Equations of Change for Isothermal Systems

 Inthe previous lecture, we showed how to derive the velocity
distribution for ssimple flows by the application of the shell
momentum balance or the force balance.

* |tishowever morereliable to start with general equations for
— the conservation of mass (continuity equation)

— the conservation of momentum (equation of motion, N2L)
to describe any flow problem and then simplify these
equations for the case at hand.

 For non-isothermal fluids (heat transfer + flow problems), the
same technique can be applied combined with the use of the
eguation for the conservation of energy



Time Derivatives

Any quantity ¢ which depends on time as well as position
can be written as c=f(t, X, y z) then it differential dcis:

dc = ?—ngt L 804, 1+ PPy +§@£9dz
o Eaxp . Saye ) &azp

e Partial Time Derivative a@_cg

ot @

The partial time derivative is the derivative of the function c with
time holding x, y, z constant. (fixed observer)

e Tota Time Derivative ?ﬁg

dt g

The Tota Time Derivative accounts for the fact that the observer is
moving (how c varies with t because of changing location).
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. Substantial Time Derivative gﬂxz
Dt 2

The substantial Time Derivative is aparticular case of the
Total Time Derivative for which the velocity v of the
observer isthe same as the velocity of the flow. It isalso
called the Derivative Following the Motion
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where the local fluyid velocity is defined by: V = gVyi
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* Anaogy of theriver, the fisherman and the boat...



Equation of Continuity

* Write the mass balance over a stationary elementary
volume DxDyDz through which the fluid is flowing

z, «__ position (x+Dx, y+Dy, z+Dz)
'V, |X . 1 = 'V |X+DX
Dz
y - Dx
/ -
X

position (X, Y, z)

o Rate of Mass accumulation = (Rate of Mass In) - (Rate of Mass Out)
Rate of Mass In through faceat x isr v, |, Dy Dz
Rate of Mass Out through face at x+Dx iSr V, |, Dy Dz
Same Thing as Above for other faces BP0

Rate of Mass Accumulation is Dx Dy Dz& 5



DnyDz?;f? = Dy DZ (1 Vi |¢- T Vi beas) + DX DZ (1 Vy |y - TV, byscy)

@ + Dy Dx (erlz' er|z+Dz)

« Dividing on both sides by DxDyDz and taking the [imit as
DxDyDz goesto zero yields:
wp_ F(ovx)o B(pvy)° a@(pvn)d_ - (pv)
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which is known as the Continuity Equation (mass balance for
fixed observer). The above equation can be rewritten as:

op  a@pd  @pd  agdps_  Rev,0 BVyO adv, 00
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which is equivalent for an observer moving along the flow to:
ITDp (: | q) Note that for afluid of constant density

ot - PNV Dr /Dt = 0 and Div(v) = 0 (incompressihility)




The Equation of Motion

 Wewill again consider a small volume element DxDyDz at position
X, Y, z and write the momentum balnce on the fluid element (similar
approach to mass balance)

e Rate of Momentum Accumulation = (Rate of Momentum In) -
(Rate of Momentum Out) + (Sum of Forces Acting on System)

(Note that thisis a generalization of what we did in the case of the
Shell Momentum Balance for unsteady state conditions)

for transport of x-

Cyxly +oy t | momentum through
Z v | ek each of the 6 faces
\' (the transport of y-
ok —p= oy Ea b and z-momentum
Dy A\ through each of the
/ DX Ntyd  facesishandied

X similarly)

tZX |Z



* Note that momentum flows into and out of the volume element by
two different mechanisms. 1- Convection (bulk fluid flow) and 2-
Molecular Transfer (velocity gradient in Newton’s or related laws)

e Molecular Transfer:
Remembering that t, isthe flux of x-momentum through aface
perpendicular to the y-axis, the rate at which x-momentum enters
the face at y (perpendicular to the y-axis) isDxDz t, |, and the rate
at which x-momentum |leaves the face at y+Dy 1S DxDz t, |.p, -
Similarly, the rate at which x-momentum enters the face at x by
molecular transfer isDyDz t,, |, and the rate at which Xx-momentum
leavesthe face at x+Dx isDyDz t, |..pox - SImilarly, there is another
term for the x-momentum entering by the face at z and leaving by
face at z+ Dz

DyDZ(‘c XX ~ Txx|x+Dx) + DXDZ(T yxly = T yx|y+Dy) + DYDX(T Xz - T zx|z+Dz)

The same should be done with y-momentum and with z-momentum.



« Notethat t,, isthe normal stress on the x-face
Note that t,, Isthe x-directed tangential (shear) stress on they-
face resulting from viscous forces
Notethat t ,, isthe x-directed tangential (shear) stress on the z-
face resulting from viscous forces

e Convection:

Rate at which x-momentum
enters face at x by convection

Rate at which x-momentum
leaves face at x+Dx by convection

Rate at which x-momentum
enters face at y by convection

Rate at which x-momentum
leaves face at y+Dy by convection

Rate at which x-momentum
enters face at z by convection

Rate at whic x-momentum
|leaves face at z+Dz by convection

Dy Dz (I’ vaxlx) The same can

be done for y-
Dy Dz (r viVileo) — and z- momenta

Dx Dz (r vyvy|,)

Dx Dz (r vyVyly+py)

Dy DX (rvyvyl,)

Dy DX (r Vsz|z+Dz)



e The other important contributions arise from forces acting
on the fluid (fluid pressure and gravity)
In the x-direction these forces contribute:

DyDZ( Px|x = Px|x+Dx ) + DXDyDZ(ng)

p isascalar quantity, whichisafunctionof r and T
g isavectorial quantity with components (g,, 9y, 9,)

o Summing all contributions and dividing by DxDyDz and
taking the limit of DxDyDz to zero yields

3(pvx) ged(pvxvx) Lo (PVny) . 3(pvavy)°

Similarly for the contributions in the yu- and z-directions:



* Notethatrv,, rv,, rv, are the components of the vector r v
Note that g,, g,, g, are the components of g

Notethat 9P 9P 9P gre the components of grad(p)
IX ' Ay 0z

Notethat r vV, , r vV, , rv,v, , rvyv, , ... arethe nine
components of the convective momentum flux ( adyadic
product of r v and v (not the dot product).
Notethat t,, , t,, ,ty, , ty,t .are the nine components of
the stresstensor t.
0 (p\7) . e Gravitational

P :'[N' (pW)] - Np [N T|* PY|<— force per unit

/ r \ volume
Rate of increase Convection Pressureforce Viscous Transfer

of momentum  contribution per unit volume Contribution
per unit volume

yx 1 Lyy g «e




» The previous equation is Newton’'s second law (equation
of motion) expressed for a stationary volume element

* Thisequation can be rewritten for asmall volume element
of fluid moving along the flow.

0 B}: - [N -’c] +pg
* To determinethe velocity distribution, one now needsto
Insert expressions for the various stresses in terms of
velocity gradients and fluid properties.

For Newtonian Fluids one has:
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« Combining Newton'’s second law with the equations
describing the rel ationships between stresses and viscosity
allows to derive the velocity profile for the flow system.
One may also need the fluid equation of state (P =f(r,T))
and the density dependence of viscosity (m= f(r ))along
Boundary and Initial conditions.

» To solve aflow problem, write the Continuity equation
and the Equation of Motion in the appropriate coordinate
system and for the appropriate symmetry (cartesian,
cylindrical, spherical), then discard all terms that are zero.
Use your intuition, while keeping track of the terms you
are ignoring (check your assumptions at the end). Usethe
Newtonian or Non-Newtonian relationship between
velocity gradient and shear stresses. Integrate differential
equation using appropriate boundary conditions



General Equation of
Motion in Cartesian
Coordinate System

Equation of Motion
In Cartesian
Coordinate System
For Newtonian

Incompressible Fluids
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General Equation of
Motion in the
Cylindrical Coordinate
System

Equation of Motion

In the Cylindrical
Coordinate System
For Newtonian
Incompressible Fluids
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General Equation of Motion in the Spherical Coordl nate System
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Equation of Motion In the Cylindrical Coordinate System For
Newtonian Incompressible Fluids
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Stress Tensor for Newtonian

Fluidsin the Cylindrical
Coordinate System
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Stress Tensor For Newtonian Fluids In Spherical Coordinates
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The function t :Nv=uF
for Newtonian Fluids
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Axial Flow of an Incompressible Fluid in a Circular
Tube of Length L and Radius R

o Use Cylindrical Coordinates

* Setv, =V, =0 (flowaong the z-axis)

e Vv, isnot afunction of g because of cylindrical symmetry
« Worry only about the z-component of the equation of

motion .
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