
Eradicating DNS Rebinding with the
Extended Same-Origin Policy

Martin Johns, Sebastian Lekies and Ben Stock

USENIX Security
August 16th, 2013

Agenda

●  DNS Rebinding
●  The basic attack

●  History repeating

●  HTML5 Offline Application Cache Attack
●  Extending the Same-Origin Policy

●  The three principals of Web Interaction

●  Extending the SOP with server-provided information

●  Conclusion & Future Work

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 2

Technical Background

Web Application 101

●  Active Content enables Web Apps to
●  interact with the Document (via the DOM)

●  interact with the Server (via XMLHttpRequests,
Iframes, etc)

●  ... in the name of the user
●  security sensitive
●  sensitive data and active content may

originate from different sources

●  Access is governed by the
Same-Origin Policy

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 4

http://example.org

Server

Client

h"p://example.org	
Browser

Active Content

HTML

The Same-Origin Policy

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 5

The Same-Origin Policy restricts access of active content to objects that
share the same origin. The origin is, hereby, defined by the protocol, the
domain and the port used to retrieve the object. *

“
http://example.org:80/some/webpage.html

protocol domain port

Target	 host	 Access	 Reason	

h"p://example.org	 Yes	 -‐-‐-‐	

h"ps://example.org	 No	 Protocol	 mismatch	

h"p://example.org:8080	 No	 Port	 mismatch	

h"p://facebook.com	 No	 Domain	 mismatch	

* Paraphrasing RFC 6454

Protecting the Intranet

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 6

h"p://a"acker.org	
Browser

http://attacker.org

10.0.0.20

10.0.0.10

Active Content

Firewall
10.0.0.0/8

Internet
Intranet

h"p://a"acker.org	 !=	 h"p://10.0.0.20	

SOP	 Mismatch!	 Access	 Denied!	

http://10.0.0.20

DNS Rebinding

DNS Rebinding

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 8

h"p://a"acker.org	
Browser

http://attacker.org

10.0.0.20

10.0.0.10

Active Content

h"p://a"acker.org	 	
=	 h"p://a"acker.org	

SOP	 matches!	 Access	 granted	

http://attacker.org

DNS Server

Firewall
10.0.0.0/8

Internet
Intranet

History Repeating

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 9

1996: The Princeton Attack
●  in 1996 Java applets offered sophisticated networking capabilities
●  DNS server returned two IP address for the same host

1.  The IP the applet was loaded from

2.  The IP of the target host

Countermeasure: Strict IP-based access control for Java applets
●  Java applets are only allowed to connect to their server‘s IP address

●  Maintainted over the entire lifetime of the applet

●  even inside the Browser‘s Java Cache

History Repeating

Countermeasure: Explicit domain relaxation
●  Both involved frames need to use domain relaxation

Countermeasure: DNS-Pinning
●  Browser caches domain-to-IP mapping

●  Browser resolves mapping only once per session

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 10

2002: JavaScript
●  DNS Rebinding via domain relaxation

●  Domain 1 attacker.org è 10.0.0.20

●  Domain 2 evil.attacker.org è 6.6.6.6

●  Quick-Swap DNS

History Repeating

Countermeasure: Host-header checking
●  In HTTP 1.1, the browser attaches an additional header containing the hostname

●  Applications need to check this header for correctness

Countermeasure: Restrictive Networking Capabilities for plug-ins
●  Plugins are only allowed to connect to a limited set of ports

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 11

2006: The full browser experience
●  FF & IE dropped domain-to-IP mapping on connection resets
●  Leading to many DNS Rebinding vulnerabilities

●  JavaScript, Flash, Java, ...

●  Even allowing socket communication

HTML5 Offline Application Cache Attack

Abusing the Cache

●  Idea: use the cache to store resource until domain-to-IP mapping is
lost

●  Abusing the cache for DNS Rebinding as such is straight-forward

●  However, „normal“ caching is not reliable

●  HTML5 AppCache enables a
●  controllable caching behaviour
●  and thus, a way for content to easily exceed DNS pinning times

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 13

HTML5 AppCache

●  Used to store parts of an application in the Cache
●  e.g. to reduce bandwidth consumption

●  New attribute „manifest“ added in HTML5
●  URL to a file containing resources the browser should cache

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 14

CACHE MANIFEST

http://example.org/index.php
http://example.org/flash.swf

How the AppCache works

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 15

h"p://example.org	
Browser

<html manifest=„/manifest.mf“>

http://example.org

h"p://example.org	
Browser

<html manifest=„/manifest.mf“>

http://example.org/
manifest.mf

/manifest.mf

Abusing the HTML 5 AppCache

1.  Store resources from http://attacker.org in the AppCache
2.  Let the victim close the browser

3.  Lure the victim to attacker‘s site again, resolve hostname to intranet
server

4.  Retrieve sensitive data and send it to attacker

5.  manifest is downloaded again (will result in 404)
●  We only have one shot

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 16

Solution: Cross-domain caching

●  AppCache allows us to store cross-domain resources
●  Have two domains – one for rebinding, one for manifest

●  Domain attacker1.org hosts manifest and iframe with source
attacker2.org/index.php

●  attacker2.org is rebound
●  In the final step, manifest is retrieved from http://attacker1.org (still

working)

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 17

CACHE MANIFEST

http://attacker2.org/index.php
http://attacker2.org/flash.swf

History Repeating

Countermeasure:

The extended Same-Origin Policy

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 18

2013: HTML5 Offline Application Cache
●  Circumvents pinning abusing the application cache
●  can reliably be used to scan ranges of IP addresses
●  Works on almost all desktop browsers

●  IE does not allow for cross-domain caching

2013: Filling up the DNS Cache with bogus entries
●  FireDrill by Dai & Resig (WOOT 13)

The extended Same-Origin Policy

The three principals of Web interaction

●  The Same-Origin Policy‘s duty is
●  to isolate unrelated Web applications from each other
●  based on the origin of the interacting resources

●  Semantics of the SOP are built around two entities:
●  The Web client (browser) enforces the policy
●  The Web server provides the resources subject to the policy decision

●  However, the involved entities differ:
●  The Web client (browser) enforces the policy
●  The DNS server provides the information used in the policy decision

Principal mismatch: Web server is not involved in the decision
Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 20

Design Goals

●  (DG1) Client-side enforcement
●  SOP is a client-side security policy and thus checking should be

conducted in the browser

●  (DG2) Protocol layer
●  Applications must not to be changed, only the protocol layer should be

modified

●  (DG3) Dedicated security functionality
●  Host header as such is not a security functionality

●  (DG4) Non-disruptive
●  Our approach should not break existing browsers or applications

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 21

Extending the SOP with server-provided information

●  Only the server should be capable of settings its trust boundary
●  Currently, the browser is guessing this boundary

●  based on information delivered by the network

●  Therefore, we propose to extend the Same-Origin Policy
●  with server-provided input

●  delivered through an HTTP response header to be

{ protocol, domain, port, server-origin }

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 22

Extended Same-Origin Policy decision logic

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 23

The eSOP is satisfied iff:

{protocol, domain, port}A == {protocol, domain, port }T

and
domainA ∈ server-originT

If the server-originT property is empty, the second criterion always
evaluates as “true”.

Example
•  10.0.0.20’s server-origin = { 10.0.0.20, wiki.corp }
•  2. part of the SOP decision: attacker.org ∈ of { 10.0.0.20, wiki.corp } à false
•  Many edge cases are explained in the paper

Analysis of the eSOP

●  The eSOP, summarized
●  client-side enforcement (DG1)

●  HTTP header used, no change to applications necessary (DG2)

●  HTTP header only used for security (DG3)

●  browsers fall back to „old“ SOP when header is not sent (DG4)

●  We implemented a prototype into Chromium
●  consists of header extraction (array access) and string matching

●  actually in two separate places, but similar method

●  è overhead not noticable

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 24

Conclusion

Conclusion

●  The Same-Origin Policy is the most basic security policy in the browser
●  it isolates unrelated Web applications from each other

●  based on the origin of the interacting resources (protocol, domain, port)
●  DNS Rebinding circumvents the SOP

●  by associating a domain name with two unrelated IPs

●  vulnerabilities discovered in 1996, 2002, 2006 and 2013

●  DNS Rebinding is a protocol-level flaw
●  Network governs the server‘s security characteristics

●  è We enhanced the SOP with explicit server-origin to eridicate DNS Rebinding

●  our approach was implemented within Chromium and proofed to have no
overhead

●  Opt-in, but on the target server-side

Johns, Lekies, Stock: Eradicating DNS Rebinding with the Extended Same-Origin Policy 26

Future Work

●  Rethink the notion of origins in the browser
●  Use the server-provided origin instead of the domain

●  Adopt the newly developed SOP to other parts of the browser
●  password manager (e.g. defeats certain phishing attacks)

●  postMessage (currently only URL is known by recipient)

●  Adopt policy for plugins
●  Rethink CORS-like preflight requests

●  Different attacker model

Lehrstuhl für IT-Sicherheitsinfrastrukturen 27

Thank you for your attention

●  ben.stock@cs.fau.de
●  @kcotsneb

