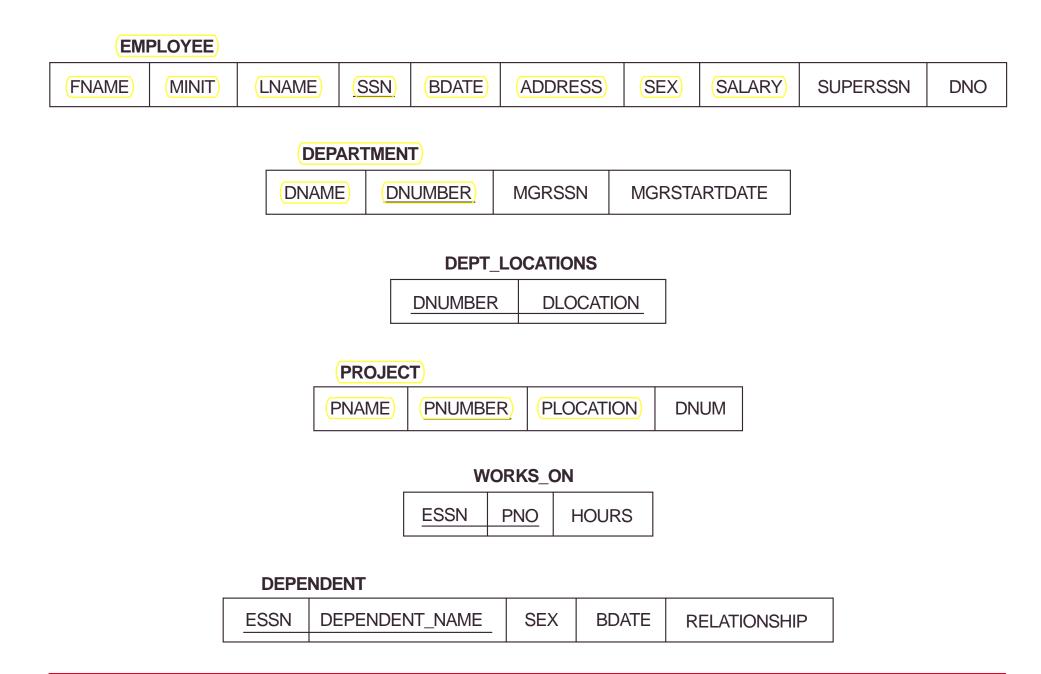

ER & EER to Relational Mapping

1


Figure 3.2 ER schema diagram for the company database.

Step 1: For each regular entity type E

- Create a relation R that includes all the simple attributes of E.
- Include all the simple component attributes of composite attributes.
- Choose one of the key attributes of E as primary key for R.
- If the chosen key of E is composite, the set of simple attributes that form it will together form the primary key of R.

Figure 7.5 Schema diagram for the COMPANY relational database schema; the primary keys are underlined.

Step 2: For each **weak entity type W** with owner entity type E

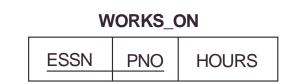
- Create a relation R, and include all simple attributes and simple components of composite attributes of W as attributes of R.
- In addition, include as foreign key attributes of R the primary key attribute(s) of the relation(s) that correspond to the owner entity type(s).

Figure 7.5 Schema diagram for the COMPANY relational database schema; the primary keys are underlined.

EMPLOYEE

FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN	DNO	
---	-----	--

DEPARTMENT


DNAME	DNUMBER	MGRSSN	MGRSTARTDATE
-------	---------	--------	--------------

DEPT_LOCATIONS

DNUMBER	DLOCATION
---------	-----------

PROJECT

PNAME	PNUMBER	PLOCATION	DNUM
-------	---------	-----------	------

Step 3: For each binary 1:1 relationship type R

- Identify the relations S and T that correspond to the entity types participating in R. Choose one of the relations, say S, and include as foreign key in S the primary key of T.
- It is better to choose an entity type with total participation in R in the role of S.
- Include the simple attributes of the 1:1 relationship type R as attributes of S.
- If both participations are total, we may merge the two entity types and the relationship into a single relation.

Figure 7.5 Schema diagram for the COMPANY relational database schema; the primary keys are underlined.

EMPLOYEE

		LUTEE									
	FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SAL	_ARY	SUPERSSN	DNO
			DEP	ARTMEN	т						
			DNAME		IUMBER_	MGRSSN	MGR	STARTDA	ATE)		
	DEPT_LOCATIONS										
DNUMBER DLOCATION											
				PROJEC	Т						
			F	NAME	PNUMBER	R PLOCATI	ON	DNUM			

WORKS_ONESSNPNOHOURS

DEPENDENT

ESSN	DEPENDENT_NAME	SEX	BDATE	RELATIONSHIP

Step 4: For each regular binary 1:N relationship type R

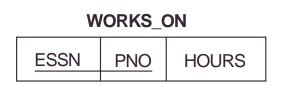
- Identify the relation S that represents the participating entity type at the N-side of the relationship type.
- Include as foreign key in S the primary key of the relations T that represents the other entity type participating in R.
- Include any simple attributes of the 1:N relationship type as attributes of S.

Figure 7.5 Schema diagram for the COMPANY relational database schema; the primary keys are underlined.

EMPLOYEE

FNAME	MINIT	LNAME	<u>SSN</u>	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
-------	-------	-------	------------	-------	---------	-----	--------	----------	-----

DEPARTMENT


DNAME	DNUMBER	MGRSSN	MGRSTARTDATE
-------	---------	--------	--------------

DEPT_LOCATIONS

DNUMBER	DLOCATION

PROJECT

PNAME	PNUMBER	PLOCATION	DNUM
-------	---------	-----------	------

DEPENDENT

ESSN	DEPENDENT_NAME	SEX	BDATE	RELATIONSHIP

Step 5: For each binary M:N relationship type R

- Create a new relation S to represent R.
- Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types; their combination will form the primary key of S.
- Also, include any simple attributes of the M:N relationship type as attributes of S.

Figure 7.5 Schema diagram for the COMPANY relational database schema; the primary keys are underlined.

EMPLOYEE

FNAME MINIT LNAME <u>SSN</u> BDATE	ADDRESS SEX	SALARY	SUPERSSN	DNO
------------------------------------	-------------	--------	----------	-----

DEPARTMENT

DNAME	DNUMBER	MGRSSN	MGRSTARTDATE
-------	---------	--------	--------------

DEPT_LOCATIONS

DNUMBER	DLOCATION

PROJECT

PNAME	PNUMBER	PLOCATION	DNUM
-------	---------	-----------	------

WORKS ON					
ESSN	PNO	(HOURS)			

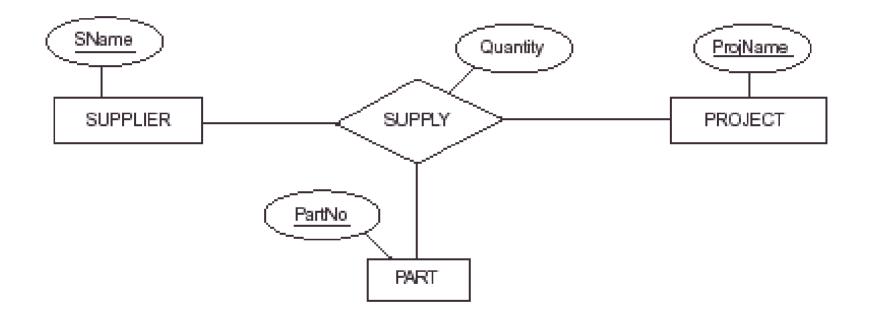
DEPENDENT

ESSN	DEPENDENT_NAME	SEX	BDATE	RELATIONSHIP

Step 6: For each multi-valued attribute A

- Create a new relation R that includes an attribute corresponding to A plus the primary key attribute K (as a foreign key in R) of the relation that represents the entity type or relationship type that has A as an attribute.
- The primary key of R is the combination of A and K. If a multi-valued attribute is composite, we include its components.

Figure 7.5 Schema diagram for the COMPANY relational database schema; the primary keys are underlined.

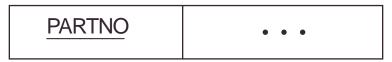

EMPLOYEE

		PLUTEE									
	FNAME	MINIT	LNAME	SSN	BDATE	ADDRI	ESS S	SEX	SALARY	SUPERSSN	DNO
-	DEPARTMENT										
	DNAME <u>DNUMBER</u> MGRSSN MGRSTARTDATE										
	DEPT_LOCATIONS										
						(DLC	DCATION)				
	PROJECT										
			P	NAME	PNUMBE	R PLC	CATION	DN	UM		
				F	wo	ORKS_ON		1			
	ESSN PNO HOURS										
	DEPENDENT										
	ESSN DEPENDENT_NAME SEX BDATE RELATIONSH								ELATIONSHI	D	

Step 7: For each **n-ary relationship type R**, n>2

- Create a new relation S to represent R.
- Include as foreign key attributes in the S the primary keys of the relations that represent the participating entity types.
- Also include any simple attributes of the nary relationship types as attributes of S.
- The primary key for S is usually a combination of all the foreign keys that reference the relations representing the participating entity types.

TERNARY RELATIONSHIPS


Figure 9.1 Mapping the n-ary relationship type SUPPLY from Figure 4.13(a).

SUPPLIER

PROJECT

PROJNAME	• • •
----------	-------

PART

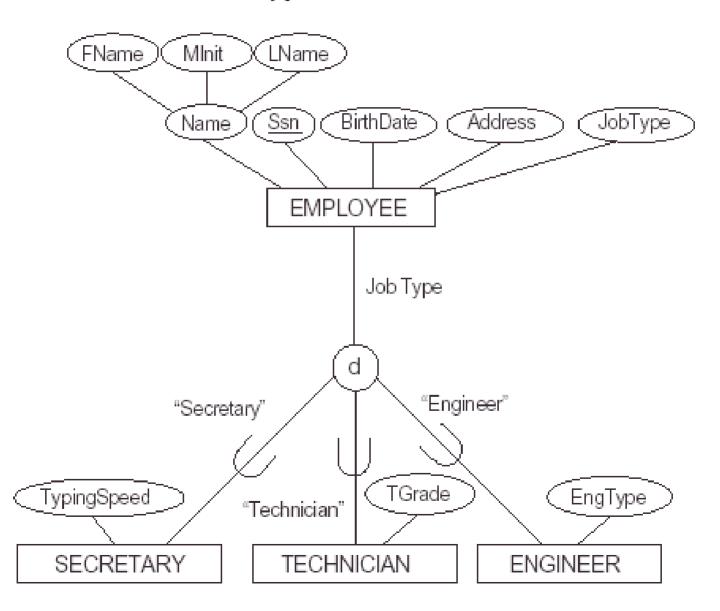
SUPPLY

SNAME	PROJNAME	PARTNO	QUANTITY

- However, if the participation constraint (min,max) of one of the entity types E participating in the R has max =1, then the primary key of S can be the single foreign key attribute that references the relation E' corresponding to E
- This is because , in this case, each entity e in E will participate in at most one relationship instance of R and hence can uniquely identify that relationship instance.

Step 8: To convert each **super-class/subclass** relationship into a relational schema you must use one of the four options available.

Let C be the super-class, K its primary key and $A_1, A_2, ..., A_n$ its remaining attributes and let $S_1, S_2, ..., S_m$ be the sub-classes.


Option 8A (multiple relation option):

- Create a relation L for C with attributes Attrs(L) = {K, A₁, A₂, ..., A_n} and PK(L) = K.
- Create a relation L_i for each subclass S_i, 1 ≤ i ≤ m, with the attributes
 ATTRS(L_i) = {K} U {attributes of S_i} and PK(L_i) = K.
- This option works for any constraints: disjoint or overlapping; total or partial.

Option 8B (multiple relation option):

- Create a relation L_i for each subclass S_i , $1 \le i \le m$, with ATTRS(L_i) = {attributes of S_i } U {K, A₁, A₂, ..., A_n} PK(L_i) = K
- This option works well only for disjoint and total constraints.
- If not disjoint, redundant values for inherited attributes.
- If not total, entity not belonging to any sub-class is lost.

Figure 4.4 An attribute-defined specialization on the JobType attribute of EMPLOYEE.

Figure 9.2 Options for mapping specializations (or generalizations) to relations. (a) Mapping the EER schema of Figure 4.4 to relations by using Option A. (b) Mapping the EER schema of Figure 4.3(b) into relations by using Option B. (c) Mapping the EER schema of Figure 4.4 by using Option C, with JobType playing the role of type attribute. (d) Mapping the EER schema of Figure 4.5 by using Option D, with two Boolean type fields Mflag and Pflag.

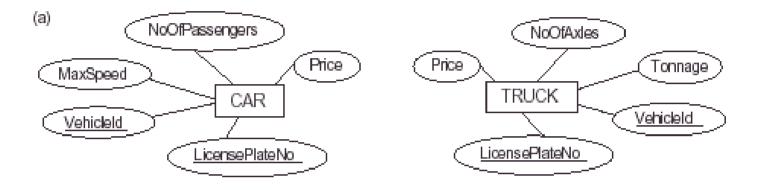
(a)	EMPLO	DYEE						_
	SSN	FName	MInit	LName	BirthDate	Address	JobType	
			1					_
	SECRI	ETARY		TE	CHNICIAN		ENGINEE	R
	(SSN)	TypingSp	beed	SS	N (TGrade		(SSN) (Er	ngType
		•			•			

(b) CAR

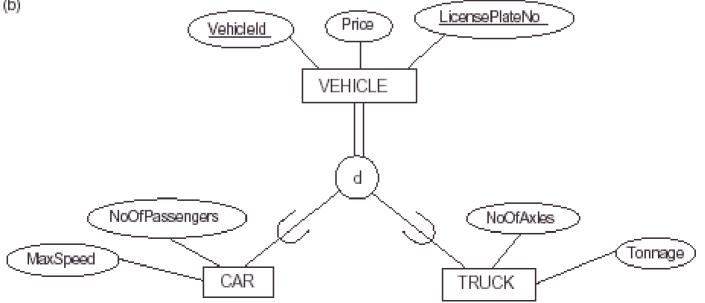
•				
VehicleId	LicensePlateNo	Price	MaxSpeed	NoOfPassengers

TRUCK

VehicleId	LicensePlateNo	Price	NoOfAxles	Tonnage
-----------	----------------	-------	-----------	---------

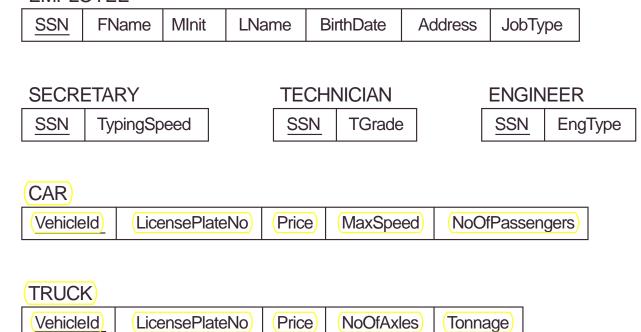

(c) EMPLOYEE

SSN FName MInit LName BirthDate Add	s JobType TypingSpeed TGrade EngType
-------------------------------------	--------------------------------------


(d) PART

PartNo Description MFlag DrawingNo ManufactureDate Batch	No PFlag SupplierName ListPrice
--	---------------------------------

Figure 4.3 Examples of generalization. (a) Two entity types CAR and TRUCK. (b) Generalizing car and TRUCK into VEHICLE.



(b)

Figure 9.2 Options for mapping specializations (or generalizations) to relations. (a) Mapping the EER schema of Figure 4.4 to relations by using Option A. (b) Mapping the EER schema of Figure 4.3(b) into relations by using Option B. (c) Mapping the EER schema of Figure 4.4 by using Option C, with JobType playing the role of type attribute. (d) Mapping the EER schema of Figure 4.5 by using Option D, with two Boolean type fields Mflag and Pflag.

(a) EMPLOYEE

(c) EMPLOYEE

SSN FName MInit LName BirthDate Address JobType TypingSpeed	TGrade	EngType	
---	--------	---------	--

(d) PART

(b)

PartNo Description MFlag DrawingNo ManufactureDate BatchNo	PFlag	SupplierName	ListPrice
--	-------	--------------	-----------

Option 8c (Single Relation Option)

- Create a single relation L with attributes Attrs(L) = {K, A₁, ..., A_n} U {attributes of S₁} U... U {attributes of S_m} U {T} and PK(L)=K
- This option is for specialization whose subclasses are DISJOINT, and T is a **type** attribute that indicates the subclass to which each tuple belongs, if any. This option may generate a large number of null values.
- Not recommended if many specific attributes are defined in subclasses (will result in many null values!)

Figure 4.4 An attribute-defined specialization on the JobType attribute of EMPLOYEE.

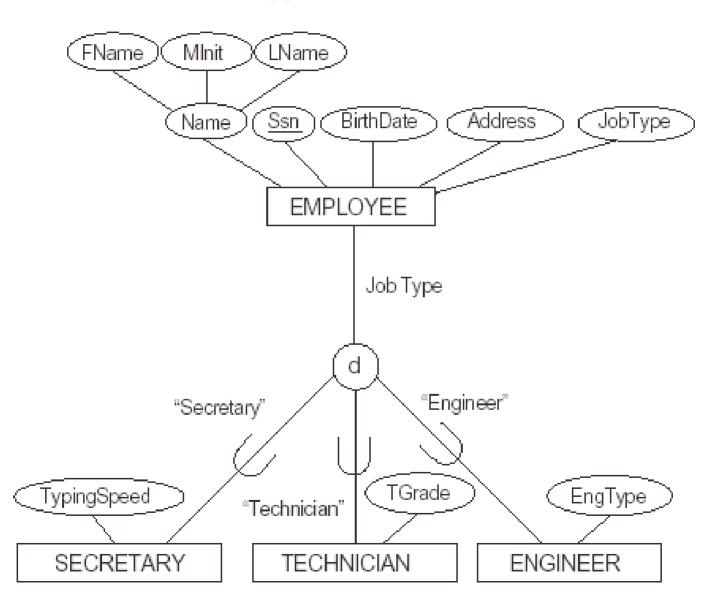


Figure 9.2 Options for mapping specializations (or generalizations) to relations.
(a) Mapping the EER schema of Figure 4.4 to relations by using Option A. (b) Mapping the EER schema of Figure 4.3(b) into relations by using Option B. (c) Mapping the EER schema of Figure 4.4 by using Option C, with JobType playing the role of type attribute. (d) Mapping the EER schema of Figure 4.5 by using Option D, with two Boolean type fields Mflag and Pflag.

(a) EMPLOYEE

<u>SSN</u>	FName	MInit	LName	B	irthDate	Ac	dress	Job	Туре	
SECRI	ETARY		Т	ECH	NICIAN			ENG	INEEF	R
SSN	TypingSp	beed		SSN	TGrade	•	ſ	SSN	En	gType
							-			
CAR										
Vehicle	eld Lice	ensePlate	No Pr	ice	MaxSpe	ed	NoO	fPass	engers	
TRUCI	K									
Vehicle	eld Lice	ensePlate	No Pi	ice	NoOfAxI	es	Tonna	age		

(c) EMPLOYEE

SN (FName) (MInit) (LName	BirthDate Address	JobType (TypingSpeed	I) (TGrade) (EngType)
---------------------------	-------------------	----------------------	-----------------------

(d) PART

(b)

artNo Description MFlag DrawingNo ManufactureDate BatchNo PFlag SupplierName Lis	ListPrice	ice
--	-----------	-----

Option 8d (Single Relation Option)

- Create a single relation schema L with attributes $Attrs(L) = \{K, A_1, \dots, A_n\} U$ $\{attributes of S_1\} U... U$ $\{attributes of S_m\} U \{T_1, \dots, T_n\}$ and PK(L)=K
- This option is for specialization whose subclasses are overlapping, and each T_i , $1 \le i \le m$, is a Boolean attribute indicating whether a tuple belongs to subclass S_i .
- This option could be used for disjoint subclasses too.

Figure 4.5 Notation for specialization with overlapping (nondisjoint) subclasses.

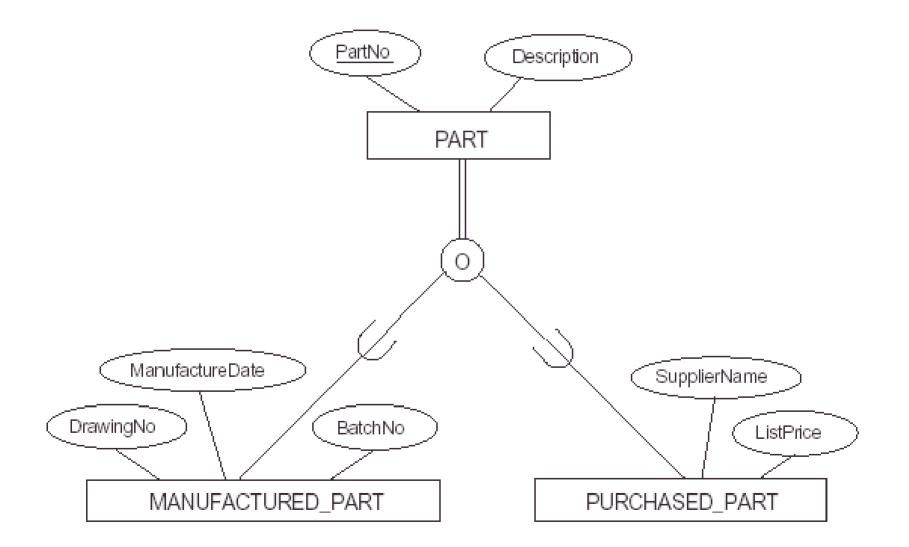


Figure 9.2 Options for mapping specializations (or generalizations) to relations.
(a) Mapping the EER schema of Figure 4.4 to relations by using Option A. (b) Mapping the EER schema of Figure 4.3(b) into relations by using Option B. (c) Mapping the EER schema of Figure 4.4 by using Option C, with JobType playing the role of type attribute. (d) Mapping the EER schema of Figure 4.5 by using Option D, with two Boolean type fields Mflag and Pflag.

(a) EMPLOYEE

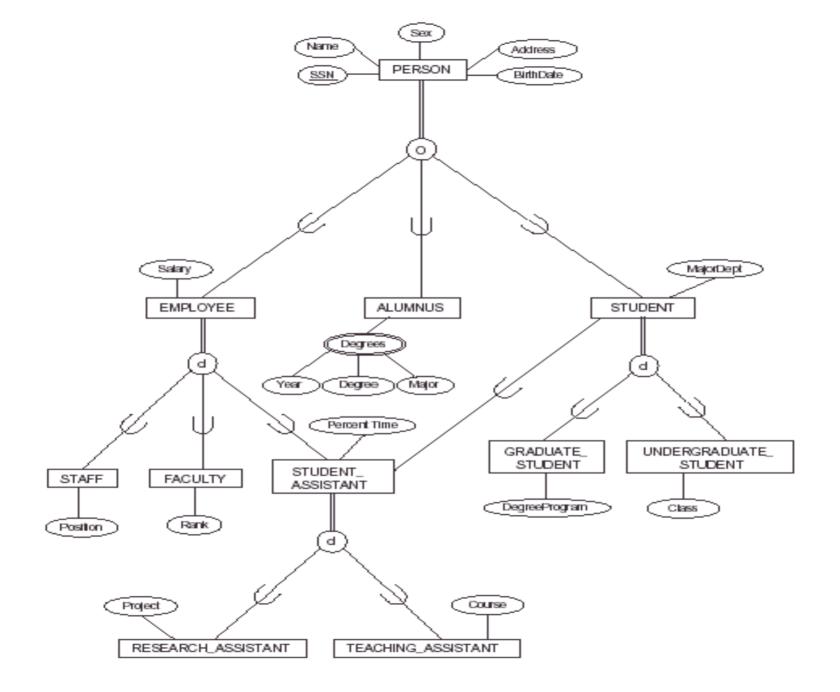
<u>SSN</u>	FName	MInit	LName	Bi	rthDate	Address	JobTy	ре
SECR	SECRETARY			CHN	NICIAN		ENGIN	EER
<u>SSN</u>	TypingSp	beed	<u>S</u>	<u>SN</u>	TGrade		<u>SSN</u>	EngType

(b) CAR

VehicleId	LicensePlateNo	Price	MaxSpeed	NoOfPassengers

TRUCK

VehicleId	LicensePlateNo	Price	NoOfAxles	Tonnage
-----------	----------------	-------	-----------	---------


(c) EMPLOYEE

(PART)

SSN FName MInit LName BirthDate Address JobT	/pe TypingSpeed TGrade EngType
--	--------------------------------

(d)

	<u>/</u>								
Part		scription	MFlag	DrawingNo	ManufactureDate	BatchNo	PFlag	SupplierName	ListPrice

Figure 9.3 Mapping the EER specialization lattice shown in Figure 4.7 using multiple options.

PERSON

SSN	Name	BirthDate	Sex	Address
-----	------	-----------	-----	---------

EMPLOYEE

SSN	Salary	EmployeeType	Position	Rank	PercentTime	RAFlag	TAFlag	Project	Course	
-----	--------	--------------	----------	------	-------------	--------	--------	---------	--------	--

ALUMNUS ALUMNUS_DEGREES

SSN Year Degree Major

STUDENT

SSN	MajorDept	GradFlag	UndergradFlag	DegreeProgram	Class	StudAssistFlag	
-----	-----------	----------	---------------	---------------	-------	----------------	--

Option 8A for

•PERSON/{EMPLOYEE,ALUMNUS,STUDENT}

Option 8C for

•EMPLOYEE/{STAFF,FACULTY,STUDENT_ASSISTANT}

Option 8D for

•STUDENT_ASSISTANT/{RESEARCH_ASSISTANT, TEACHING_ASSISTANT}
•STUDENT/{STUDENT_ASSISTANT}
•STUDENT/{GRADUATE_ASSISTANT, UNDERGRADUATE_STUDENT}