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This handout illustrates the equivalence of ANOVA and regression analyses for a one-way CR-3 

design and a two-way CRF 2,4 design. We conduct an ANOVA analysis and then a regression 

analysis on the same data, using dummy coding for categorical independent variables.  

 

We would like to compare reading readiness for students in three preschools (hypothetical data).  

 

 Head Start      Montessori      Home School  

 102  100 101  

   90  108 103 

   97  104 110 

   94  111 106 

   98  105 106 

 101  102   98 

Mean 97.0 105.0 104.0 

SD 4.472 4.000 4.243 
  

For illustration, we will ask SPSS to compute simple LSD comparisons. We have 18 lines of data 

with two columns, school and score. school = 1 for the first six rows, 2 for the next six, etc.  Click 

Analysis, Compare means, One-Way ANOVA…, select score as the Dependent List and school 

as the Factor. Click Post Hoc, select LSD, click Continue, click Options, select Descriptives, click 

Continue, click Paste to generate the syntax shown below. Run this syntax.  

 
ONEWAY 

  score BY school 

  /STATISTICS DESCRIPTIVES 

  /MISSING ANALYSIS 

  /POSTHOC = LSD ALPHA(.05). 

Descriptives 

score 

 

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for 

Mean 

Minimum Maximum Lower Bound Upper Bound 

1 Head Start 6 97.00 4.472 1.826 92.31 101.69 90 102 

2 Montessori 6 105.00 4.000 1.633 100.80 109.20 100 111 

3 Home School 6 104.00 4.243 1.732 99.55 108.45 98 110 

Total 18 102.00 5.412 1.276 99.31 104.69 90 111 

 

ANOVA

score

228.000 2 114.000 6.333 .010

270.000 15 18.000

498.000 17

Betw een Groups

Within Groups

Total

Sum of

Squares df Mean Square F Sig.
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Now we will analyze the data with regression. It would be a BIG mistake to use school as a 

predictor variable in the current form. The numbers 1,2,3 are simply labels that do not indicate the 

amount of ‘school.’ There are two degrees of freedom, so we need two ‘indicator’ or dummy 

variables to capture the school variable for regression. Only two dummy variables are needed, but 

we will show what happens when we use all three. It is easy to create these variables using the 

syntax window. We can enter the first recode, copy it twice, and edit the two copies as shown. 
 

RECODE  school  (1=1)(2,3=0)(ELSE=sysmis)  INTO  dum1 . 

RECODE  school  (2=1)(1,3=0)(ELSE=sysmis)  INTO  dum2 . 

RECODE  school  (3=1)(1,2=0)(ELSE=sysmis)  INTO  dum3 . 

EXECUTE . 

 

We can also do this with point-and-click, but it is more work. Click Transform, Recode, Into 

Different Variables…, select school as the numeric variable, click Old and New Values, enter 1 as 

the Old value, enter 1 as the New Value, click Add, click All other values, enter 0 as the New 

Value, click Continue, under Output Variable enter the Name as dum1, click Change, and click 

Paste. This gives you the first line of recodes shown above. You can repeat this process for the 

other two dummy variables, or you could do the first one by point-and-click, and then Paste the 

command, copy the line twice, and edit the copies for the other two dummy variables. 

 

To run the regression, click Analyze, Regression, Linear…, select score as the Dependent, 

highlight all three dummy variables and click the arrow to make them all Independents. Click 

Statistics and select Estimates, Model fit, R squared change, and Descriptives. Click Continue and 

Paste to save the syntax. 
 
REGRESSION 

  /DESCRIPTIVES MEAN STDDEV CORR SIG N 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS R ANOVA CHANGE 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN 

  /DEPENDENT score 

  /METHOD=ENTER dum1 dum2 dum3  . 

 

Much of this syntax is default. If we used SPSS 

stepwise (usually a bad idea), a variable not in 

the model would be entered if its probability was 

less than .05 and a variable in the model would 

be removed if its probability was greater than 

.10. Thus, PIN(.05) and POUT(.10). 

We do not require the regression line to pass 

through the origin, hence NOORIGIN. 
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Regression 

 
 
 

 
 

 
Note that SPSS used only two of the three dummy variables.  For the test of the overall school 

effect, it doesn’t matter which two are used.  F(2, 15) = 6.333, p = .010.  

 

Descriptive  Statis tics

102.00 5.412 18

.33 .485 18

.33 .485 18

.33 .485 18

score

dum1

dum2

dum3

Mean Std. Deviation N

Corr elations

1.000 -.672 .403 .269

-.672 1.000 -.500 -.500

.403 -.500 1.000 -.500

.269 -.500 -.500 1.000

. .001 .048 .140

.001 . .017 .017

.048 .017 . .017

.140 .017 .017 .

18 18 18 18

18 18 18 18

18 18 18 18

18 18 18 18

score

dum1

dum2

dum3

score

dum1

dum2

dum3

score

dum1

dum2

dum3

Pearson Correlation

Sig. (1-tailed)

N

score dum1 dum2 dum3

Variables  Entered/Rem ovedb

dum3,

dum2
a . Enter

Model

1

Variables

Entered

Variables

Removed Method

Tolerance = .000 limits reached.a. 

Dependent Variable: scoreb. 

Mode l Summ ary

.677a .458 .386 4.243 .458 6.333 2 15 .010

Model

1

R

R

Square

Adjusted

R Square

Std. Error of

the Estimate

R Square

Change F Change df1 df2

Sig. F

Change

Change Statistics

Predic tors: (Constant), dum3, dum2a. 

School dum1 dum2 dum3 

1 1 0 0 

2 0 1 0 

3 0 0 1 
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Compare this F value to the F from the one-way ANOVA test. The result is identical. The null 

hypothesis also is identical. (Ho: all three school means are equal.) Furthermore, the assumptions 

are identical – random independent sampling, normal distributions of error, equal variances. 
 

 

 

 
 

dum1 was not included in the analysis because after dum2 and dum3 were entered into the 

model, there is no unique information about school left to be contributed by dum1 so tolerance=0. 

When we know the values of dum2 and dum3, we can determine the value for dum1. The group 

that is omitted is called the ‘reference’ group.  

 

Predicted score = 97.000 + 8.000*dum2 + 7.000*dum3. 

 

What is the predicted score for someone in the reference group? In this case, dum2 and dum3 

both equal zero, so the predicted score is 97, the constant. Note that the constant is the mean for 

the reference group. The null hypothesis for the test of the constant is that the value of the constant 

is zero in the population (e.g., that the population mean for the reference group is zero). 

 

What is the predicted score for someone in Group 2? For Group 2, dum2=1 and dum3=0. This 

gives a predicted value of 97 + 8 = 105, which is the mean for Group 2. The B weight for dum2 is 

8.000, which is the difference between the mean for Group 2 and the mean for the reference group. 

ANOVAb

228.000 2 114.000 6.333 .010a

270.000 15 18.000

498.000 17

Regression

Residual

Total

Model

1

Sum of

Squares df Mean Square F Sig.

Predic tors: (Constant), dum3, dum2a. 

Dependent Variable: scoreb. 

Coefficientsa

97.000 1.732 56.003 .000

8.000 2.449 .717 3.266 .005

7.000 2.449 .627 2.858 .012

(Constant)

dum2

dum3

Model

1

B Std. Error

Unstandardized

Coeff icients

Beta

Standardized

Coeff icients

t Sig.

Dependent Variable: scorea. 

Excluded Variable sb

.a . . . .000dum1

Model

1

Beta In t Sig.

Partial

Correlation Tolerance

Collinearity

Statistics

Predic tors in the Model: (Constant), dum3, dum2a. 

Dependent Variable: scoreb. 
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 The null hypothesis for the test of B for dum2 is that the population value is zero for B, which 

would be true if the population means were equal for Group 2 and the reference group. We find 

this difference to be statistically significant, with t=3.266 and p=.005. Compare this to the LSD 

test in the ANOVA comparing the first two groups (-8.000 / 2.449 = 3.266). 

Important note: The test of the B coefficient for dum2 in the regression analysis is a test of the 

difference in the means between Group 2 and the reference group. In contrast, the test of the 

simple correlation of dum2 with score provides a test of the difference between the mean for 

Group 2 and the mean for all other groups combined. This distinction between the test of B and 

the test of r is critical because otherwise the test of B in regression is likely to be misinterpreted. 

Important practice: Explain the difference between these two tests of dum2 to Bumble. 

 

For illustration, we will fit a model with only dum1 and dum2 as predictors. We will do this 

hierarchically, with dum2 entered first. Given what you know about the group means, can you 

figure out what the constant will be and what the two B coefficients will be in the final model? 

 

Here is the syntax for the new model: 
REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS R ANOVA CHANGE 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN 

  /DEPENDENT score 

  /METHOD=ENTER dum2 /METHOD=ENTER dum1 . 

 

 
Compare Model 2 to the previous analysis. We find exactly the same ability to predict score using 

these two dummy variables. School has only two df, and two dummy variables are adequate to 

capture those two pieces of information. F = 6.333, p = .010. We can do it in many different ways. 

Model Summ ary

.403a .163 .110 5.105 .163 3.108 1 16 .097

.677b .458 .386 4.243 .295 8.167 1 15 .012

Model

1

2

R

R

Square

Adjusted

R Square

Std. Error of

the Estimate

R Square

Change F Change df1 df2

Sig. F

Change

Change Statistics

Predic tors: (Constant), dum2a. 

Predic tors: (Constant), dum2, dum1b. 

ANOVAc

81.000 1 81.000 3.108 .097a

417.000 16 26.063

498.000 17

228.000 2 114.000 6.333 .010b

270.000 15 18.000

498.000 17

Regression

Residual

Total

Regression

Residual

Total

Model

1

2

Sum of

Squares df Mean Square F Sig.

Predic tors: (Constant), dum2a. 

Predic tors: (Constant), dum2, dum1b. 

Dependent Variable: scorec. 
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The final regression model now is Predicted score = 104.000 -7.000*dum1 + 1.000*dum2. The 

test of statistical significance for dum2 is no longer statistically significant. Why? 

 

In this model, Group 3 is the reference group. The B coefficient of 1.000 for dum2 is the 

difference between the mean for the reference group (104) and the mean for Group 2 (105). This 

difference is not statistically significant. 

 

In Model 1 the coefficient for dum2 is 4.500. How can we interpret this value?   

Hint: What does dum2 test when nothing else is in the model? Which means are compared?  

 

In Model 1, B for dum2 = 4.500 is the difference between the mean for Group 2 (105) versus 

Group 1 (97) and Group 3 (104) combined (average 100.5).  4.500 = 105 – 100.5.  In Model 2, 

where dum1 is also in the model, the only unique information dum2 contributes is the distinction 

between Group 2 and Group 3.  

 

Important lesson: The interpretation of a test of a variable depends critically upon what else is in 

the model. The test of a variable in a model is a test of the unique contribution of the predictor 

variable beyond variance explained by all of the other predictor variables in the model. Thus, the 

test depends on what else is in the model and how much those variables overlap the predictor of 

interest. 

 

Study questions: 

 

Interpret the test of statistical significance for dum1. Interpret the B coefficient for dum1. 

 

The t = 60.044 for the constant is quite impressive. What is the null hypothesis of this test? 

 

How many degrees of freedom do we have on the t tests? [Hint: df = 15 for Model 2. Why?] 

 

What would the regression model be if we used both dum1 and dum3 as the predictors? 

 

Bumble says that he is especially interested in how Head Start compares to other preschool 

programs. He says that dum1 provides a perfect way to compare Head Start to the other two 

programs because it takes on the value of 1 for Head Start and 0 for all other groups. He concluded 

from the table of coefficients that the Head Start program is significantly different from the other 

two programs, p=.012. Is this a correct conclusion?  Explain to Bumble.  

 

Coefficientsa

100.500 1.474 68.194 .000

4.500 2.553 .403 1.763 .097

104.000 1.732 60.044 .000

1.000 2.449 .090 .408 .689

-7.000 2.449 -.627 -2.858 .012

(Constant)

dum2

(Constant)

dum2

dum1

Model

1

2

B Std. Error

Unstandardized

Coeff icients

Beta

Standardized

Coeff icients

t Sig.

Dependent Variable: scorea. 
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Now we show the equivalence of two-factor ANOVA and multiple regression analyses. The 

example is a 2x4 design with two observations in each of eight cells (CRF2,4; nij = 2).  The data 

are from a hypothetical study of stress control.  Factor A is Training (1=Training; 2=No Training), 

Factor B is Stress (1=None; 2=Low; 3=Medium; 4=High), and the dependent measure Y is the 

number of errors made in a data transcription task. Here are the entire syntax file and data set. 

 
Title  "Demonstration of equivalence of ANOVA and MR/C". 

Data list 

 /A 1  B 3  Y 5-6. 

Begin data      Stress Level 
1 1  3 

1 1  5 

1 2  4 

1 2  6 

1 3  5 

1 3  9 

1 4  4 

1 4  6 

2 1  4 

2 1  4 

2 2  5 

2 2  3 

2 3  5 

2 3  5 

2 4 10 

2 4 10 

end data. 

Variable labels 

  A 'Training' 

 /B 'Stress' 

 /Y 'Errors'. 

Value labels 

  A  1 'Trained'  2 'No Train' 

 /B  1 'None'  2 'Low'  3 'Medium'  4 'High'. 

Recode A (1=1)(2=0) into ADUM. 

Recode B (1=1)(2,3,4=0)(else=sysmis) into BDUM1. 

Recode B (2=1)(1,3,4=0)(else=sysmis) into BDUM2. 

Recode B (3=1)(1,2,4=0)(else=sysmis) into BDUM3. 

Compute AB11 = ADUM*BDUM1. 

Compute AB12 = ADUM*BDUM2. 

Compute AB13 = ADUM*BDUM3. 

 

ANOVA  y BY a(1 2) b(1 4). 

 

REGRESSION 

  /DESCRIPTIVES MEAN STDDEV CORR SIG N 

  /MISSING LISTWISE 

  /STATISTICS defaults change 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN 

  /DEPENDENT y 

  /METHOD=ENTER adum 

  /METHOD=ENTER bdum1 bdum2 bdum3 

  /METHOD=ENTER ab11 ab12 ab13  . 

 B1 B2 B3 B4 means 

A1 3,  5 4,  6 5,  9 4,  6 5.25 

A2 4,  4 5,  3 5,  5 10,  10 5.75 

means 4.00 4.50 6.00 7.50 5.50 

Create three dummy variables 

for the four levels of B. 

Create three interaction 

components for AxB  (df = 3) 

Hierarchical regression analysis: 

Enter the main effects before the 

interaction terms. 

1: Training 
 

 

0: No training 

Note the recode of A, so 

training is coded 1 and no 

training is coded 0 for 

ADUM 

None       Low         Medium     High 
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31.000 4 7.750 3.875 .049

1.000 1 1.000 .500 .500

30.000 3 10.000 5.000 .031

29.000 3 9.667 4.833 .033

60.000 7 8.571 4.286 .029

16.000 8 2.000

76.000 15 5.067

(Combined)

Training

Stress

Main Ef fec ts

Training *

Stress

2-Way Interactions

Model

Residual

Total

Errors

Sum of

Squares df

Mean

Square F Sig.

Unique Method

ANOVAa,b

Errors  by Training, Stressa. 

All ef fects entered simultaneouslyb. 
 

 

 

This is a standard 2x4 between subjects ANOVA. Note the SS, df, and F test results. 

We will compare these results to those found with regression. 

 
Because of equal N in each cell, the Training condition (ADUM) is orthogonal to each Stress 

condition, BDUM1, BDUM2, and BDUM3 (note that those correlations are zero). 

Cor relations

1.000 -.115 -.397 -.265 .132 -.260 -.087 .260

-.115 1.000 .000 .000 .000 .378 .378 .378

-.397 .000 1.000 -.333 -.333 .655 -.218 -.218

-.265 .000 -.333 1.000 -.333 -.218 .655 -.218

.132 .000 -.333 -.333 1.000 -.218 -.218 .655

-.260 .378 .655 -.218 -.218 1.000 -.143 -.143

-.087 .378 -.218 .655 -.218 -.143 1.000 -.143

.260 .378 -.218 -.218 .655 -.143 -.143 1.000

. .336 .064 .161 .312 .165 .375 .165

.336 . .500 .500 .500 .074 .074 .074

.064 .500 . .104 .104 .003 .208 .208

.161 .500 .104 . .104 .208 .003 .208

.312 .500 .104 .104 . .208 .208 .003

.165 .074 .003 .208 .208 . .299 .299

.375 .074 .208 .003 .208 .299 . .299

.165 .074 .208 .208 .003 .299 .299 .

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

Errors

ADUM

BDUM1

BDUM2

BDUM3

AB11

AB12

AB13

Errors

ADUM

BDUM1

BDUM2

BDUM3

AB11

AB12

AB13

Errors

ADUM

BDUM1

BDUM2

BDUM3

AB11

AB12

AB13

Pearson Correlation

Sig. (1-tailed)

N

Errors ADUM BDUM1 BDUM2 BDUM3 AB11 AB12 AB13

  A 

  B 

AB 

 

All 

SS total 
   MSres = MS within cells 

= error term from final regression model 
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In default regression, each model uses a different error term. Only the final model uses the error 

term that is used by default in ANOVA. The last set of variables added are the interaction terms. 

The Standard Error of the Estimate is the square root of the Mean Square for the model.  

 

 
 

The final model (Model 3) uses the final error term where MSerr=2.000 with df=8. The test of 

Model 3 is identical to the test of the overall model from the 2x4 ANOVA analysis.  

 

In Model 1 we see that the Sum of Squares for the Training effect (A) is 1.000 with df=1. That is 

what we found in the 2x4 ANOVA as well. However, the error term in regression by default 

includes everything else, including the B effect (df=3) and the interaction (df=3) as well as the 

within cell error (df=8) for a total of df=14. We could run the regression analysis but compute the 

standard F test for ANOVA by using the final error term from Model 3 to test each of the 

increments in SS Regression. Thus, the increment at Step 1 = 1.000 which is SSA. The increment 

at Step 2 is SSB = 31.000-1.000 = 30.000 which is SSB. We can divide by dfB = 3 to get MSB = 10 

and test this with an F ratio against the error from the final step MSwc=2.000 with df=8. Similarly, 

the increment for the interaction = SSAxB = 60.000-31.000 = 29.000 with df=7-4=3.   

Model Summ ary

.115a .013 -.057 2.315 .013 .187 1 14 .672

.639b .408 .193 2.023 .395 2.444 3 11 .119

.889c .789 .605 1.414 .382 4.833 3 8 .033

Model

1

2

3

R

R

Square

Adjusted

R Square

Std. Error of

the Estimate

R Square

Change

F

Change df1 df2

Sig. F

Change

Change Statistics

Predic tors: (Constant), Traininga. 

Predic tors: (Constant), Training, BDUM3, BDUM2, BDUM1b. 

Predic tors: (Constant), Training, BDUM3, BDUM2, BDUM1, AB11, AB13, AB12c. 

ANOVAd

1.000 1 1.000 .187 .672a

75.000 14 5.357

76.000 15

31.000 4 7.750 1.894 .182b

45.000 11 4.091

76.000 15

60.000 7 8.571 4.286 .029c

16.000 8 2.000

76.000 15

Regression

Residual

Total

Regression

Residual

Total

Regression

Residual

Total

Model

1

2

3

Sum of

Squares df Mean Square F Sig.

Predic tors: (Constant), Traininga. 

Predic tors: (Constant), Training, BDUM3, BDUM2, BDUM1b. 

Predic tors: (Constant), Training, BDUM3, BDUM2, BDUM1, AB11, AB13, AB12c. 

Dependent Variable: Errorsd. 

1: SSres = SSB + 

SSAB + SSw/c 

Model 2 residual 

includes AB plus 

within cell error. 
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Let’s interpret the B coefficients. For ADUM the dummy variable compares training to no training 

(Factor A). The mean for the training group A1=5.25 and the mean for the control group A2 = 

5.75. The B coefficient for A in Model 1 = -.500, the difference between the means. The test of 

statistical significance is a test of the equality of the two means in the population. (But be careful 

when selecting the error term for this test. Regular ANOVA uses the within cell error, which is 

comparable to the final error term from Model 3 in regression, after all factors are in the model.) 

 

The reference group for the B factor is Group 4. In Model 2 we see that the coefficient for 

BDUM1 = -3.500. Checking the data, we see that the mean for Group 4 = 7.500 while the mean 

for Group 1 = 4.000. The difference is that Group 1 is 3.500 points lower than the reference group. 

The test of BDUM1 is a test of the difference between the population means for groups 1 and 4. 

Again, we should be thoughtful about choosing the appropriate error term. 

 

Because of the way we calculated the interaction components, they overlap with the main effects 

substantially. The contribution of the interaction terms beyond the main effects are of interest, but 

the contribution of the main effects beyond the interactions is not generally useful. Thus, we 

should NOT interpret the tests of the main effects in the final model. Rather, we should interpret 

them at the step where they were entered into the model, which must be prior to the interactions. 

 

The constant of 7.75 in Model 2 is the predicted value for a case that is equal to zero on all 

predictors, which is a case in cell A2B4 (no training, high stress), assuming no AB interaction. 

The mean for A2 is 5.75, which is +.25 above the grand mean of 5.50. The mean for B4 is 7.50, 

which is +2.00 above the grand mean. The predicted value for cell A2B4, assuming no interaction, 

is the grand mean plus the row effect plus the column effect: 5.50 + .25 + 2.00 = 7.75. 

Coefficientsa

5.750 .818 7.027 .000

-.500 1.157 -.115 -.432 .672

7.750 1.131 6.854 .000

-.500 1.011 -.115 -.494 .631

-3.500 1.430 -.695 -2.447 .032

-3.000 1.430 -.596 -2.098 .060

-1.500 1.430 -.298 -1.049 .317

10.000 1.000 10.000 .000

-5.000 1.414 -1.147 -3.536 .008

-6.000 1.414 -1.192 -4.243 .003

-6.000 1.414 -1.192 -4.243 .003

-5.000 1.414 -.993 -3.536 .008

5.000 2.000 .759 2.500 .037

6.000 2.000 .910 3.000 .017

7.000 2.000 1.062 3.500 .008

(Constant)

ADUM

(Constant)

ADUM

BDUM1

BDUM2

BDUM3

(Constant)

ADUM

BDUM1

BDUM2

BDUM3

AB11

AB12

AB13

Model

1

2

3

B Std. Error

Unstandardized

Coeff icients

Beta

Standardized

Coeff icients

t Sig.

Dependent Variable: Errorsa. 


