

Equations of parallel lines

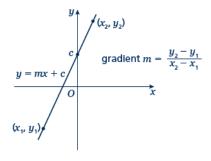
A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- A straight line has the equation y = mx + c, where *m* is the gradient and *c* is the *y*-intercept (where x = 0).
- The equation of a straight line can be written in the form ax + by + c = 0, where a, b and c are integers.
- When given the coordinates (x_1, y_1) and (x_2, y_2) of two points on a line the gradient is calculated using the

formula
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$



Example 1 A straight line has gradient $-\frac{1}{2}$ and *y*-intercept 3.

Write the equation of the line in the form ax + by + c = 0.

$\frac{1}{2}x + y - 3 = 0$ $x + 2y - 6 = 0$ into this equation. Rearrange the equation so all the terms are on one side and 0 is on the other side. Multiply both sides by 2 to eliminate the denominator.
--

Example 2 Find the gradient and the *y*-intercept of the line with the equation 3y - 2x + 4 = 0.

3y - 2x + 4 = 0 $3y = 2x - 4$	1 Make <i>y</i> the subject of the equation.
$y = \frac{2}{3}x - \frac{4}{3}$	2 Divide all the terms by three to get the equation in the form $y =$
Gradient = $m = \frac{2}{3}$	3 In the form $y = mx + c$, the gradient is <i>m</i> and the <i>y</i> -intercept is <i>c</i> .
y-intercept = $c = -\frac{4}{3}$	

Example 3	Find the equation of the line which passes through the point $(5, 13)$ and has gradient 3.
-----------	--

m = 3 y = 3x + c	1 Substitute the gradient given in the question into the equation of a straight line $y = mx + c$.
$13 = 3 \times 5 + c$ $13 = 15 + c$	 Substitute the coordinates x = 5 and y = 13 into the equation. Simplify and solve the equation.
c = -2 y = 3x - 2	4 Substitute $c = -2$ into the equation y = 3x + c

Example 4 Find the equation of the line passing through the points with coordinates (2, 4) and (8, 7).

$x_1 = 2, x_2 = 8, y_1 = 4 \text{ and } y_2 = 7$ $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 4}{8 - 2} = \frac{3}{6} = \frac{1}{2}$	1 Substitute the coordinates into the equation $m = \frac{y_2 - y_1}{x_2 - x_1}$ to work out
$y = \frac{1}{2}x + c$ $4 = \frac{1}{2} \times 2 + c$ c = 3	 the gradient of the line. 2 Substitute the gradient into the equation of a straight line y = mx + c. 3 Substitute the coordinates of either point into the equation. 4 Simplify and solve the equation.
$y = \frac{1}{2}x + 3$	5 Substitute $c = 3$ into the equation $y = \frac{1}{2}x + c$

Practice question

1

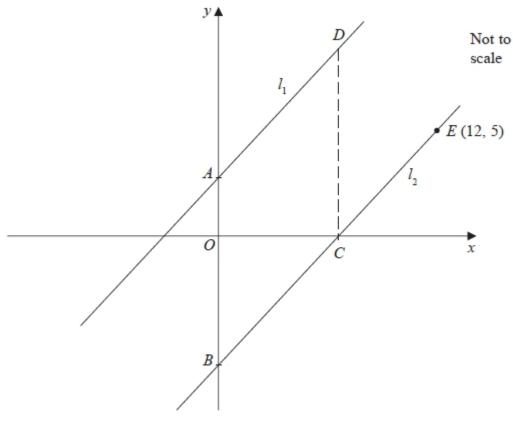


Figure 2

Figure 2 shows the straight line l_1 with equation 4y = 5x + 12(a) State the gradient of l_1

The line l_2 is parallel to l_1 and passes through the point E(12, 5), as shown in Figure 2.

(b) Find the equation of l_2 . Write your answer in the form y = mx + c, where *m* and *c* are constants to be determined.

The line l_2 cuts the x-axis at the point C and the y-axis at the point B.

(c) Find the coordinates of

- (i) the point B,
- (ii) the point C.

The line l_1 cuts the *y*-axis at the point *A*.

The point *D* lies on l_1 such that *ABCD* is a parallelogram, as shown in Figure 2.

(d) Find the area of *ABCD*.

2

- The straight line L_1 passes through the points A and B with coordinates (-4, 4) and (2, 1), respectively.
 - (a) Find the equation of L_1 in the form ax + by + c = 0

The line L_2 is parallel to the line L_1 and passes through the point *C* with coordinates (-8, 3).

(b) Find the equation of L_2 in the form ax + by + c = 0

The line L_3 is perpendicular to the line L_1 and passes through the origin.

(c) Find an equation of L_3

Answer

- 1 (a) $\frac{5}{4}$
 - (b) $y = \frac{5}{4}x + c$ $y = \frac{5}{4}x - 10$
 - (c) B = 0, -10

$$C = 8, 0$$

2 (a) x + 2y - 4 = 0 (b) x + 2y + 2 = 0 (c) y = 2x