for a non-strict functional language can be based on outer

most reduction [KLP79, H082]. However, the inclusion of logical variables and partially

defined values requires a more general reduction strategy. Two kinds of reduction rules 

for each primitive function are therefore proposed: -+-reduction is the usual reduction 

rule found in non-strict functional languages, and is performed whenever argument values 

are sufficiently defined for ordinary simplification. On the other hand, a "'-+-reduction is 

performed when a -+-reduction cannot be applied, and refines argument values sufficiently 

to enable a -+-reduction. This latter process is termed object refinement, and can be seen 

as a generalization of ordinary reduction for partially-defined values, and also of conven

tional unification for expressions that are not restricted to pure terms. An equation is 

thus solved by progressively reducing its two expressions and refining objects bound to its 

logical variables. 

Object refinement gives many opportunities for parallel execution and also has ad

vantages over related techniques like narrowing (H80]. Object refinement is more efficient 

than narrowing because (a) reductions are performed only at the outermost level of a 

term, (b) information is associated with variables and there is no need to perform sub

stitutions on terms, and (c) only the primitive functions perform this refinement. Also, 

object refinement can produce negative bindings for variables, whereas narrowing cannot. 

The rest of this paper divides into the following sections: section II introduces the lan

guage EqL and presents several examples to show the versatility of equations for functional 

and logic programming; section m presents the formal semantics of the language in terms 

of the complete set of solutions; section IV presents the reduction rules of the evaluator 

and sketches the solution of equations; section V presents comparisons with related work; 

and section VI presents conclusions and directions for further work. 
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n. Equational programming 

11.1. Introducing EqL 

We are developing a language called EqL which supports equational programming. 

In this language we employ a functional rather than a relational or clausal syntax, primar

ily because the components of equations are expressions which are composed of function 

applications. Some potential advantages of the functional notation are that many prob

lems for which logic languages are used are more clearly formulated using functions than 

relations. Furthermore, functions possess directional information, not present in relations, 

which allow them to be more executed more efficiently [R84]. Since equations allow one 

to define patterns, we restrict our operation definitions to have simple variables as formal 

parameters. Also, since equations may have a set of solutions we provide a set notation 

similar to KRC; however, equations are used to define the "generators" and "filters". Our 

language is essentially pure, lazy [HM76] first-order LISP augmented with set expressions 

and equations. 

The data values in this paper are limited primarily to a set of binary trees T which 

are defined using two constructors leaf and cons as follows: 

1. (] E T. 

2. leaf{ a) E T, where a E A, a finite set of atoms. 

3. x, y E T => cons(x,y) E T. 

As in LISP, lists are a special form of trees and are written using the [ ... ] notation. 

The element [ ] stands for the empty tree and also the empty list. We introduce the leaf 

constructor for technical reasons (see section on operational semantics). However, in the 

examples that follow, we will write a list of two atoms 1 and 2 as [1 2] instead of [leaf(1) 

leaf(2)]. 

An EqL program consists of a set of operation definitions, each of which has the 

following form 

( opname) ( (! ormals}) <= (expression), 

where (expression) is any syntactically well-formed composition of functions, which 

includes the following three forms: 

1. conditional-expression: if (expression) then (expression) else (expression). 

2. set-expression: {(expression) I (equations)}. 
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3. where-expression: ((expression) where (equations)). 

An equation has the form: 

(expression) = (expression). 

In this paper, a set of equations (equations) forms a conjunctive set; that is, they are 

simultaneously true or false. Although disjunctive sets are useful and can be supported in 

EqL, we do not consider them in this paper. Parentheses and braces both serve to delimit 

the scope of logical variables appearing in equations. (There are no global variables in this 

language.) We briefly explain these two constructs: 

• For a where-expression ((expression) where (equations)), if expressions in the 

equations are restricted to terms composed of cons, leaf, atoms and variables, then 

the set of equations has a unique solution (if it exists), which is its most general unifier. 

If the expressions are not just terms then any one of the set of possible solutions (if 

one exists) is chosen nondeterministically. In either case the result of the where

expression is the value of (expression) obtained after substituting for the variables in 

the equations according to the (chosen) solution. (If the equations have no solution 

failure is signalled, which in a sequential implementation could cause backtracking.) 

• The result of a set-expression {(expression) I (equations)} is a set of values, where 

each value is produced by evaluating (expression) using one of the solutions of the 

set of equations. This set is represented as a list; the empty list [ ] is returned if it is 
' 

detected that there is no solution. No order is defined among the different solutions, 

and because of outermost reduction this list is produced incrementally, as needed. 

11.2. Examples 

We now present several examples to show the capabilities of these constructs for 

functional and logic programming. 

Example: Patterns 

member(x, l) <= if null(l) then false else 

(if eq(x,h) then true else member(x,t) 

where cons(h, t) = l) 

This program shows one of the simplest uses of an equation, namely, to define a 

pattern which decomposes a list into its head and tail. The above definition is similar to 

the LISP definition of member, except for its use of the pattern. 
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EZ4mple: Inverting functions 

union(x, y) <= if null(x) then y else 

(if member(h, y) then union(t, y) else cons(h, union(t, y)) 

where cons(h,t) = x) 

{z I union([12], z) = [1 2 3]} 

The above program defines the union of two sets x and y represented as lists, and 

obtains the list [(1 3] (2 3] (3]) as the value of z. This is a simple example of a logic 

program, illustrating how functions may be inverted. 

EZ4mple: Infinite set of solutions 

append(x, y) <= if null(x) then y else cons( car(x), append( cdr(x), y)) 

{I I append(l, [1 2]) = append((1 2], l)} 

The above definition is the customary LISP definition of append, using explicit selec

tors car and cdr. The set of solutions for the logical variable l is the infinite list [nil [1 2] 

[1 2 1 2] ... ]. 

EZ4mple: Generators 

(:prod(8t, 82) <= { cons(x, y) I member(x, s 1) = true 

member(y, 82) =true} 

The above function cprod defines the cartesian product of two sets 8 1 and 8 2 repre

sented as lists. This illustrates the use of equations as "generators" to generate elements 

of a set, as in KRC (T81). 

EZ4mple: Set Difference 

sdiff(8t,82) <={xI member(x,81) =true 

member(x, 82) =false} 

sdi.D{(1 2 3 6], [2 3 4 5]) 

The above program computes the set difference 8 1 -82 of two sets 8 1 and 8 1 represented 

as lists. The above example illustrates the "generate and test" paradigm, and also shows 

how negation may be stated directly. The list [1 6) is computed at the top-level. 

EZ4mple: Recursive generators 

perms(l) <= if null(l) then [[ ]] else 
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{cons(a,p) I member(a,l) =true 

member(p,perms(sdiff(l, [a])))= true} 

The above example defines the set of permutations of a list using a "recursive genera

tor", and is again inspired by the KRC formulation of this problem [T82]. In this example 

we assume that member is defined using the LISP function equal rather than eq. 

Example: Generate and test 

primes() <= {p I member (p, numsfrom(2)) =true 

divisors(p, nums(2,p- 1)) = [ ]} 
numsfrom(n) <= cons(n, numsfrom(n + 1)) 

nums(l, h) <= if l > h then ( ] else cons(n, nums(l + 1, h)) 

divisors(p,l) <= {i I member(i,l) = true 

mod(p, i) = 0} 

The function primes above illustrates the "generate and test" paradigm for defining 

the infinite set of primes. Note that the set of primes are not necessarily produced in 

ascending order, and because of outermost evalution the function divisors need produce 

only one divisor in order to show inequality with [ ]. 

Ezample: Fibonacci Sequence 

addstr(8IJ 82) <= ( cons(h1 + h2, addstr(tt, t2)) 

where cons(hh tt) = 81 

cons(h2, t2) = s2) 

(fib where fib= cons(1, cons(1, addstr(fib, cdr(fib))))) 

The above program expresses a solution to a problem that is easily expressed in func

tional languages but not logic languages. The logical variable fib in the above equation 

denotes an infinite list in which each successive element is generated by adding its pre

ceding two elements of the list. Such cyclic definitions of variables are common to many 

functional languages such as KRC [T81] and FGL [KJLR80], but are disallowed in most 

logic languages. (Colmerauer, however, shows haw certain restricted forms of infinite trees 

called rational trees may be defined in Prolog without the occur-check (C82].) 

Example: Sieve of Eratosthenes 

sieve(l,p) <= (if divides(h, p) then sieve(t,p) else cons(h, sieve(t,p)) 
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where cons(h,t) = l) 
divides(n,p) <= (if h * h > n then false else 

if iszero(mod(n,h)) then true else divides(n,t) 

where cons(h, t) = p) 

(p where p = cons(2,sieve(numsfrom(3),p))) 

The above program is a more efficient method of generating the primes, and is based 

on the Sieve of Eratosthenes. The last line in the above definition is similar to that in 

the Fibonacci example; that is, the sequence of primes produced is "fed back" to sieve in 

order to produce subsequent primes. The function numsfrom is the same as that in the 

preceding example. 

Example: Difference Lists 

dconc(dh d2) <= ( cons(x, z) where cons(x, y) = d1 

cons(y, z) = d2) 

(dconc(da,d4) where .ds = cons(cons{1, cons(e, t}}, t) 

d4 = cons(cons{9, cons{-4, u)), u)) 

The above program expresses a solution to a problem that is easily expressed in 

logic languages but not functional languages. Here, simultaneous equations are used to 

effectively concatenate two lists, represented as difference lists (CG7;7), in constant time. 

The logical variable y in the first two equations effectively refines the object denoted by 

t, which is initially unbound, to cons(cons{9, cons{-4, u)}, u). This refinement is done in 

constant time, independent of the size of the object denoted by x. 

Example: Horn clauses 

A simple example is given to illustrate the mechanical conversion of any Horn logic 

program to an EqL program. The following program is written using DEC-10 Prolog 

syntax (CM81): 

apd(( ], X, X). 

apd{cons{H,T), Y, cons(H,Z)) :- apd(T, Y, Z). 

?- apd{X, Y, [1,2,3,4]). 

The converted EqL program would be 

apd(A, B, C) <=(A= [ ] 
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B=X 

C=X) 

apd(A,B,C) <= (apd(T,Y,Z) where A= cons(H,T) 

B=Y 

C = cons(H, Z)) 

{cons(X,Y) I apd{X,Y,[12 3 4]) =true} 

The basic idea is to treat each predicate as a boolean-valued function. In general, 

a predicate p defined by k Horn-clauses would be translated into k EqL definitions with 

identical left-hand sides indicating that a nondeterministic choice is involved. Two other 

points to be noted here are: (1) The expression ((equations}) returns a boolean value 

indicating whether the set of equations has a solution or not. (2) The set of equations in 

each definition serve to unify the goal terms with those of the clause head. 

m .. Formal semantics 

We now try to make precise the meaning of an EqL program. We shall restrict our 

attention in this paper to the formal semantics of a set of equations. Basically, an equation 

[u = v~ is true if there a substitution p such that the value denoted by ([u~p) is identical to 

that for ((v~p). The semantics of an equation is then defined in terms of the complete set 

of solutions, and is similar to the complete set of unifiers relative to an equational theory 

[H80]. Our formalization is essentially a model-theoretic semantics'[VK76, GM84]. We 

start by defining the domain G (for ground values) below: 

1. 1., [ ], leal(a) E G, where a E A, the set of atoms. 

2. z, y E G => cons(z, y) E G. 

The partial ordering C on G is defined as follows: 

1. ('v'z) .l ~ z. 

2. z1 ~ z2 A Y1 C Y2 => cons(Z~tYl) C cons(z2,Y2)· 

Furthermore, the limit of every infinite chain d1 C d2 ... is also in the domain. We 

use 1. to denote "nontermination". 

Let e be the following set of equations: 

(ul = V1 . :. Un = vnD· 

We first define r, the set of ground solutions of t with respect to a program P: 

r = {P 1 P F= e P}, 
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where the logical consequence "F=" is defined by 

P F t P ~ #LP(ffutDP) = #Lp(ffvtDP) A.·· A #Lp(ffun]P) = #Lp(ffvnDP)· 

The function p E Subst, where Subst = (Var t-+ G), is the substitution function 

for variables in the equations. (ffu) p) is a textual-substitution operation, and yields the 

expression resulting from substituting for the variables in u according to p. The function 

= tests whether two ground values in G are identical. 

The function #'P : Exp t-+ G gives the meaning for the set of all ground expressions 

Exp with respect to a program Pt. It assumes that each primitive function has a predefined 

meaning and each function symbol gets its denotation from the set of continuous functions 

(G t-+ G]. #'P essentially defines the meaning of expressions. We omit its details, but instead 

present below the semantics of where-expressions and set-expressions as two illustrative 

cases: 

Assuming r is a nonempty set of ground solutions to a set of equations t, the semantics 

of a where-expression is given by 

#'P([(exp where t)D) = #'P([exp] p) for some pEr. 

If r is the empty set then the semantics of the where-expression is T, which denotes 

"failure". 

The semantics of a set-expression is given by 

#'P([{exp I t}D) = {#'P([exp] p) I pEr}. 

We illustrate the semantics of an equation by an example. Consider 

[append(x, [1 2]) = append((1 2], x)J. 

Suppose the substitution function p = {x +- [ ]}. Then, the result of applying the 

textual substitution operations to each expression of the equation is: 

[append(x, [1 2])DP = [append([ ], [1 2])D 
[append{[1 2],x)Dp = [append{[1 2], [])D. 

Next, the meaning of each of the resulting expression is given by #LP below, where we 

assume P is the program containing the definition of append: 

#'P {[append{[1 2], [ ])B) = [1 2] 
#LP([append(( ]~[1 2]))) = [1 2]. 

t In general, permitting nondeterministic definitions as in the last example of section 

2 requires that #'P map expressions to a set of values rather than a single value. 

10 



Since the resulting values are identical, the substitution p = { x +- [ ]} is a solution to 

the equation. 

The set of ground solutions r does not fully capture the meaning of equations because 

logic programs, such as difference lists, require solutions in terms of partially-defined values 

(or nonground values). Although a partially-defined value can be modelled by an equiv

alence class of ground values, it is convenient to introduce them explicitly in the formal 

semantics since this would facilitate showing the correctness of the operational semantics. 

For this reason we define the complete set of solutions, E, as follows: 

(V p E f) (3a E E) a < p A (Va E E) (3p E f) a ~ p 

where a 1 ~ a2 <==> (Vx)al(x) ~ a2(x), and the substitution functions a 1 and a2 are 

from the set (Var ~--+ P), where P is the domain of partially-defined val~es (defined in the 

next section) and C is the partial ordering on P. 

For example, consider the two equations defining the concatenation of two difference 

list cons( cons(l, c~ns(2, t)), t) and cons( cons(3, u), u): 

[ cons(x, y) = cons( cons(I, cons(2, t)), t) 

cons(y,z) = cons(cons(3,u),uH. 

Let p = {x +- cons(cons(I,cons(2,cons(3,u))),u),y +- cons(3,u),z +- u}. 

Although there are infinitely many ground solutions--one for each ground value as

signed to the variable u in p-the complete set of solutions has a sin,gle element, namely, 

p. 

It should be noted that in general there is no decision procedure for an arbitrary set of 

equations because of the existence of unsolvable problems such as Hilbert's Tenth problem. 

That is, it is not possible to construct an algorithm that will always terminate reporting 

either that it has found all complete solutions or that there is no solution. Therefore, our 

goal in defining an operational semantics in the next section is to devise a method that 

will compute a complete set of solutions assuming termination. 

IV. Operational Semantics 

IV .1. Reduction Rules 

Before presenting the reduction rules, we first define the domain of partially-defined 

values P as follows: 

1. j_, 4>t E P. 

11 



2. leal(x) E P, where x E A U{</>a}· 

3. x, y E P => cons(x, y) E P. 

The semantic elements <l>a and 4>t require some motivation. The subscripts a and t 

stand for "atom" and "tree" respectively. Informally, these denote the partially-defined 

value "don't care" for atoms and trees. (A similar element </>b exists for the set of booleans 

B.) An unbound variable is said to have a value </>a, </>b or <l>t· It should be noted that these 

values play a different role from .l which denotes "nontermination". 

The partial ordering on this domain is given below: 

1. .l !; </>a, .l C </>b, .l !; <f>t· 

2. (Vx E A) </>a !; x, (Vx E B) </>b !; x, (Vx E P) </>t C x. 

3. x1 !; x2 1\ Y1 C Y2 => cons(xlt Yt) !; cons(x2, Y2)· 

The partial ordering defined above determines the allowable obiect refinements. A 

variable v bound to an object whose value is p may be refined only to a value q such that 

p!; q. Note that we assume obiect uniqueness as in (185]: the object bound to the variable 

v remains the same; it is the value of the object that is refined from p to q. For example, 

in the expression if null{x) then ... else ... , assuming x were initially unbound, its value 

would be refined to [ ] in the then part and either leaf( a) or cons(xt, x2 ) in the else 

part, where a +- </>a, x1 +- 4>t and x2 +- <l>t· The possibility of more than one refinement 

corresponds to nondeterministic choice in logic languages. 

The operational semantics of the language is based on outermost reduction. Since 

partially-defined values are permitted, two kinds of reduction rules for each primitive 

function are needed: -+-reduction is the usual reduction rule found in non-strict functional 

languages, and is performed whenever argument expressions reduce to values that are 

sufficiently defined for ordinary simplification. A ~-reduction is performed when a -+

reduction cannot be performed, and corresponds to the case when an argument expression 

reduces to an unbound variable. A ~-reduction refines the value of the object bound 

to the variable sufficiently to enable a -+-reduction. Thus, all expressions are reduced by 

outermost -+-reductions and ~-reductions to either an atom, or a boolean, or an unbound 

variable, or an expression of the form cons( elt e2), where e1 and e2 are expressions. 

Figure 1 shows the -+-reduction rules for a few primitive functions. The rules cdr can 

be defined similar to that for car, and no rules are shown for cons because it does not 

evaluate its arguments. All arguments are shown in their maximally reduced forms. 
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Figure 1. Sample -+-Reduction Rules 

car(J.) --+ .L 

car(leaf(el)) --+ T 

car(cons(e1,e2))--+ e1 

car(x) --+ T, x f/. P 

null(.L) --+ .L 

atom(.L) --+ .L 

atom(leaf(el)) --+ true 

atom( cons( e17 e2)) --+ false 

atom(x) --+ T, x f/. P 

if .L then e1 else e2 --+ .L 

if true then e1 else e2 -+ e1 

if false then e1 else e2 -+ e2 

null ([ ]) --+ true 

null(leaf(el)) --+false, 

null( cons( e17 e2)) --+false 

null(x) --+ T, if x f/. P 

if x then e1 else e2 -+ T, if x f/. B u{ <Pb, .L} 

Note: In the above rules, ei is any expression and T denotes failure. 

Figure 2 shows the ~-reduction rules for the same primitives. Again, arguments are 

assumed to have been maximally reduced. It may be noted that for these primitives the 

-+-reduction and ~-reduction rules together cover all cases, i.e., all values in domain P. 

Figure 2. Sample ~-Reduction Rules 

{ true 
atom(x) ~ 1 1 ' 

1a se, 
with {x +- leaf(xl), x1 +- <,64 }, or 
with {x +- cons(xb x2), x1 +- <Pt, x2 +- <Pt} 

car(x) ~ x1, with {x +- cons(x~, x2), x1 +- <Pt, x2 +- <Pt} 
I 

{
true, with {x +- [ ]}, or 

null(x) ~ false, with {x +- leaf(x1), x1 +- <,64 }, or 
false, with {x +- cons(x1, x2), x1 +- <Pt, x2 +- <Pt} 

if X= <,bt, 

if X= c/>b, if th 1 { e~, with {x +-true}, or 
x en e1 e se e2 ~ 

e2, ···with {x +-false} 

Note: In the above rules, ei is any expression, and x1 and x 2 are new variables 

that do not occur elsewhere in the program. 

The ~-reduction rules are determined from the partial ordering on the domain and 

from the -+-reduction rules. In general, an object may be refined to any of the next more 

defined values in the domain. The one exception is that refinements involving .L are not 

allowed. For example, the rules in Figure 2 that refine an unbound variable to a cons 

expression bind the arguments of cons to <Pt rather than to .L. This is referred to as object 

refinement and is shown in Figure 2 by {variable +- value}. 

13 



IV .2. Solution of Equations 

We informally present here the solution of equations by an example. Our example 

shows the solution to a single equation, but since more equations are added as the solution 

proceeds, the discussion is applicable to a set of equations as well. For simplicity, we omit 

the leaf constructor for the atoms 1 and 2 in this example. 

Consider the equation 

append((1 2], x) = append(x, (1 2]). (0) 

Recall that it has an infinite number of solutions: ( ], (1 2], (1 2 1 2], etc. The above 

equation is just an abbreviation for 

append(cons(1, cons(S, [ ])), x) = append(x, cons(1, cons(S, [ ]))). (1) 

The expression on the left of equation (1) -+-reduces to 

cons( car(ll), append( cdr( II), x)) 

where h +- cons(!, cons(2, ( ])). 

The expression on the right has three possible ~-reductions, corresponding to the 

three possible refinements for null(x) where x +- <Pt: 

Refinement Reduced Expression 

1. x +- [ ] cons(l, cons(2, [ ])) 

2. z +- leaf(xl),xl +- <Pa cons(car(x),append(cdr(x),l2 )) 

where 12 = cons(1, cons(2, [ ])) 

3. x +- cons(xb x 2 ) cons( car(x), append( cdr(x),l2 )) 

x1 +- <Pt where 12 = cons(1, cons(2, ( ])) 

X2 +- </Jt 

All three refinements would be considered in an actual implementation-the first in fact 

leads to an overall solution-but we present here the most interesting case, which is the 

equation resulting from refinement 3: 

cons(car(l1),append(cdr(h),x)) = cons(car(x),append(cdr(x),l2 )) (2) 

where lit l2 +- cons(1, cons(2, [ ]) ), x +- cons(xlt x2), x1 +- <Ptt and x2 +- <Pt· 

This leads us to our first equation-solution rule: Whenever an equation Is of the 

form cons(e1,e2) = cons(e3,e4). two new equations are oenerated: e1 = e3, and e2 = e4. (A 
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similar rule involving the constructor leaf may be defined.) The two new equations for our 

example are 

car(11) = car(:r:) 

append( cdr( h), x) = append( cdr(:r:), h). 

(3) 

(4) 

Equation (3) further reduces to 1 = x~, at which time x1 gets bound to 1. This 

reflects a second equation-solution rule: Whenever an equation Is of the form v = e or 

e = v, where v Is an unbound variable and e Is either an atom or boolean or I] or leaf(ei) or 

cons(e~, e2), v Is bound to e. 

Equation (4) is solved similar to equation (1). The next solution obtained is 

{ x ..- cons(xh x2), XI ..- 1, x2 ..- cons(xa, x4), xa ..__ 2, X4 ..__ [ ) } 

The other solutions are obtained if x 4 were refined to cons(xs, xa) and the resulting equa

tions solved. 

There is a third equation-solution rule which is applicable when both expressions 

reduce to unbound variables: Whenever an equation Is of the form vi = v2 and both VI and 

v 2 are unbound variables, both VI and VI are bound to the same object, whose value Is tPt· 

An interesting property of the equation-solution rules is that they effectively perform 

unification when the expressions are restricted to just terms. Another is that rule 1 gives 

opportunities for parallel execution. However, access to common variables across equations 
' that are solved in parallel must be synchronized so as not to lose any refinements. We refer 

to the parallelism arising from recursively decomposing an equation into sub-equations as 

cons-parallelism, which is a special form of and-parallelism. The different refinements of a 

variable can be examined in parallel and gives rise to or-parallelism. 

V. Related Work 

The term equational programming was first introduced by Hoffman and 0 'Donnell 

[H082, 085], who used it to refer to a style of function definitions by equations and a 

simple semantics based on the logical consequences of equality. Unlike the logical variables 

of EqL equations, the variables here are universally quantified and the equations here 

are similar to abstract data type specifications. Restrictions on the left-hand sides of 

equations are placed in order to insure determinacy. The term equational programming 

has been recently used by Dershowitz and Plaisted to refer to a style of programming with 

conditional rewrite rules [DP85] which provides the capability of first-order functional and 
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logic programming in a uniform and elegant way. Conditional expressions and equations 

in EqL give all the expressive power of conditional rewrite rules, and some additional 

capabilities: because variables in EqL equations may be defined cyclically, certain efficient 

definitions of infinite data structures are possible, as illustrated in the Fibonacci example. 

Object refinement combines the advantages of several recently proposed approaches for 

executing logic languages. We summarize below the important similarities and differences: 

Our reduction of expressions is similar to the pattern-driven lazy reduction of Funlog 

[SY84) and the reduction strategy of FGL+LV [L85), except that no explicit unification is 

performed in our approach. It is also related to Berkling's £-reduction [B85) for reducing 

sets of equations that are composed of pure terms. The programs considered by Berkling 

are essentially the same as EqL programs that are mechanically derived from Horn-clauses 

(see example of section ll.2). 

Object refinement is also related to the evaluation mechanism of Prolog with equal

ity, proposed by Kornfeld [K83). In this language, the programmer may specify so-called 

0-terms and equality theorems which get invoked whenever two terms don't unify syn

tactically. These equality theorems in effect specify explicitly how refinements are to be 

made. In EqL, these refinements are made automatically and are determined solely by the 

primitive functions. 

Perhaps the most closely related approach is that of narrowing [H80). It differs in two 

ways form narrowing: (a) no explicit unification is performed, and '(b) reductions occur 

only at the outermost level of a term. Note that narrowing is not applicable to a language 

like EqL which has only simple variables as formal parameters. Also narrowing cannot 

handle negative information. Recently, two variations of narrowing have been proposed: 

conditional narrowing (DP85) and lazy narrowing [R85). Object refinement combines the 

generality of conditional narrowing (being applicable to conditional expressions) with the 

efficiency of lazy narrowing (being based on outermost reduction). The simplication steps 

of conditional narrowing are analogous to our --+-reductions, and the narrowing steps are 

analogous to our ~-reductions. 

VI. Conclusions and Further Work 

EqL supports functional programming more directly than logic programming because 

of its functional syntax. However, our examples show that many logic programming 

paradigms are easily stated in the language; in fact any Horn logic program can be di-

16 



rectly converted to an EqL program. EqL operations have only simple variables as formal 

parameters, i.e., there are no patterns, because patterns can be realized quite easily by 

equations, as shown in the examples above. We provide set expressions because equations 

may possess a set of solutions. In this respect, our approach is similar to that of LOG LISP 

and HOPE with absolute set abstraction. The 'findall' predicate of Prolog [CM81] and 

the various forms of 'all solutions' surveyed by Naish [N85] are also related. In compari

son with these and the earlier cited works, the main contribution of our language lies in 

demonstrating the clarity and power of equations for functional and logic programming. 

We are at present investigating the parallel implementation of EqL. An interesting 

aspect here is the implementation of set-expressions. In this implementation, we repre

sent the tree of alternatives arising from nondeterministic choices explicitly as a tree of 

frames, where each frame contains a partially-solved set of equations and corresponding 

variable bindings. In this approach, and-parallelism arises within a single frame whereas 

or-parallelism arises across different frames. Whenever a refinement is performed and there 

is more than one choice, a frame "splits" into several frames, one for each choice. The 

frames for equations that yield a solution are incorporated into the list of solutions; those 

that do not are deleted. Furthermore, the list of solutions is produced incrementally, as 

needed. 

Also under development is a formal correctness proof of the operational semantics. 

There is a strong similarity between this proof and that of theorem.2 of Hullot [H80] for 

the complete set of unifiers. Essentially, the argument is as follows: If p is a solution to a 

set of equations e and if all sequences of -+-reductions emanating from e p terminate, then 

one can "project" each step of a sequence of ~-reductions from E on to a corresponding 

step of a sequence of -+-reductions from ! p. The proof is inductive and depends on the 

correctness of the ~-reductions for each of the primitive functions. 
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