
ESP32 picoc C Language Interpreter

The sketch at https://github.com/rlunglh/IOT_with_your_PC/blob/master/ESP32Program.zip implements a C Language

Interpreter on the ESP32 using the Arduino IDE to create and upload the sketch to your ESP32. There are many good

explanations of setting up the Arduino IDE for the ESP32; a good place to look for this information is at

https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-windows-instructions/

Once the Arduino IDE is installed just unzip the ESP32Program.zip file into your Arduino folder. You need to edit and

upload some files to the ESP32 for the sketch to run. First look at the WIFIname.data file in the ESP32Program/data/data

folder on your PC. This file supplies the SSID for the ESP32 to use when connecting to WiFi as a station, so change its

name to match your WiFi environment. You also need to edit the ESP32Program/data/data/WIFIpass.dat file to hold

your WiFi network password for the ESP32 to use when connecting. After editing these files, you can use the Tool/ESP32

sketch data upload menu in the Arduino IDE item to upload the data folder to your ESP32. To install the ESP32 upload

tool follow the instructions at https://github.com/me-no-dev/arduino-esp32fs-plugin You may want to make some

changes to the ESP32Program file in the Arduino IDE prior to building and uploading your sketch to your ESP32. The first

few lines of the sketch are shown below:

#define ALWAYS_STATION

// define ALWAYS_STATION to restart EPS32 if it can't connect to the specified SSID

// when defined it will not enter AP mode on a Station Connect

// failure. It will restart until it successfully connects

// to the SSID specified in /data/WIFIname.dat using the

// password specified in /data/WIFIpass.dat

//#define TFT

// define TFT to enable use of an attached 320x240 TFT Display

//#define OLED

// define OLED to enable use of an attached 128x64 OLED Display

//#define SSD1306OLED

// define SSD1306OLED if using the Wemos ESP32 WROOM with OLED

//#define BME280

// defining BME 280 will include support for BME280 sensor

//#define NEO_PIXEL

// defining NEO_PIXEL includes Adafruit_NeoPixel support functions;

//#define ePAPER

// defining ePAPER includes 1.54 in ePaper Display from WaveShare

As shown in the code comments ALWAYS_STATION is defined to assure that the ESP32 will not enter Access Point mode.
If a station connect fails the ESP32 will repeatedly restart and try to connect to the specified SSID until connection is
successful. If you do have a problem connecting, make sure that the WIFIname.dat and WIFIpass.data files in
ESP32Program/data/data on your PC have the correct information for your environment. If you want to use the esp32 in
AP mode, just put a blank into the WIFIname.data file and comment out the #define ALWAYS_STATION line.
He ESP32PEogram supports an SPI connected TFT color graphic display or a 128x64 OLED display. These are enabled by
uncommenting the //#define TFT . //#define OLED, and //#define ePAPER lines. You can use ePAPER, OLED, and TFT
defines concurrently and get a sketch that will work with the defined displays. Once you have the setting needed in the
sketch, build and Upload for your sketch to the ESP32. When running, the Serial Monitor (at 1000000 baud) will show
the IP address where the picoc Interpreter is running when the ESP32 restarts. In my environment I have added the line
192.168.0.21 picoc to my ..\Windows\System32\drivers\etc\hosts file to allow me to use picoc as an alias for the
server. In a browser, navigate to the ESP32 address to see the first display. An example browser view is show below:

https://github.com/rlunglh/IOT_with_your_PC/blob/master/ESP32Program.zip
https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-windows-instructions/
https://github.com/me-no-dev/arduino-esp32fs-plugin

The following paragraphs give a quick tour of operation. Click the File Manager button giving the display shown below:

Double Click the /default.c line in the select giving:

This shows the content of the /default.c file and allows editing the content and saving changes using the Save Button.

The Save button will not appear unless you make a change in the edit textarea. When a Save is required, the display will

appear as shown in the following figure.

 You can also change the edited file by changing the file name in the first text box and clicking Open. If the Save button is

available, you can change the file name in the text box and the file will be saved to the named entered. File names must

start with / and can include additional / to breakout files into different directories and you are free to organize the files

any way you choose. The File Manager will list files showing each file’s full path. The file manager only shows program

files and does not show .jpg .ico or .dat files. The ls() function in the Interpreter will show all files along with their fi le

sizes.

This example is done just to show a simple program’s operation. Click the Run button giving the output shown in the

following figure:

When programs are run, you’ll be shown what file is running and any arguments passed along with a listing of the file,

Global outputs, the program output, the return value, and the amount of free memory available on the ESP32 when the

program completes. This example was chosen to let you see that int and long types are equivalent as both are 32 bit

values, and that the float and double types are equivalent as both are 64 bit values in the Interpreter.

If a running program has a syntax error, you will be shown the Program Error Information. As an example, click the Edit

button and change the 2nd occurrence of atoi to aatoi and click the Save button. Now when you click Run you’ll see the

display shown below:

The Program Error Information section shows the error, along with the line and character position where the interpreter

reached an error condition. It also shows the error cause, in this case, ‘aatoi’ is undefined. This particular error is well

diagnosed and you can verify that clicking Open and changing aatoi to atoi, Saving the file, and clicking Run causes the

program to again run without errors.

The handlers around the picoc interpreter eliminate any Interpreter error cleanup problems by simply restarting the

ESP32, then, after a delay of 30 seconds, you will be returned to the Edit page for program you are running. You can also

click the Open button on the Run page to get back to the editor more quickly when you quickly recognize the error cause

and are ready to make program changes to fix the problem.

Behind the screens, the interpreter collects all globally defines functions and variables and automatically deletes them

after a program run so the program can be run repeatedly without having the interpreter complain that things such as

main are already defined. This is accomplished by recording global scope object creation in the /DropGlobals.h file –

when you ran the /default.c program, its contents were updated to what is shown below

drop("main");

drop("__exit_value");

This file is processed by the interpreter at program completion to cleanup globals to make the next run.

The SETTIGNS button on the Admin tool bar gives you the Settings dialog shown in the following figure.

Important fields are the Station Mode Name and Pass fields if you want to run in Station mode these need to be set
correctly for your environment. You can assure this, without the chicken and egg problem, by editing the
data/data/WIFIname.dat and WIFIpass.dat files and doing a Tools/ESP32 Sketch Data Upload menu operation in the
Arduino IDE. Tou may want to also Run default.c at startup by clicking its Enable box towards the bottom of the page.
Be sure to click the Save button after any changes are made.

Sample Programs without External Displays

There are sample programs included in the sketch data directory, and hence uploaded to the ESP32 using Tool/ESP32

Sketch Data Upload menu item (make sure the Serial Monitor is closed before doing the upload) that will let you

explore picoc C Language Interpreter basics.

The programs

 AnalogWrite.c

 debugPointers.c

 default.c

 example.c

 fadeBuiltin.c

 heartbeat.c

 ls.c

 nested.c

 nestedDebug.c

 prime.c

 Primes.c

 primeWithSubs.c

 quicksort.c

 sums.c

 tester.c

Can all be run without needing an external TFT, OLED, or ePaper display. Each program has a short synopsis in the
following paragraphs.

analogWrite.c – this program brightens and dims the built in LED on the ESP32, The program is set to use pin 2, if you
use an ESP module other than the DH-ET line MiniKit, or the DOIT ESP32 DEVKIT that I have tested with, you may need
to change the pin being used. For instance, on a HELTEC WiFi Kit 32 you need to use pin 25 which is accomplished by

changing the line int LED=2; to int LED=25;

debugPointers.c – an example program showing how the interpreter presents pointer reference data in the Debug
mode.

default.c – you’ve already been shown this program’s operation in the initial ESP32Program introduction.

example.c – shows some Debug output for nested loops.

fadeBuiltin.c – example program showing the loop() function in uninterrupted use. You can stop the loop by clicking the
ResetESP32 button. This will restart the ESP32 and return you to the Edit view of the file being run

heartbeat.c – simply blinks the built in LED in a heartbeat fashion, again you may have to change the pin number for
your specific board.

ls.c – lists the SPIFFS file system showing all file names and sizes.

nested.c – shows the operation of nested for loops in the interpreter and is really present to set the stage for
nestedDebug.c

nestedDebug.c - This program introduces the interpreter’s debug features. Its output when run is shown in the following
figure.

You see the program listing as in the program examples shown for default.c. Lines 3 and 4 set watches for variables i and

j. Line 7 initiates debug operation when i is equal to 2. Line 8 stops debug operation when i is equal to 3. The interpreter

gives you a conditional debugging feature since the Debug() functions can be called with any combination of conditional

logic you’d like. The Output from main() section shows a tabular format. Outputs from the program (here caused by

printf functions) are entered on a separate line preceded by ‘-> ‘. The source lines being executed begin to show after

the Debug() function is called. Line 7 of the program causes debug operation to start when i is 2. The display then begins

showing debug trace output with a line#: col# > leader and the line being executed next shown with an inverse character

at the position where the parser will scan next. Also shown in this table is a second column that presents any Watch

variables. At the first trace line 8, i and j are shown to be 2 and 4 respectively. The next line shows that the for j

statement is about to be executed. The 9:8 line shows that the for evaluation will next execute the int j=0 assignment.

Line 10:0 shows that the printf is the next statement to be executed and that j is now 0. After this the program output

form the printf function is printed as i*4+j = 8 . The for loop trace then continues until we get to 8:13 when the

stopDebug() function is executed and tracing stops. After that the remaining program outputs are printed up to i*4+j =

15 and the program returns the value 0.

These combinations of Debug, stopDebug, Watch, and stopWatch function, along with conditional execution of these

statements, give you great flexibility in examining program execution and working out problems in C language code.

The prime.c, primes.c and primeWithSubs.c all explore computationally demanding application for the ESP32. These

programs are all implementations of a prime number sieve that checks for integer divisors of a number with no

remainder and if no even divisors are found the number is added to the prime number count. Also prime numbers found

can be output for each n primes specified as range. Let’s look at the output of prime.c as provided in the stock

ESP32Program data directory.

As you can see above, it lists the prime found after each 100 discoveries, and processes over a range of 1001 to 5000.

The program also times its execution and counts how many while ((k*k<=n && p) loops are performed to allow

reporting the loops completed per second, in this case, 5,040 per second. I acknowledge that the interpreter completes

5,040 loops per second including a multiplication, two compares, a modulo divide, an increment and an add but, to say

the least, this is not exceptional performance. The primes.c program illustrates how this can be improved by placing the

while loop into compiled code that is called by the interpreter. Primes.c Run output is shown in the next figure.

This shows that the compiled code ran over 10 times faster. We can realize event greater speed improvements if we run

over larger numbers as shown below.

Here we ran the prime number sieve over much larger numbers, to get more while loop iterations and showed results

for every 1000 primes found. The startling thing is that when the Interpreter calls compiled code to do the

computationally demanding parts of the program, the while loops soar to close to 11 million per second which is over a

21,000 times improvement. The compiler shouldn’t get all the credit because this interpreter is particularly slow – but it

does fit nicely on the ESP32.

ESP32Program can give you some very rewarding experiences if you are new to C programming – just put code that you

want to verify into a file on the ESP32 and test away without the Arduino compile and upload delays, and with a

conditional trace and watch facility. If you have a section of sketch code that is not operating as you expected or hoped

– just paste the appropriate portion of the code into an ESP2 file and run the Debug and Watch functions to see what is

really happening without reverting to myriad Serial.print(f) functions (not to mention recompiling and uploading for

each Serial.print.. statement).

The primesWithSubs.c program illustrates using a subroutine to perform the while ((k*k<n) && p) loop.

All three of these programs can be run using program arguments entered, logically enough in the Program Arguments

text box. A run of the primeWithSubs.c program with program arguments is shown in the following figure.

Quicksort.c – quicksort is a classic sorting algorithm that includes recursion and is included in the samples to illustrate a

more complex program logic task being run on the interpreter. Its output is shown in the following figure, first it lists the

String array to be sorted followed by the sort results.

Sums.c – is another recursion algorithm that is easier to follow since it is a small piece of code. The output of a sums.c

run with Debug and Watch is shown in the following figure.

In the interpreter output, you can clearly see the value of top that is being passed to the sums function decreases from

10 to 1 and that at a value of 1 all the sums are returned and the total of Sums 1 to 10 is 55.

Tester.c – a simple program that illustrates the ls() and Cat() function outputs.

Sample Programs Using External Displays

The programs

 drawing.c

 example.c

 hershey.c

 scrollText.c

 tester.c

Are used with a 320x240 TFT display which is my favorite way of running the ESP32.

If you use the MH-ET LIVE Minikit for ESP32 you get a Wemos mini D1 compatible footprint that can be used with the

LOLIN TFT 2.4 Touch Shield making a simple, ready to use, ESP2 with a TFT color graphic display.

These programs are summarized in the following paragraphs.

When using a 320x240 TFT, the ESP32 will display the following after reset.

This display is a harmless advertisement for Micro Image Systems and the book Building Blocks for IOT with your PC and

WiFi Peripherals. It also shows that the ESP32 is running in station mode with an IO address to 192.168.0.24 – your IP

address will likely be different. If the ESP32 is running in AP mode it will show the display shown in the following figure.

When in AP mode the Network Name will be ESP32PICOC but you can use the Settings page available from the Admin

toolbar to change the name.

drawing.c – Produces some graphics drawings and then goes through a demo of the Hershey fonts built into the

Interpreter by the author along with a slide show of images that are loaded on the ESP32. The drawing program calls

screenCapture after each major display change and this will capture the TFT display images using the Processing

platform and the Processing sketch ScreenCapture.pde available from the following URL

https://github.com/rlunglh/IOT_with_your_PC/blob/master/ScreenCapture.pde You will need the Processing

environment to run the ScreenCapture.pde file and this can be downloaded and installed using the instructions at

https://processing.org/tutorials/gettingstarted/ The supplied ScreenCapture.pde sets the correct baud rate and is set to

use your second enumerated COMM port. If you look at Device Manager and see only one device under Ports then you

will need to change the Processing sketch line "int serial port = 1;" to "int serial port = 0;" The

Processing ScreenCapture sketch will not run if the Arduino IDE Serial Monitor is running for your ESP32. Also, when

ScreenCapture initially starts, it resets the ESP32. Therefor just get the ScreenCapture.pde running and then proceed

with getting you programs running in the Interpreter. The Screen Capture button on the ESP32Proram web pages will

trigger a TFT Screen Capture and the function screenCapture() will trigger a capture if placed within your programs. The

following figures are the screen captures obtained automatically when running the drawing.c program.

https://github.com/rlunglh/IOT_with_your_PC/blob/master/ScreenCapture.pde
https://processing.org/tutorials/gettingstarted/

Even though all the displays presented by drawing.c have been shown in the preceding figures, you should watch it run if

you have a TFT display because there are slow stroke drawings of the Cursive font and That’s All Folks that are

demonstrative regarding the drawing of the Hershey fonts.

This sample shows that you can display jpeg images on the TFT, draw any number of shapes and fills, along with Hershey

Font text of varying sizes and colors, along with native TFT fonts in different fonts, sizes, and colors. These capabilities

open a world of expressive peripherals that can communicate status, show sensor outputs, and provide a compelling

display for your projects. With the Touch screen capability you can also make projects that have an interactive interface

at the Touch Screen display.

example.c – was shown earlier without using the TFT display. This time uncomment the TFTsetTextSize(1) ,

setConsoleOn(2) and comment out the Debug related lines in the program, Save it, and click Run giving the cat function

program outputs with console like output on the TFT display. A screen capture following program completion is shown

in the following figure.

hershey.c – this program illustrates most of the Hershey font built in functions and shows how to Invert the display for

visual effects.

The Hershey functions are

void HFsetCursor(int,int); x,y
void HFdraw(char,float,int); char,size,color
void HFdrawRotated(int,int,char,float,int,float); xc,yx,char,size,color,angle
void HFdrawStringRotated(int,int,float,int,float,char *); x,y,radius,size,color,angle,char string
int HFgetStringSize(char *,float); char string,size -- returns length
void HFdrawString(int,int,float,int,char *); x,y,size,color,char string
void HFdrawCenteredString(int,float,int,char *); y,size,color,char string
void HFdrawStringOpaque(int,int,float,int,int,char *); x,y,size,foreColor,backColor,char string
void HFsetFont(char *); font name -- allowed values are serif sans sansbold greek cursive
void HFsetStrokeDelay(int); set delay between strokes normally 0, non zero make for character drawing animation on screen

These provides for normal and opaque symbol strokes along with automatic centering and rotation.

scrollText.c – this program does what the name implies and illustrates the scrolling of console output directed to the TFT

display. A screenCapture of the TFT screens is shown in the following figures for various text sizes and colors.

Years ago (1977), while working at IBM, I was introduced to a set of font definitions using

vectors produced by Dr. Allen Vincent Hershey at the Naval Weapons Laboratory in 1967.

Hence the name Hershey Fonts. These font definitions are quite well done and include serif

and san serif fonts along with Greek and cursive fonts that are at least entertaining.

https://en.wikipedia.org/wiki/Naval_Weapons_Laboratory

tester.c – this program simply runs the cat() function. If you uncomment the line "//setConsoleOn(1);TFTsetTextSize(1);"

add screenCapture(); after the LS(); line, and then Save and Run you get the following output.

Pulse Width Modulation and AnalogWrite

If you are going to be using the ESP32 in the Arduino environment it makes sense to have the analog, digital, and PWM

capabilities of the Arduino IDE also available in the Interpreter. The interpreter includes the following functions with

arguments that are integers unless otherwise indicated.

 void pwmSetup(pin,frequency,range); - set ESP32 pin to PWM output at frequency with values from 0 to range

 void servoAngle(pin,angle); set pin t0 PWM corresponding to float angle. Angle ranges from -90 - +90

 void pwmServo(pin,duty); set pin to float duty dutycycle, duty ranges from 0.0 to 1.0

 void analogWrite(pin,value); set pin to value – user must account for the pins range set in pwmSetup to get the
value they really want. Generally the analogWrite function takes values of 0 to 4095.

 void digitalWrite(pin,value);

 int digitalRead(pin);

 void pinMode(pin,char * mode); set pin to mode "INPUT" "OUTPUT" or "INPUTPULLUP"

The analogWrite program makes use of the setServoReport and analogWrite functions.

Interactive Help

You can also get function references directly from the ESP32Program web pages. The “picoc Function Help” button along

with the textbox to the right of the button are your gateway to function definitions. Say that you want to see all TFT_

functions, just put TFT-* in the text box and click the Picoc Function Help button. This will give you the following results.

Help for function TFT_*

void TFT_draw(char *,int,int); filename,x,y -- must be a Jpeg file
void TFT_drawCircle(int,int,int,int); xc,yc,radius,color
void TFT_drawEllipse(short,short,short,short,short); xc,yc,radiusx,radiusy,color
void TFT_drawLine(int,int,int,int,int); x1,y1,x2,y2,color
void TFT_drawRect(int,int,int,int,int); x,y,width,height,color
void TFT_drawRoundRect(int,int,int,int,int,int); x,y,width,height,radius,color
void TFT_drawTriangle(int,int,int,int,int,int,int); x1,y1,x2,y2,x3,y3,color
void TFT_fillCircle(int,int,int,int); xc,yc,radius,color
void TFT_fillEllipse(short,short,short,short,short); xc,yc,radiusx,radiusy,color
void TFT_fillTriangle(int,int,int,int,int,int,int); x1,y1,x2,y2,x3,y3,color
void TFT_fillRect(int,int,int,int,int); x,y,width,height,color
void TFT_fillRoundRect(int,int,int,int,int,int); x,y,width,height,radius,color
void TFT_fillScreen(int); color
int TFT_Gauge(float xc,float yc,float sang,float eang,float radius,float sval,float eval,int divisions,float
increments,int color,char * fmt,char * valueFmt);
void TFT_Gauge_draw(int); gauge#
void TFT_Gauge_drawDanger(int,float,float,int); gauge#,startValue,endValue, color
void TFT_Gauge_drawDangerByValue(int,float,float,int); gsuge#,startValue,endValue, color
void TFT_Gauge_dropGauges(); frees all TFT_Gauge storage
void TFT_Gauge_setPosition(int,float); gauge#,value

int TFT_HbarGraph(float x,float y,int width,int height,float sval,float eval,int divisions,float increments,int
color,char * fmt,char * valueFmt
void TFT_HbarGraph_draw(int); gauge#
void TFT_HbarGraph_dropGauges(); frees all HbarGraph gauge storage
void TFT_HbarGraph_setPosition(int,float); gauge#,value
void TFT_invertDisplay(int);, pass 0 for normal 1 for inverse
void TFT_print(char *); char string to print
void TFT_pushRect(int,int,int,int,short *); startx,starty,width,height
void TFT_readRect(int,int,int,int,short *); startx,starty,width,height
void TFT_setCursor(int,int); x,y y increases from 0 at top of display
void TFT_setTextColor(int,int); foreColor,backColor
void TFT_setTextSize(int); size
int TFT_VbarGraph(float x,float y,int width,int height,float sval,float eval,int divisions,float increments,int
color,char * fmt,char * valueFmt
void TFT_VbarGraph_draw(int); gauge#
void TFT_VbarGraph_dropGauges(); frees all VbarGraph gauge storage
void TFT_VbarGraph_setPosition(int,float); gauge#,value

You can enter * to get all functions - displays the defs.txt file, a full name, an empty string – to get the defs.txt file

shown in a window with navigation, or as done above a string followed by * to do a wildcard search. To return to your

previous page just use the Go Back button.

Miscellaneous Buttons on the File Manager Page

The Buttons on The File Manager page appear as shown in the following figure.

The top button, Browse… allows you to select a file to be uploaded to the ESP32. Once you click the Browse… button and

select a file to upload, the Upload button will be made visible. As shown below.

When you click Upload the selected file will be uploaded to the uploads folder on the ESP32 SPIFFS and you will be

directed to an edit page for the uploaded file. NOTE Only text type files can be uploaded in this manner. If you want to

add other file types to the ESP32 SPIFFS, put them in the ESP32Program’s data folder and use the ESP32 Sketch Data

Upload Tool. Be advised that any files in the SPIFFS that are not in the data directory, or that you have changed since the

last upload, will be lost. I carefully copy and paste between the browser window and the PC’s editor when I change a file

on the ESP32 to prevent loosing changes if I use the Arduino ESP32 Sketch Data Upload function.

As mentioned above, another means of transferring content from your PC to the ESP3 2 is to use the Edit file and use

copy and paste between a file viewer/editor on your PC (my favorite is Notepad++) and the browser Edit page.

The Delete button does exactly what you’d expect it deletes the selected file in the file list from the ESP32 SPIFFS.

The Edit and Run buttons have already been discussed and their operation is intuitive.

The rename button lets you rename/move files on the ESP32 SPIFFFS. Its dialog is shown in the following figure.

The Change Name button will rename the file from Old Name to New Name.

The New File button creates an empty file with the name newfilex.txt and opens it in the edit view. If you do not save

the file, for instance you click the File Manager button in the edit view before a Save, the file will not appear in the file

system. Each New File button click will create files with higher sequence numbers than what already exists in the file

system.

The Program Arguments filed lets you pass values to a program if it is coded with a main function following the main(int

argc,char ** argv) {…} conventions. For instance the prime.c program accepts program arguments and its operation with

Program Arguments is shown in two following figures.

The program by default runs with start=1001, end=5000, and rpt=100. When at least 3 arguments are passed (making

argc=4 since argv[0] if the program name) the code uses the parameters to fill in start, end, and rpt sequentially. The

lines

 4 if (argc>=4)

 5 {

 6 argv++;

 7 start=atoi((char *)*argv++);

 8 end=atoi((char *)*argv++);

 9 rpt=atoi((char *)*argv++);

 10 }

Illustrate how to use the argv values to set integers, they can just as easily be assigned as character string pointers i.e.

char * by not using the atoi() function.

The Code Template and HELP buttons in the Admin toolbar are discussed in the following two paragraphs.

The Code Template button creates a simple program template much like the Arduino File/New button. The template

includes main, setup, and loop functions as shown below:

void setup();

void loop();

int main(int argc,char ** argv)

{

 setup();

 //for (;;) loop();

 // Uncomment line above to run your loop() function forever.

 // When running loop forever,

 // you'll get no response to web events

 // unless you include doLoop();

 // in your interpreted loop() function

 return 0;

}

void setup()

{

}

void loop()

{

 doLoop();

}

The program’s main function is set to return an int and uses argc and argv inputs which are gathered from the Program

Arguments textbox when the program is run. Even though argc and argv are declared, you don’t need to make any use

of them. The main function calls setup and will thereafter repeatedly call loop() if the for (;;) loop(); line is

uncommented. The template includes doLoop() in the loop function to allow the browser buttons to be active when the

sketch is running. Note however, that if doLoop() is called, that program outputs to the console will stop since the

browser session is closed when doLoop() is called. doLoop() exists to provide a means to stop programs that have

continuous Loop operations since it enables the Screen Capture and ResetESP32 buttons to be used. There are two

means of getting program outputs when running a loop() function continuously in a program. First, you can use the

sprint(char *) function to send output to the Serial Monitor – I like to use Termite by CompuPhase since it supplies and

RTS control that will also reset the ESP32.

Secondly, you can use a TFT, OLED, or ePaper display with the ESP32 and send output to those devices. Particularly

useful is void setConsoleOn(int); 0 turns console output off for printf function, 1 turns console output on. So

setConsoleOn(1); will send your program’s printf output to a console on the TFT. As an example, if you add

setConsoleOn(1); near the top of the prime.c program, Save the file, and click Run, the TFT output will appear as shown

below.

A better example of using a continuously running Loop() function including doLoop() is contained in the simpleBME.c

program. This program uses a BME280 sensor that measures pressure, temperature, and relative humidity and

communicates over an I2C serial interface. The interpreter includes the following functions for the BME280 sensor.

void BME_init(); must be called before using the BME280 sensor

float BME_readPressure(); returns barametric pressure from BME280 sensor

float BME_readRH(); returns relative humidity from BME280 sensor

float BME_readTemp(); returns temp from BME280 sensor

The simpleBME.c program uses all four functions. Its primary BME 280 calls and output functions are

 float temp=BME_readTemp();
 float pressure=BME_readPressure();
 float rh=BME_readRH();
 float tc=(temp-32)*5/9;
 //DP = 243.04*(LN(RH/100)+(17.625*T)/ (243.04 + T)) / (17.625 - LN(RH / 100) - (17.625*T) / (243.04 + T))
 float dp = (243.04*(log(rh/100)+((17.625*tc) / (243.04 + tc))) / (17.625 - log(rh / 100) - ((17.625*tc) / (243.04 + tc))))*9.0 / 5 + 32;
 printf("\n");
 printf(" Temp is %0.1f F\n",temp);
 printf(" Pressure is %0.2f in HG\n",pressure);
 printf(" RH is %0.1f %%\n",rh);
 printf("Dew Point is %0.0f F\n",dp);

These lines read the temp, pressure, and relative humidity into float values temp, pressure, and rh and calculate the

Dew Point using natural log functions as shown in the comment //DP=… Then the program format prints these values

with appropriate labels and units. The program’s last lines in the loop() function are shown below.

delay(5); // this delays 5 msec and doLoop() calls the ESP32Program loop() which adds another 5 msec of delay

 // for a total of 10 msec delay per loop cycle thus lCount%3000==0 is true every 30 seconds

This approach to running loop with a fairly short delay, assures that the ESP32Program gets to process web events

frequently (here, typically 100 times per second) and results in a good user response. The screen captures shown below

were taken using the Screen Capture button while the program was continuously running on the ESP32.

The /oledDemo.c program on the ESP32 provides a simple example of using a 128x64 pixel OLED I2C attached display

with the interpreter. To use the o* functions, OLED must be defined when compiling the ESP32Program sketch. The

program’s setup function runs the following lines

 int i;char buf[33];

 oclear();

 odrawString(0,0,"Display is 6x21");

 for (i=1;i<6;i++) {

 sprintf((char *)&buf,"Display line %d is drawn here",i);

 odrawString(0,10*i,(char *)&buf);

 }

 odisplay();

 delay(5000);

 oclear();

 odrawString(0,25,"Hello World");

 odisplay();delay(3000);oconsoleInit();

 for (i=0;i<21;i++)

 {

 sprintf((char *)&buf,"Line %d is put on the display here",i);

 oconsolePrintln((char *)&buf);delay(250);

 }

The help lines for these functions are

void oclear(void); clears OLED display, you still have to call odisplay to show

changes

void oconsoleInit(); must be called to start OLED console display

void oconsolePrintln(char *); draw char string at current cursor x,y

void odisplay(void); update display

void odrawLine(int,int,int,int); x1,y1,x2,y2

void odrawRect(int,int,int,int); x,y,width,height

void odrawString(int,int,char *); x,y in pixels,char string

void ofillRect(int,int,int,int); x,y,width,height

void oprint(char *); display in OLED at current cursor position

void oprintln(char *); display in OLED at current cursor position with [CR]

void osetCursor(int,int); x,y

void osetPixel(int,int); x,y

When using the OLED, be sure to call odisplay(); each time drawing operations are completed or your display changes

will not be shown.

Similar to the OLED display, there is support for a 1.54 inch 200x200 ePaper display that is particularly useful on sensor

projects since it provides a low power solution that runs well on batteries and can take advantage of the EPS32’s deep

sleep modes and still display its information during deep sleep. A fairly complete and useful example ePaper program is

/ePaperDemo.c. This program provides an example temperature, relative humidity, barometric pressure, and dew point

bar graph display. The ePAPER global must be defined when compiling the ESP32Program to use an EPaper display. The

available functions are shown below.

void ePaper_drawLine(int,int,int,int,int) x1,y1,x2,y2,color
void ePaper_drawRect(int,int,int,int,int) x,y,width,height,color -- 0 is black 0xffff is white
void ePaper_fillRect(int,int,int,int,int) x,y,width,height,color
void ePaper_init() initialize ePaper display
void ePaper_powerDown(); put the ePaper display in powerDown mode
void ePaper_println(char *);" print char string

void ePaper_setCursor(int,int); x,y
void ePaper_setTextColor(int); color

Color values are 0 for black and 0xffff for white.

An Important Note

When testing the Interpreter I introduced two files with recursion. A simple implementation of quicksort, a case

insensitive quicksort is used to sort the File Manager file list within the Interpreter, so I thought that it would also

make a good program example. I also included a sums.c program that uses recursion to calculate the sum of

numbers from a given n to 1. I found that, too my surprise, they both caused the Interpreter to crash. Oddly, they

run fine on a Windows or Linux implementation of picoc. After some meaningful time with Google and some head

scratching, I discovered that the ESP32 implementation for the Arduino IDE uses a very small stack allocation and

that this was causing the crash. So to run these recursive programs successfully, you'll need to edit the code in your

..\ArduinoData\packages\esp32\hardware\esp32\1.0.2\cores\esp32\main.cpp file and make the change highlighted

in bold below.

Extending/Enhancing the Interpreter

When viewed in the Arduino IDE the ESP32Proram appears to have a bewildering number of files and functions. Most

modifications to ESP32Program will be made by changing code in the top level ESP32Program tab or with changes in

clibrary. You can change the web interface and even translate the web interface elements all in ESP32Program. It goes

without saying, that you need to be comfortable with the WebServer functions provided by the WebServer library and

with C/C++ programming in general before attempting to successfully change parts of either the ESP32Program or

clibrary. Always make a backup copy of these files before making changes so you have a safe fallback if things go horribly

wrong after your changes.

The book Building Blocks for IOT with your PC and WiFi Peripherals available soon as a Kindle book goes into more detail

about the picoc C Language Interpreter and many other Arduino IDE examples using the ESP32 or an ESP8266.

The clibrary tab is where you would make changes to add functions and peripherals to the Interpreter. These functions

are basically marshalling function arguments provided by the interpreter and then using them to call the underlying C or

C++ functions that your project requires. The OLED functions are a good examples of adding marshalling and calling

functions. As an example, search for odrawRect in the clibrary tab. There will be three occurrences, we will first discuss

the one nearest the top of the file. It defines a function which receives parameters from the Parser. What is most used in

the marchalling of parameters for calls to native functions is the struct Value** Param. Param has an array of

parameters of length NumArgs. The interpreter makes sure that function calls to marshalling calls in clibrary have the

right number of arguments and types.

 void odrawRect(struct ParseState *Parser, struct Value *ReturnValue, struct

Value **Param, int NumArgs)

 {

 int x=Param[0]->Val->Integer;

 int y=Param[1]->Val->Integer;

 int w=Param[2]->Val->Integer;

 int h=Param[3]->Val->Integer;

 display.drawRect(x,y,w,h);

 }

The assignment to int values of Param[x]->Val->Integer are collecting the values of x,y,w, and h to pass to a native object

external to the interpreter. In this case it is the display object which is made know to clibrary by lines 270to 271 which

read

#include "SSD1306Wire.h"

extern SSD1306Wire display;

This gives clibrary all it needs to interface to the display object and make calls to functions like display.drawRect(…) If

you check, you will see that the display object is created in the ESP32Program tab.

With these underpinnings in place, we can successfully call display.drawRect(…) with parameters passed from the

Interpreter code.

Now we need to let the interpreter know how to activate our odrawRect function. Searching again for odrawRect brings

you to the line

{ odrawRect, "void odrawRect(int,int,int,int);" }, // x,y,width,height

This is a declaration of a struct LibraryFunction that provides first the name of the function to call when the function

prototype is encountered, in this case odrawRect. The part in quotes is a template for the function which says that the

interpreter should recognize a void function named odrawRect with 4 int arguments. This approach allows you to have

functions know to the Interpreter with names that are the same as native names in the Arduino IDE. Withthis

information, the interpreter has enough information to parse calls to odrawRect in our interpreted programs and allows

it to enforce argument counts and types before calling odrawRect. The struct LibraryFunction entries are all in this

format and are enclosed with { },

Be very careful when making changes in the CLibrary[] definitions, particularly since the function template – the part

in quotes – is not evaluated until picoc is starting and any syntax errors within the quotes will cause a run time error

and an immediate crash of the interpreter without giving any clue as to what or where the error is.

In any event, if you comprehend what the preceding material expressed, you can add code to make new sensor/device

or algorithm functions available in the interpreter.

Happy coding!

