Equivalent Reactor Networks as Reduced-Order Models in a CAPE-OPEN Compliant Architecture

DE-FE0001074

Ellen Meeks

March 13, 2012 NETL, Morgantown, WV

Outline

• Overview of project

- Project goals & scope
- Technical contributors
- Base technology for project

• Summary of Current Status

- Tasks and Milestones
- Deliverables
- Timeline and Status

Our main goal is to provide innovative reduced-order models for APECS

- Project duration: 3 years
- Start date: 10-1-2009
- DOE Project Manager: Steve Seachman
- Project Objectives:
 - Enable advanced reduced-order modeling (ROM) for key unit operations in flow-sheet simulations, using CAPE-OPEN architecture
 - Use Equivalent Reactor Networks (ERNs) as the basis for the reduced-order models
 - Extend ENERGICO[®] ERN-extraction technology for application to gasifiers

The application focus is on coal-gasification plants, especially involving IGCC

- APECS integrates CFD and reduced-ordermodels (ROMs) into flow-sheet simulations for plant design
 - Built on CAPE-OPEN interface to, e.g., AspenPlus™
- Our "bridge" technology between CFD and detailed-kinetics simulations provides an automated way to create ROMs
 - Uses "equivalent reactor network" approach, or ERN
 - Gas-turbine combustors are already modeled
 - Extensions to multi-phase flow for gasifier simulations

Key Contributors to the project

• Tony Garratt, Technical lead

- Senior Numerical Analyst and Team Lead at RD
- Worked for 15+ years at Aspentech

• C.-P. Chou, Staff Development Engineer

- Combustion and surface-chemistry expert

• Devin Hodgson, Software Engineer

- Programming expert

• Scott Drennan, Director of Apps Engineering

- Liaison with potential customers and applications

• Ellen Meeks, Pl

- Head of Product Development at Reaction Design

ENERGICO[™] and CHEMKIN-PRO[®] provide the baseline technology for the project

• CHEMKIN is Reaction Design's flagship product

- Most widely cited and validated kinetics software available
- Focused on accurate simulations of chemistry for:
 - * Gas Turbines
 - * Automotive engines
 - * Industrial/Utility Burners
 - * Chemical Processing and Refinery
 - Materials and Microelectronics

• ENERGICO applies kinetics to complex flows

- Creates equivalent-reactor network model from CFD
- Addresses key issues for gas-turbine combustor designers
 - * Low Emissions Regulations
 - * Fuel Flexibility
 - * Combustion stability

Reactor networks represent complex systems while allowing detailed kinetics

Automatic creation of Equivalent Reactor Networks adds chemistry to design flow

Results mapped back to the CFD mesh show ERN predictions in geometric context

Joint work with GE demonstrated the ERN can *predict* impact of load variation on NO_x

- Affect of increased Fuel/Air Ratio predicted using ERN generated by a single CFD case
 - No change to ERN structure is needed to vary fuel load
 - No need to rerun CFD for every condition to predict kinetics effects

For this project, we are extending these concepts to gasifier simulations

- Use ERN concept to generate "reduced order model" (ROM) within a plant simulation
- Build the ERN automatically from CFD results
 - Account for multi-phase flow effects
 - Identify dominant flow characteristics
- Apply more advanced kinetics models than current practice allows
 - More than a ROM, as it adds chemistry detail
- Package into CAPE-OPEN architecture

- Allow use within APECS program

Big picture goal: integrate into APECS

Co-simulation project involving flowsheet simulation, CFD simulation, and Reduced-order Models (ROMs)

CAPE-OPEN architecture allows plug-andplay of different model hierarchies

*Adapted from S. Zitney, APECS Workshop, Oct 2009.

Major Tasks

- 1. Project Management and Planning
- 2. Package CHEMKIN Models as a CAPE-OPEN Unit Reactor Model
- 3. Extending ENERGICO Software and Workflow for Gasifier Models
- 4. Evaluate Gasification Kinetics Models
- 5. Code and Model Integration, Testing and Validation

Task 2: The goal of this task is to wrap a complex ERN into a single Unit Operation

 The CHEMKIN PSR is the core reactor model for our equivalent reactor networks

CAPE-OPEN Unit Operation Interface*

DESIGN

Task 2: We are near completion of this task

- J Single Perfectly Stirred Reactor (PSR)
- ✓ "Cluster" of PSRs
 - PSRs within a Cluster are solved in one executable
- J Serial network of PSR Clusters or PFRs
 - Multiple computations within one Unit Operation
- Fully General ERN

15

 Tear-stream algorithm required inside CO object

Task 2: Validation of a Serial Network of Clusters was validated in COFE Simulator

 Results compared to stand-alone CHEMKIN-PRO simulation for ENERGICO-generated ERN representing a coal gasifier

DESIGN

Task 2: Summary of Status

• Major accomplishments in last year:

- Entire ERN packaged as one Unit Operation
- Allows Gasifier "Unit" to be defined easily in APECS
- Allows use of ENERGICO algorithms to generate ERN
- New export option implemented in CHEMKIN-PRO to export CAPE-OPEN ERN definition
- The CO Unit Operation DLL reads this ERN definition file to set up the entire ERN within one Unit in the Flowsheet Simulation

• Work remaining

- Implement tear-stream algorithm within the UO object

Task 3: We have completed extensions needed to ENERGICO for gasifier workflow

• Identified key flow parameters

- Focused on Entrained Flow Gasifiers
- Determined best filters to extract ERN from CFD

• Handle multi-phase flow properties

- Particle density, size distribution, composition
- ENERGICO was modified to handle discrete-phase sources of chemical species
 - * Tested first with vaporization from FLUENT spray models
 - * Verified with gasification source terms
- Tested full workflow from CFD => ROM execution in CAPE-OPEN flowsheet

NETL helped us acquire sample problems for application of ERN concepts

- Acquired a 2-D and 3-D version of tutorials in FLUENT for coal gasification
 - Includes discrete phase and reacting flow
- Acquired real-world case from Steve Zitney (NETL)
 - Also a FLUENT case, uses the discrete-phase model in reacting flow

CFD=>ROM workflow starts with the import of a (FLUENT) CFD model

FLUENT CFD Simulation results file for coal gasifier simulation

ENERGICO User Interface

Step 1: Read CFD file into ENERGICO

Step 2: Read in Chemistry Set

- Identify chemistry to be used in ERN

Step 3a: Map Variables

- Temperature
- Pressure
- Composition

Species Symbols in CHEMKIN mechanism

CFD variable names and source terms

Step 3b: Special Mapping

 Map the lumped pseudo-volatile in the CFD DPM source to an equivalent gas mixture of actual chemical species

The next step is to define the zones that will separate regions by kinetics similarity

- Step 4: Apply Filters to define ERNgeneration algorithm within ENERGICO
 - O₂ filter isolates the air inlets
 - DPM source filter isolates coal devolatilization and combustion regions
 - Z-coordinate filter separates fuel inlets
 - Axial velocity filter isolates recirculation zones
 - Z-coordinate filter divides the post-flame zone into a series of PSRs
 - Temperature filter refines all zones in the combustor to capture kinetics

Resulting 47-zone partition of the coal combustor

ENERGICO then automatically calculates flow connections and generates the ERN

• Step 5: Create ERN, which opens CHEMKIN-PRO

- Set up to use the more detailed kinetics model within CHEMKIN-PRO

• Step 6: Verification

- Solve the ERN within CHEMKIN-PRO (within ENERGICO)
 - * Verifies connectivity, tests convergence behavior
- Visualize results in ENERGICO, to see geometric results

Comparison of results between original CFD and the ERN Solution (H_2O and O_2)

H₂O and O₂ contours agree well between CFD and ERN

DESIGN

Comparison of results between original CFD and the ERN Solution (CO and CO₂)

 Differences are due to the different assumptions between ERN and CFD models, regarding coal devolatilization (gaseous) products

The ERN can predict values for species that could not be included in the CFD model

• In this way, the ROM Is more than just a ROM

Quantitative comparison at the gasifier exit confirm that the ERN represents the CFD well

- Predictions of average outlet species mass fractions are in good agreement
- With detailed chemistry, ERN can provide additional information, such as NO_x emissions

After verification, the next step is to export the ERN for input to the CAPE-OPEN object

• Step 7: Export the ERN from CHEMIN using CKCAPE export (new button on "Run" panel)

Custom file format defining CO ERN object

COFE Flowsheet, with Cape-Open Encapsulated Object for the ERN Unit Operation

	mowsneet Flot view Add-II		
	🖆 🤳 🕨 🌽 🖛 default		a (*')
cumentExplorer 📮 🗙			
Coal 47.fsd			
Flowsheet			I Init ()neration
C1_R1_Inlet1			
Settings			•••••••••••••••••••••••••••••••••••••••
		· · · · · · · · · · · · · · · · · · ·	
		C1_R1_Inlet1	
			Ouliet
		Equivalent R	eactor Network 1
		Equivalent te	
	•		
	Flowsheet is ready to solve	e	

• Set up flowsheet with identical inlets but solve ERN via CAPE-OPEN Unit Operation

Final step in workflow: hook ERN into flowsheet model and run; verify results

• Step 8: Verification of results within Flowsheet

DESIGN

Task 3 Summary: Implementation of changes to ENERGICO is complete

- ✓ Obtained Gasifier CFD test cases
- Extended ENERGICO to allow use of 2-phase flow information from CFD; particles in flow
- ✓ Determined appropriate filters for extracting ERN form CFD
- Tested and Validated expected results for generated ERNs
 - ✓ CHEMKIN-PRO results agree with CFD
 - ✓ CO Flowsheet with encapsulated ERN agrees with CHEMKIN results
 - ✓ Tested initial detailed reaction mechanism

Task 4: Evaluation of kinetics models is complete; implementation underway

- ✓ Performed Literature search and selected modeling approach
- Tested semi-empirical model with ENERGICO-ERN-CAPE-OPEN workflow
- In process of implementing higherorder kinetics model

From L. Oshinowo, NETL 2009 Workshop on Multiphase Flow Science, 2009

Task 4: Two approaches were identified for the gasification kinetics modeling

✓ Semi-empirical model

- ✓ Empirical model of coal devolatilization
 - Fixed carbon is modeled as core "bulk" species
 - ✓ Volatiles are modeled as "surface" species that desorb to the gas
 - Rates and composition are derived from macroscopic data
- ✓ Detailed model of gas pyrolysis & oxidation

Chemical Percolation Devolatilization model

- Use NMR analysis data to derive composition and structure; generalize work done in prior academic studies
- Allow reactions that have distributed activation energies
- Include flash distillation as a pseudo "reaction"
- ✓ Detailed model of gas pyrolysis & oxidation

A chemistry perspective on coal gasification

DESIGN

For the CPD Model, we have begun implementatino after detailed planning

• Inputs to the model:

- Coal elemental composition
- Particle size distribution
- Operating conditions

• Model outputs:

- Synthetic gas composition
- Char size distribution
- Tar yield and molecular weight distribution

Componentization of Coal Molecule

DESIGN

Coal bulk components will be represented as different "macros" in CHEMKIN description

Symbol	Component	Definition
	Aromatic Core	Fused aromatic ring cluster that forms a site of the Bethe lattice
X	Labile Bridge	Molecular structures that serve as bridges connecting aromatic cores/sites
	Activated Bridge	Labile bridge that is active and ready to break down
	Side Chain	Peripheral molecular structures attached to aromatic cores
Functional Group		Specific group of atoms within coal molecules that characterize the release of light gases
Char Link		Permanent bond that fuses aromatic cores

Coal thermal cracking reactions are defined between "species" comprised of "macros"

Reaction Types

- 1. Labile bridge activation
- 2 Cleavage of activated bridge
- 3. Aromatic core cross-link
- 4. Desorption of functional groups
- 5. Fragmentation of lattice structure

6. Distillation of tars

Surface chemistry representation of the coal devolatilization process

DESIGN

A Coal pre-preprocessor will generate the coal surface mechanism from coal data

- Coal elemental composition must be known to create an appropriate surface mechanism
 - Molecular weights and elemental compositions of bulk species
 - Thermodynamic data of bulk species
 - Bridge scission and cross-link reactions

DESIG

To use the advanced CPD model, several model inputs are required

- Coal Elemental Composition C, H, O, N, S
 - Ultimate Analysis Data

Coal Matrix Connectivity – (σ+1), p0, c0

- 13C NMR Analysis Data
- Correlations to Elemental Composition
- Coal Library

• Functional Groups – Y0FG,k

- TG-FTIR Analysis Data
- Coal Library

The new coal model in CHEMKIN will allow reporting of key gasification results

• Total particle weight loss

 Percentage of original coal weight

• Tar yield

 Percentage of original coal weight

Tar molecular weight distribution

- both liquid and gas phases

Status against original project timeline

ID	Task Name		
1	1.0 Project Management		
2	1.1 Establish Project Plan		
3	1.2 Reporting		
4	Quarterly Progress Reports		
16	Topical Reports	_	
17	Topical Reports 1		
18	Topical Reports 2		
19	Topical Reports 3		
20	Final Report		
21	2.0 CAPE-OPEN Interface		
22	2.1 CHEMKIN PSR Model		
23	Milestone A	_	
24	2.2 PSR Cluster		
25	Milestone B		
26	2.3 General ERN		
27	2.4 Test and Validate		
28	BP1 Decision Pts / Success Criteria		
29	3.0 Extend ENERGICO		
30	3.1 Identify Requirements	_	
31	3.2 Extend for 2-phase Flow		
32	Milestone C		
33	3.3 Extend ERN Particle Treatment		
34	Milestone D	_	
35	3.4 Test and Validate		
36	4.0 Evaluate Gasification Kinetics Models		
37	4.1 Literature review		
38	4.2 Testing and Evaluation	_	
39	Milestone E	_	
40	BP2 Decision Pts / Success Criteria		
11	5.0 Code and Model Integration		
42	5.1 Test of Code Integration		
43	Milestone F		
4	5.2 Test of Modeling Approach		

on

Milestone Status

Α	Title: Planned Date:	CAPE-OPEN Interface for Single CHEMKIN PSR 6/29/2010 (Actual)
В	Title: Planned Date:	CAPE-OPEN Interface for CHEMKIN PSR Cluster 10/5/2010 (Actual)
С	Title: Planned Date:	ENERGICO Extended to Handle Particles in Flow 5/5/2011(Actual)
D	Title: Planned Date:	Viable Kinetics Models Identified 9/1/2010 (Actual)
E	Title: Planned Date:	ERN Model Extended to Allow Particle Gasification 3/15/2011 (Actual)
F	Title: Planned Date:	Full System Integration with Model Extensions 9/28/2012

Deliverables include reports and models

• Topical reports

- ✓ CAPE-OPEN integration with CHEMKIN PSR models
- ✓ ENERGICO extensions for gasification applications
- Assessment of coal-gasification kinetics models

Models

- ✓ NETL access to the ENERGICO[™] Simulation Package, for duration of project
- NETL access to software modifications and enhancements made during this project
- All model input parameters for reported results

Summary

- The project is focused on the use of equivalent reactor networks to allow overlay of kinetics on detailed flow (CFD) simulations
 - The scope of the project is for coal gasifiers, with particular interested in IGCC operations
- Major progress has been achieved:
 - Full workflow established for reading CFD model and producing CAPE-OPEN compliant Equivalent Reactor Network model that can be run in a flowsheet simulation
 - Workflow demonstrated with semi-empirical kinetics
 - Advanced kinetics model implementation is underway
 - Final task is code integration and testing