
Equations of Change for Isothermal Systems

• In the previous lecture, we showed how to derive the velocity 
distribution for simple flows by the application of the shell 
momentum balance or the force balance.

• It is however more reliable to start with general equations for

– the conservation of mass (continuity equation)

– the conservation of momentum (equation of motion, N2L)
to describe any flow problem and then simplify these 
equations for the case at hand.

• For non-isothermal fluids (heat transfer + flow problems), the 
same technique can be applied combined with the use of the 
equation for the conservation of energy



Time Derivatives

• Partial Time Derivative

The partial time derivative is the derivative of the function c with 
time holding x, y, z constant. (fixed observer)

• Total Time Derivative 

The Total Time Derivative accounts for the fact that the observer is 
moving (how c varies with t because of changing location).

Any quantity c which depends on time as well as position 
can be written as c=f(t, x, y, z) then it differential dc is:
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• Substantial Time Derivative

The substantial Time Derivative is a particular case of the 
Total Time Derivative for which the velocity v of the 
observer is the same as the velocity of the flow. It is also 
called the Derivative Following the Motion

where the local fluyid velocity is defined by:

• Analogy of the river, the fisherman and the boat...
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Equation of Continuity

• Write the mass balance over a stationary elementary 
volume ∆x∆y∆z through which the fluid is flowing
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position (x, y, z)

position (x+∆x, y+∆y, z+∆z)

ρvx |x+∆xρvx |x

• Rate of Mass accumulation = (Rate of Mass In) - (Rate of Mass Out)
Rate of Mass In through face at x is ρvx |x ∆y ∆z
Rate of Mass Out through face at x+∆x is ρvx |x+∆x ∆y ∆z
Same Thing as Above for other faces
Rate of Mass Accumulation is ∆x ∆y ∆z t
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• Dividing on both sides by ∆x∆y∆z and taking the limit as 
∆x∆y∆z goes to zero yields:

which is known as the Continuity Equation (mass balance for 
fixed observer). The above equation can be rewritten as:

which is equivalent for an observer moving along the flow to:

= ∆y ∆z (ρvx |x - ρvx |x+∆x ) + ∆x ∆z (ρvy |y - ρvy |y+∆y) 
  + ∆y ∆x (ρvz |z - ρvz |z+∆z ) 
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= − ∇ • v ( ) Note that for a fluid of constant density 

Dρ/Dt = 0 and Div(v) = 0 (incompressibility)



The Equation of Motion

• We will again consider a small volume element ∆x∆y∆z at position 
x, y, z and write the momentum balnce on the fluid element (similar 
approach to mass balance)

• Rate of Momentum Accumulation = (Rate of Momentum In) - 
(Rate of Momentum Out) + (Sum of Forces Acting on System)
(Note that this is a generalization of what we did in the case of the 
Shell Momentum Balance for unsteady state conditions)
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for transport of x-
momentum through 
each of the 6 faces 
(the transport of y- 
and z-momentum 
through each of the 
faces is handled 
similarly)



• Note that momentum flows into and out of the volume element by 
two different mechanisms: 1- Convection (bulk fluid flow) and 2- 
Molecular Transfer (velocity gradient in Newton’s or related laws)

• Molecular Transfer:
Remembering that τyx is the flux of x-momentum through a face 
perpendicular to the y-axis, the rate at which x-momentum enters 
the face at y (perpendicular to the y-axis) is ∆x∆z τyx |y and the rate 
at which x-momentum leaves the face at y+∆y is ∆x∆z τyx |y+∆y .  
Similarly, the rate at which x-momentum enters the face at x by 
molecular transfer is ∆y∆z τxx |x and  the rate at which x-momentum 
leaves the face at x+∆x is ∆y∆z τxx |x+∆x . Similarly, there is another 
term for the x-momentum entering by the face at z and leaving by 
face at z+ ∆z

∆y∆z xx|x − xx|x+ ∆x( ) + ∆x∆z yx |y − yx|y+∆y( ) + ∆y∆x zx|z − zx|z+∆z( )

The same should be done with y-momentum and with z-momentum.



• Note that τxx is the normal stress on the x-face
Note that τyx is the x-directed tangential (shear) stress on the y-
face resulting from viscous forces
Note that τzx is the x-directed tangential (shear) stress on the z-
face resulting from viscous forces

• Convection:
Rate at which x-momentum
enters face at x by convection

Rate at which x-momentum
leaves face at x+∆x by convection

Rate at which x-momentum
enters face at y by convection

Rate at which x-momentum
leaves face at y+∆y by convection

Rate at which x-momentum
enters face at z by convection

Rate at whic x-momentum
leaves face at z+∆z by convection

∆y ∆z (ρvxvx|x)

∆y ∆z (ρvxvx|x+∆x)

∆x ∆z (ρvyvx|y)

∆x ∆z (ρvyvx|y+∆y)

∆y ∆x (ρvzvx|z)

∆y ∆x (ρvzvx|z+∆z)

The same can 
be done for y- 
and z- momenta



• The other important contributions arise from forces acting 
on the fluid (fluid pressure and gravity)
in the x-direction these forces contribute:

p is a scalar quantity, which is a function of ρ and T
g is a vectorial quantity with components (gx, gy, gz)

• Summing all contributions and dividing by ∆x∆y∆z and 
taking the limit of ∆x∆y∆z to zero yields

Similarly for the contributions in the yu- and z-directions:
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• Note that ρvx, ρvy, ρvz  are  the components of the vector ρv
Note that gx, gy, gz are the components of g

Note that                      are the components of grad(p)

Note that ρvxvx , ρvyvx , ρvzvx , ρvxvy , .... are the nine 
components of the convective momentum flux ( a dyadic 
product of ρv and v (not the dot product).
Note that τxx , τxy , τxz , τyx , τyy , ....are the nine components of 
the stress tensor τ.
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• The previous equation is Newton’s second law (equation 
of motion) expressed for a stationary volume element

• This equation can be rewritten for a small volume element 
of fluid moving along the flow.

• To determine the velocity distribution, one now needs to 
insert expressions for the various stresses in terms of 
velocity gradients and fluid properties.
For Newtonian Fluids one has:
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• Combining Newton’s second law with the equations 
describing the relationships between stresses and viscosity 
allows to derive the velocity profile for the flow system. 
One may also need the fluid equation of state (P = f(ρ,T)) 
and the density dependence of viscosity (µ = f(ρ))along 
Boundary and Initial conditions.

• To solve a flow problem, write the Continuity equation 
and the Equation of Motion in the appropriate coordinate 
system and for the appropriate  symmetry (cartesian, 
cylindrical, spherical), then discard all terms that are zero.  
Use your intuition, while keeping track of the terms you 
are ignoring (check your assumptions at the end).  Use the 
Newtonian or Non-Newtonian relationship between 
velocity gradient and shear stresses.  Integrate differential 
equation using appropriate boundary conditions



General Equation of 
Motion in Cartesian 
Coordinate System

Equation of Motion 
In Cartesian 
Coordinate System 
For Newtonian 
Incompressible Fluids



General Equation of 
Motion in the 
Cylindrical Coordinate 
System

Equation of Motion 
In the Cylindrical 
Coordinate System 
For Newtonian 
Incompressible Fluids



General Equation of Motion in the Spherical Coordinate System



Equation of Motion In the Cylindrical Coordinate System For 
Newtonian Incompressible Fluids



Stress Tensor for Newtonian 
Fluids in the Cylindrical 
Coordinate System



Stress Tensor For Newtonian Fluids In Spherical Coordinates



The function
for Newtonian Fluids      

: ∇v = Φv



Axial Flow of an Incompressible Fluid in a Circular 
Tube of Length L and Radius R

• Use Cylindrical Coordinates

• Set vθ = vr = 0 (flow along the z-axis)

• vz is not a function of θ because of cylindrical symmetry

• Worry only about the z-component of the equation of 
motion

Continuity equation:
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