
ERROR ANALYSIS 2: LEAST-SQUARES FITTING 
INTRODUCTION 

This activity is a “user’s guide” to least-squares fitting and to determining the goodness of your fits.  It doesn’t 
derive many results.  There are good textbooks listed in the references.   

LEARNING GOALS 

At the end of the activity you will be able to: 

1. Explain why we minimize the sum of squares to get the best fit 
2. Carry out a least-squares minimization graphically 
3. Plot residuals to visually inspect the goodness of a fit 
4. Be able to interpret the uncertainty in fit parameters that Mathematica’s fit routines output 
5. Be able to compute 𝜒" for a fit and use it to determine if a fit is “good” 

WHY DO WE MINIMIZE THE SUM OF SQUARES? 

Question: Why do we call it “least-squares” fitting?  

Answer: Because the best fit is determined by minimizing the weighted sum of squares of the deviation between 
the data and the fit. Properly speaking this “sum of squares” is called “chi-squared” and is given by  
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where there are 𝑁 data points (𝑥', 𝑦'), and the fit function is given by 𝑦(𝑥', 𝑎, 𝑏, 𝑐, … ) where 𝑎, 𝑏, etc. are the fit 
parameters. 

Question: What assumptions are made for the method to be valid? 

Answer: The two assumptions are 

(1) Gaussian distributed.  The random fluctuations in each data point 𝑦'  are Gaussian distributed with 
standard deviation 𝜎'.  

(2) Uncorrelated.  The random fluctuations in any one data point are uncorrelated with those in another data 
point. 

Question: Why does minimizing the sum of squares give us the best fit? 

Answer: Given those two assumptions, the fit that minimizes the sum of squares is the most likely function to 
produce the observed data.  This can be proven using a little calculus and probability.  A more detailed explanation 
is found in Taylor’s Introduction to Error Analysis Sec. 5.5 “Justification of the Mean as Best Estimate” or Bevington 
and Robinson’s Data Reduction Sec. 4.1 “Method of Least-Squares". 



MINIMIZING 𝜒" GRAPHICALLY:  

Question 1 Graphically minimizing 𝝌𝟐 
You will rarely minimize 𝜒" graphically in a lab.  However, this exercise will help you better 
understand what the fitting routines in Mathematica actually do to find the best fit. 
a. Import and plot the data set from profile_data_without_errors_activity_2.csv.   It was 

generated by inserting a razor blade into path of a laser beam and measuring the 
photodetector voltage of the laser light.  The x column is the microcrometer (razor) 
position in meters and the y column is the photodetector voltage in Volts. 
• Import["profile_data_without_errors_activity_2.csv",”CSV”] 

b. Define the same fit function many of you used in the Gaussian laser beams lab: 

 𝑦(𝑥, 𝑎, 𝑏, 𝑐, 𝑤) = 𝑎	Erf ?√"
A
(𝑥 − 𝑏)B + 𝑐  

c. Reduce the fit to two free parameters.  This step is only necessary because it is hard to 
visualize more than 3 dimensions.  Assume  𝑎D'E = (𝑉GHI − 𝑉G'J)/2	 = 1.4375 and 𝑐D'E =
(𝑉GHI + 𝑉G'J	)/2 = 1.45195.  These were determined by averaging the first 6 data points 
to get 𝑉G'J and the last 5 to get 𝑉GHI.  

d. Use Equation 1 to write an expression for 𝝌𝟐 in terms of your 𝑤 and 𝑐 parameters, and 
the 𝑥 (position) data, 𝑦 (voltage) data.  Since you don’t have any estimate for the 
uncertainties 𝜎', do what Mathematica does, and assume they are all unity so 𝜎' = 1.  

e. Make a contour plot of 𝜒"(𝑤, 𝑏) and tweak the plot range until you see the minimum.  
Just like with NonlinearModelFit, it will help to have a good initial guess for your fit 
parameters.  You can iteratively improve the plot range your plot to zoom in on the 
parameter values that minimize 𝜒", you should get a plot kind of like: 

•   
f. Graphically determine the best fit parameters to 3 significant digits. 
g. Compare with the best fit result from NonlinearModelFit (allow all 4 parameters to 

vary).  Do the fits agree for those three digits of precision? 

UNCERTAINTY IN THE FIT PARAMETERS 



Question: Where does the uncertainty in the fit parameters come from?. 

Answer: The optimal fit parameters depend on the data points (𝑥', 𝑦').  The uncertainty 𝜎'  in the 𝑦'  means there is 
a propagated uncertainty in the calculation of the fit parameters.  The error propagation calculation is explained in 
detail in the references, especially Bevington and Robinson. 

Question: How does Mathematica calculate the uncertainty in the fit parameters when no error estimate for the 
𝜎'  is provided?  

Answer: Mathematica (and other programs) estimate the uncertainty in the data  𝜎S"  using the “residuals” of the 
best fit: 
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where there are 𝑁 data points 𝑦'  and the best fit value at each point is given by 𝑦, which depends on 𝑥'  and the 𝑛 
best fit parameters  𝑎U, 𝑏U, 𝑐U, … .  It is very similar to how you would estimate the standard deviation of a 
repeated measurement, which for comparison’s sake is given by 
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Question 2 Estimating the uncertainty in the data 
 

a. Use Equation 2 and your best fit parameters to estimate 𝜎S", the random error of each 
data point given by your data. 

b. Compare your result with Mathematica’s NonlinearModelFit, which can also output 
this estimate of the random error.  If nlm is the NonlinearModelFit output, the 
estimate of 𝜎S" is given by nlm[“EstimatedVariance”] 

c. Do the estimates agree?  Why or why not? 

 

  



GOODNESS OF FIT 

This section covers two ways to analyze if a fit is good. 

1. Plotting the residuals 
2. Doing a 𝜒" test 

 

PLOTTING THE FIT RESIDUALS 

The first step is to look at the residuals.  The residuals 𝑟'  are defined as the difference between the data and the fit.  

𝑟' = 𝑦' − 𝑦(𝑥', 𝑎, 𝑏, 𝑐, … ) 

Question 3 
 
 

Making a plot of the residuals and interpreting it 
 

a. Make a ListPlot of the residuals. If nlm is the NonlinearModelFit output, the 
list of residuals is given by nlm[“FitResiduals”] 

b. Since we didn’t provide any estimates of the uncertainties, Mathematica assumed the 
uncertainty of every point is the same.  Based on the plot of residuals, was this a good 
assumption? 

c. Do the residuals look randomly scattered about zero or do you notice any systematic error 
sources? 

d. Is the distribution of residuals scattered evenly around 0?  Or is there a particular range of 
x values where the residuals are larger than others? 

e. What is the most likely source of the large uncertainty as the beam is cut near the center 
of the beam? 

“CHI BY EYE” – EYEBALLING THE GOODNESS OF FIT 

Question:  If I have a good fit, should every data point lie within an error bar? 

Answer:  No.  Most should, but we wouldn’t expect every data point to lie within an error bar.  If the uncertainty is 
Gaussian distributed with a standard deviation 𝜎'  for each data point 𝑦', then we expect roughly 68% of the data 
points to lie within their error bar.  This is because 68% of the probability in a Gaussian distribution lies within one 
standard deviation of the mean.  

 

𝜒" AND 𝜒XYZ"  FOR TESTING THE “GOODNESS OF A FIT” 

This section answers the question “What should 𝜒" be for a good fit?” 

Suppose the only uncertainty in the data is statistical (i.e., random) error, with a known standard deviation 𝜎', then 
on average each term in the sum is  
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and the full 𝜒" sum of squares is approximately 
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≈ 𝑁 − 𝑛 (5) 

So a good fit has  

 𝜒XYZ" ≡
𝜒"

𝑁 − 𝑛
≈ 1 (6) 

 

Question 4 Fact: To find the goodness of fit test, you must first estimate the uncertainties on the data 
points that you are fitting.   
 
How would you explain the reason for this in your own words?  
 

Question 5 
 

Choosing a strategy to estimate the uncertainty 
 
Considering your answers to question 3, especially 3e, which method would give you the best 
estimate of the uncertainty for each data point? 
• Eyeballing the fluctuations in each data point. 
• Taking 𝑁 measurements at each razor position and then going to the next position. 
• Taking the entire data set 𝑁 times 

WEIGHTED BEST FITS IN MATHEMATICA 

When you have estimated the uncertainty 𝜎'  of each data point 𝑦'  you would like to use this information when 
fitting to correctly evaluate the 𝜒" expression in Equation 1.  The points with high uncertainty contribute less 
information when choosing the best fit parameters. If you have a list of uncertainties 

σlist = { σ1, σ2, σ3,…} 

then the weights for the fit are 

weightslist = 1/ σlist2 = {1/ σ12, 1/ σ22, …} 

Add the Weights->weightslist option to the LinearModelFit or NonlinearModelFit.  For 
example, 

NonlinearModelFit[data,fit[x,a,b,c],{a,b,c},x, Weights->weightslist] 



Question 6 a. Import the data set for a beam width measurement with uncertainties from the 
profile_data_with_errors_activity_2.csv.  The first column is razor position in meters, the 
second column is photodetector output voltage, and the third column is the uncertainty 
on the photodetector output voltage. 
• Import["profile_data_with_errors_activity_2.csv",,”CSV”] 

b. Do a weighted fit using the same fit function as in question 1.  Use the uncertainty 
estimates in the third column to calculate the weights. 

c. Calculate 𝜒".  You can obtain 𝜒" from the fit returned by Mathematica.  Supposing the fit 
was called nlmError, use nlmError[“ANOVATable”].  For the curious, ANOVA 
stands for ANalysis Of VAriance. 

 
d. How close is the reduced chi-squared to 1?   
e. The “chi-squared test”.  This part helps us understand if the value of 𝜒" is statistically 

likely or not.  The following graph gives the probability of exceeding a particular value of 
𝜒" for 𝜈 = 𝑁 − 𝑛 = 22  degrees of freedom.  It can be calculated using the Cumulative 
Density Function (CDF) for the chi-squared distribution.  Use the graph to estimate the 
likelihood this value of 𝜒" occurred by chance. 
 
ν = 22; (*Degrees of freedom*) 
Plot[1 - CDF[ChiSquareDistribution[ν], x* ν], {x, 0, 2}] 
 

 

 

  



WHY IS IT OFTEN BAD TO OVERESTIMATE UNCERTAINTIES? 

 

Question 7 Why can overestimating the uncertainty make your fit appear good (i.e., ^
_

4`J
≈ 1)?  

Overestimating the uncertainties makes the fit seem good (according to a 𝜒" test), even when it might be 
obviously a bad fit.  It is best to do the 𝜒" test using an honest estimate of your uncertainties.  If the 𝜒" is larger 
than expected (𝜒" > 𝑁 − 𝑛), then you should consider both the possibility of systematic error sources and the 
quality of your estimates of the uncertainties.  On the other hand, if the 𝜒" test is good (𝜒" ≈ 𝑁 − 𝑛), then it 
shows you have a good handle on the model of your system, and your sources of uncertainty.  Finally, if 𝜒" is much 
less than 𝑁 − 𝑛, this likely indicates overestimated uncertainties. 
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