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Abstract

Essays in Econometrics

by

Alexandre Poirier

Doctor of Philosophy in Economics

University of California, Berkeley

Professor James L. Powell, Chair

This dissertation consists of two chapters, both contributing to the field of econometrics.
The contributions are mostly in the areas of estimation theory, as both chapters develop new
estimators and study their properties. They are also both developed for semi-parametric
models: models containing both a finite dimensional parameter of interest, as well as infinite
dimensional nuisance parameters. In both chapters, we show the estimators’ consistency,
asymptotic normality and characterize their asymptotic variance. The second chapter is
co-authored with professors Jinyong Hahn, Bryan S. Graham and James L. Powell.

In the first chapter, we focus on estimation in a cross-sectional model with indepen-
dence restrictions, because unconditional or conditional independence restrictions are used
in many econometric models to identify their parameters. However, there are few results
about efficient estimation procedures for finite-dimensional parameters under these indepen-
dence restrictions. In this chapter, we compute the efficiency bound for finite-dimensional
parameters under independence restrictions, and propose an estimator that is consistent,
asymptotically normal and achieves the efficiency bound. The estimator is based on a grow-
ing number of zero-covariance conditions that are asymptotically equivalent to the inde-
pendence restriction. The results are illustrated with four examples: a linear instrumental
variables regression model, a semilinear regression model, a semiparametric discrete response
model and an instrumental variables regression model with an unknown link function. A
Monte-Carlo study is performed to investigate the estimator’s small sample properties and
give some guidance on when substantial efficiency gains can be made by using the proposed
efficient estimator.

In the second chapter, we focus on estimation in a panel data model with correlated
random effects and focus on the identification and estimation of various functionals of the
random coefficients distributions. In particular, we design estimators for the conditional
and unconditional quantiles of the random coefficients distribution. This model allows for
irregularly identified panel data models, as in Graham and Powell (2012), where quantiles
of the effect are identified by using two subpopulations of “movers” and “stayers”, i.e. those
for whom the covariates change by a large amount from one period to another, and those
for whom covariates remain (nearly) unchanged. We also consider an alternative asymptotic
framework where the fraction of stayers in the population is shrinking with the sample size.
The purpose of this framework is to approximate a continuous distribution of covariates
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where there is an infinitesimal fraction of exact stayers. We also derive the asymptotic
variance of the coefficient’s distribution in this framework, and we conjecture the form of
the asymptotic variance under a continuous distribution of covariates.

The main goal of this dissertation is to expand the choice set of estimators available to
applied researchers. In chapter one, the proposed estimator attains the efficiency bound and
might allow researchers to gain more precision in estimation, by getting smaller standard
errors. In the second chapter, the new estimator allows researchers to estimate quantile
effects in a just-identified panel data model, a contribution to the literature.
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Chapter 1

Efficient Estimation in Models with Independence

Restrictions

1.1 Introduction

Many econometric models are identified using zero-covariance or mean-independence restric-
tions between an unobserved error term and a subset of the explanatory variables. For
example, it is common to assume in linear regression models that the error is either uncor-
related with the exogenous variables, or uncorrelated with all functions of the exogenous
variables. These restrictions identify the parameters of interest, and efficiency bounds for
these type of models have been widely studied, for example in the seminal work of Chamber-
lain (1987). In other models though, statistical independence of the unobserved error and a
subset of the explanatory variables is instead assumed. In most cases, statistical indepen-
dence is a stronger restriction than mean-independence, as it implies mean-independence of
all measurable functions of the unobserved error with respect to the subset of explanatory
variables. Independence assumptions are common in recent strands of the literature includ-
ing in non-linear and non-separable models to allow for heterogenous effects, in the potential
outcomes framework and in non-linear structural models.

In this chapter, we compute the efficiency bound for parameters identified by different
types of independence restrictions. The efficiency bound for a parameter θ is the small-
est possible asymptotic variance for regular asymptotically linear estimators.1 We use the
projection method of Bickel et al. (1993) and Newey (1990c) to compute the bounds. This
chapter also derives an estimator that is consistent, asymptotically normal and attains the
efficiency bound. We will also highlight the size of the efficiency gains through a Monte
Carlo exercise where we evaluate the performance of our estimator.

While imposing mean-independence restrictions (i.e. conditional mean restrictions) is
common practice in economics, the stronger independence assumption is useful to consider for
two reasons. The first is that some models require statistical independence for identification
purposes, as is sometimes the case in non-linear semiparametric and nonparametric models.
The second reason is that even if mean-independence restrictions are sufficient to identify

1See Bickel et al. (1993) for the formal definition.
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the parameter of interest, imposing independence can be justified by economic conditions.
The additional information included in the independence restriction can potentially be used
to derive estimators with smaller asymptotic variances. In either case, using an efficient
estimator will ensure that the estimator’s large-sample properties cannot be improved on.

We perform efficiency bound calculations for general classes of model where a residual
function (Y −Wθ for example) is independent (or conditionally independent) of an exogenous
variables (X). We also allow for the presence of an unknown function in the residual function,
and compute the semiparametric efficiency bound for the finite dimensional parameter in that
case. The estimator proposed uses a framework similar to that of efficient GMM with two
differences. The first is that we use covariance restrictions rather than moment restrictions,
which leads to a different optimal weighting matrix. The estimation procedure is based on
an increasing number of zero-covariance conditions between some functions of the error and
the exogenous variables. Second, the number of restrictions is growing with the sample size
and we derive maximal rates at which that number grows to infinity. We will show that by
letting the functions considered be in specific classes, independence will be asymptotically
equivalent to the zero-covariance conditions, as their number increases. We will further
characterize results when the class of function chosen are complex exponential functions, by
using facts about characteristic functions.

1.1.1 Related Literature

Efficiency bound calculations for mean-independence restrictions were performed in Cham-
berlain (1987) and Bickel et al. (1993), and efficient estimators were developed in Newey
(1990b) and Newey (1993). For models with the stronger unconditional independence re-
strictions, early results can be found in MaCurdy (1982), Newey (1989) and Newey (1990a).
MaCurdy (1982) shows that using zero-covariance restrictions between higher moments yields
asymptotic efficiency improvements. Both Newey (1989) and Newey (1990a) propose an esti-
mator that minimizes a V-statistic based on an approximation to the efficient score. Newey
(1989) constructs a locally efficient estimator, meaning that efficiency is achieved if one
correctly postulates a parametric family for the unobserved error’s distribution, while the
estimator in Newey (1990a) is globally efficient but requires additional assumptions since it
nonparametrically estimates the distribution of the error in a first-stage estimate. Hansen
et al. (2010) consider a linear instrumental variables system with the instruments inde-
pendent from the error term and propose a locally efficient estimator. By contrast, the
estimator we propose is globally efficient, and is obtained by minimizing a GMM objective
function with an optimal weighting matrix. Manski (1983) also proposed the “closest empir-
ical distribution” approach, and Brown and Wegkamp (2002) derived asymptotic properties
of estimators based on this approach. Though not considered in this chapter, empirical like-
lihood estimators, such as those proposed in Donald et al. (2003) and Donald et al. (2008) for
mean-independence restrictions, can also attain efficiency bounds and often exhibit better
small-sample properties than the corresponding two-step GMM estimator.

An alternative approach for deriving an efficient estimator was proposed in Carrasco and
Florens (2000). Their estimator is based on the estimation of a method of moments estimator
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with an uncountable number of moment restrictions. This CGMM (Continuum of GMM)
estimator will be efficient when the optimal weighting “operator” is used to optimally reweigh
the continuum of moment conditions. This objective function is computationally challenging
to evaluate. More generally, this problem suffers from the ill-posed inverse problem, and a
Tikhonov regularization is suggested. By comparison, the estimator we propose uses a finite
but growing number of zero-covariance conditions such that asymptotically the continuum
of covariance restrictions are used.

For models defined by conditional independence restrictions, the literature has mostly
focused on testing rather than estimation. Su and White (2008) propose a nonparametric
test of conditional independence which uses the Hellinger distance between two conditional
densities, and Linton and Gozalo (1996) propose a test based on joint probabilities on half-
spaces. It is interesting to note that single-index restrictions are equivalent to a conditional
independence restriction, as in Klein and Spady (1993) or Ichimura (1993). Cosslett (1987)
has computed the efficiency bound for the semiparametric binary choice model with X⊥ε,
and Klein and Spady (1993) have derived an efficient estimator under a single index restric-
tion in the same binary choice model by proposing a semiparametric maximum likelihood
estimator. Lee (1995) derived an efficient estimator for the multiple response model under
distributional single-index restrictions, also a conditional independence restriction. These
additional restrictions are useful for estimating transformation models as in Han (1987),
which include ordered choice models and semiparametric censored regression models (e.g.
Powell (1984)).

Finally, Ai and Chen (2003) made a significant contribution by deriving a consistent and
efficient estimator for models that satisfy a mean-independence restriction with an unknown
finite dimensional parameter (θ0) and an unknown infinite dimensional nuisance function
(F0(·)):

E[ρ(Y,W, θ0, F0(·))|X] = 0.

The efficiency bound for θ0 under ρ(Y,W, θ0, F0(·))⊥X has not been studied so far. Ko-
munjer and Santos (2010) examine a simple semiparametric BLP model where the finite-
dimensional parameter of interest is identified through an independence restriction. Using a
Cramer-Von-Mises objective function, they derive a consistent and asymptotically normal es-
timator. Santos (2011) suggests an estimator in more general semiparametric non-separable
transformation models with independence restrictions. He does not establish efficiency of his
estimator and instead shows that the class of transformation models he investigates is not
regular since his model is not differentiable in quadratic mean at the true parameter value.

1.1.2 Model

The different econometric models with independence restrictions will be categorized below.
We first consider a general model with a conditional independence restriction:
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ρ(Y,W, θ0) = ε with ε⊥X|Z (1.1)

where ρ(·) is a known residual function, and θ is a finite dimensional parameter with θ ∈ Θ ⊂
Rdθ and dθ = dim(θ). Also, W ∈ W ⊂ RdW , X ∈ X ⊂ RdX , Z ∈ Z ⊂ RdZ , Y ∈ Y ⊂ RdY

and ε ∈ E ⊂ Rdε . The joint distribution of (Y,W, ε,X, Z) is unknown and is a member of
the class of distributions which satisfy (1.1). This is a semiparametric model since that class
of distributions is infinite dimensional and the parameter of interest θ0 is finite dimensional.
The conditional independence restriction can be expressed as a restriction on the conditional
CDF of X and ε given Z:

P (ρ(Y,W, θ0) ≤ e,X ≤ x|Z = z) = P (ρ(Y,W, θ0) ≤ e|Z = z)P (X ≤ x|Z = z)

for all e ∈ E , x ∈ X and z ∈ Z.2 Note that model (1.1) generalizes unconditional indepen-
dence restrictions, since when Z is a constant, the conditional independence restriction is
also an unconditional independence restriction:3

ρ(Y,W, θ0) = ε with ε⊥X. (1.2)

Here are some examples included in model (1.1):

Example 1.1.1 (Linear Regression) Let W = X, and Y = Xθ0 + ε with ε⊥X. This is a
linear regression model with independent errors, studied in Bickel et al. (1993). The residual
function is ρ(Y,X, θ) = Y −Xθ.

Example 1.1.2 (Linear Instrumental Variables Regression) Let Y = Wθ0 + ε and
ε⊥X. This is a linear IV model with independent errors. This is a stronger restriction than
E[ε|X] = E[ε] or Cov (ε,X) = 0, which are typically assumed in IV models. The residual
function is ρ(Y,W, θ) = Y −Wθ.

Example 1.1.3 (Semilinear Regression) Let Y = Wθ0 +G0(Z,U) with U⊥(W,Z),
G0(·, ·) an unknown function, and U unobservable. This is a generalization of Robinson
(1988) semilinear regression model which allows the marginal effect of Z on Y to vary across
observationally equivalent units. Let ρ(Y,W, θ) = Y −Wθ and let ε = G0(Z,U). We will
show later on that this model can be represented by ρ(Y,W, θ)⊥W |Z, thus fitting model (1.1).

Example 1.1.4 (Potential Outcomes) In the potential outcomes literature, it is com-
monly assumed that (Y0, Y1)⊥D|X where (Y0, Y1) are the outcomes when the unit is un-
treated and treated, respectively, D is the treatment dummy and X are covariates. Let
Y = DY1 + (1 − D)Y0 be the observed outcome. Let Y = m(D,X, ε, θ0), and let m(·) be
invertible in ε, and let ρ(Y,D,X, θ0) be its inverse. We can show that this model is equiva-
lent to ρ(Y,D,X, θ)⊥D|X.

2For alternative characterizations of conditional independence, see Dawid (1979).
3Conditioning on a constant being equal to itself is exactly equivalent to not conditioning.

4



Alternatively, other economic models can be represented with the following conditional
independence restriction:

Y⊥X|V (X, θ0). (1.3)

with V (·) an index function mapping to RdV . We will often use V (X, θ0) = X ′θ0 and
therefore dV = 1. This model is similar to (1.1), but instead the parameter of interest θ0

appears in the conditioning variable. This model is used in many examples in discrete choice
analysis and in non-invertible models, for example:

Example 1.1.5 (Semiparametric Binary Response) Let Y = 1(ε ≤ X1 + X2θ0), and
let this single-index restriction hold: E[Y |X] = E[Y |X ′θ0] where X ′θ0 = X1 + X2θ0.4 We
can show that this single index restriction is equivalent to Y⊥X|X ′θ0.

Example 1.1.6 (Censored Regression) Let Y = max{X ′θ0 + ε, 0}, and let ε⊥X|X ′θ0.
Then, this restriction implies that Y⊥X|X ′θ0.

We also consider a generalization of model (1.2) where the residual function includes an
unknown function F0(·) (i.e. a nuisance function):

ρ(Y,W, θ0, F0(·)) = ε with ε⊥X. (1.4)

Here is an example of a model which satisfies (1.4):

Example 1.1.7 (Transformation IV) Let Y = Λ0(Wθ0 + ε) and ε⊥X, an instrument.
This is a transformation IV model, and we assume that Λ0(·) is an unknown and strictly
increasing function. Let F0(·) = Λ−1

0 (·). We can then let ρ(Y,W, θ0, F0(·)) = F0(Y )−Wθ0,
and therefore this is an example which satisfies restriction (1.4).

Example 1.1.8 (Semilinear Regression 2) Let Y = Wθ0 + g0(Z) + ε and ε⊥(W,Z).
This is Robinson (1988)’s model with independent errors. We can then let ρ(Y,W, θ0, F0(·)) =
Y −Wθ0−F0(Z), X = (W,Z) and therefore this is also an example which satisfies restriction
(1.4).

1.1.3 Estimation Technique

For model (1.2), the efficient estimator we propose relies on zero-covariance restrictions be-
tween the functions eisρ(Y,W,θ0) and eitX for any values of s and t. We show that the GMM-type
estimator of an increasing number of these covariance restrictions with an optimal weight-
ing matrix attains the efficiency bound. This estimator makes full use of the independence
restriction through the complex exponential approximating functions, and efficiency is at-
tained by using a GMM-type setup with an optimal weighting matrix. To get a concrete
idea of how the estimator is derived, we will present the population objective function. Let

4For more on single-index restrictions see Ichimura (1993), Powell et al. (1989) and Bester and Hansen
(2009).
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g(s, t, θ) = Cov
(
eisρ(Y,W,θ), eitX

)
, and let Ω be a linear operator on functions from R2 to R2

with kernel k(s, t, s′, t′) = Cov
(
eisε, eis

′ε
)

Cov
(
eitX , eit

′X
)
. The population criterion function

is equal to:

R(θ) = ‖g(·, ·, θ)‖2
Ω (1.5)

where ‖g‖2
Ω = (Ω−1/2g,Ω−1/2g) denotes the norm of g in the reproducing kernel Hilbert space

(RHKS) defined by Ω.5 We approximate the population objective function by a sieve. Let
ˆ̄gKL(θ) be a KL by 1 vector of sample covariances between eisρ(Y,W,θ) and eitX evaluated at

K×L different values of (s, t). We also let ̂̄ΩKL

be a KL×KL dimensional matrix which is

a finite-dimensional approximation of the operator Ω. We will show that ̂̄ΩKL

is an optimal
weighting matrix for the sample covariances ˆ̄g(θ), and that the estimator:

θ̂ = argminθ∈ΘR̂
KL(θ)

R̂KL(θ) = ˆ̄g(θ)KL′
(̂̄ΩKL

)−1

ˆ̄g(θ)KL = ‖ˆ̄g‖2̂̄ΩKL

will attain the efficiency bound as K and L → ∞, and other regularity conditions are
satisfied.

This chapter is organized as follows. Section 2 derives the efficiency bound for the different
restrictions considered. Sections 3 introduces efficient estimators for parameters in models
represented by (1.1). Section 4 conjectures an efficient estimator for θ0 in models with
independence restrictions and unknown functions. A Monte Carlo study is presented in
section 5, and section 6 concludes.

1.2 Computation of Efficiency Bounds

A practical method for computing efficiency bounds in regular semiparametric models is the
projection method, pioneered in Bickel et al. (1993) and surveyed in Newey (1990c) and
Tsiatis (2006). Using this method entails devising a generic parametric submodel of the
semiparametric model, and computing the Cramer-Rao lower bound for the estimation of θ0

given this submodel. The efficiency bound of θ0 in the parametric submodel cannot be larger
than the efficiency bound in the larger semiparametric model, since the submodel imposes
restrictions in addition to those in the semiparametric model. The efficiency bound will be
equal to the supremum of the Cramer-Rao bounds for all submodels, if the supremum exists.
We project the score function of the semiparametric model on the nuisance tangent space,
yielding the efficient score, which is sufficient for computing the efficient influence function
and the semiparametric efficiency bound of the model.

5See Parzen (1959) for an introduction to reproducing kernel Hilbert spaces.
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1.2.1 Unconditional Independence

To compute the efficiency bound of θ0 in model (1.2), the following assumptions will suffice:

Assumption 1.2.1 (UI)

(a) (Parameter Space) dθ = 1 and Θ is compact;

(b) (Identification) ρ(Y,W, θ)⊥X ⇒ θ = θ0;

(c) (Invertibility) dY = dε = 1 and ρ(·,W, θ) is invertible for all θ ∈ Θ a.s. - W ;

(d) (Finite Fisher Information) ε has a continuously differentiable density function fε(·)

and 0 < E

[
f ′ε(ε)

2

fε(ε)2

]
<∞;

(e) (Differentiability) ρ(Y,W, θ) is differentiable with respect to θ a.s. - (Y,W );

(f) (Finite Second Moments of Derivative) E[‖ρθ(Y,W, θ0)‖2] <∞.

In assumption UI(a) we let the parameter space be one-dimensional. This is done to
simplify calculations, and is without great loss of generality. Assumption UI(b) is a high
level assumption, and identification of θ0 will be taken for granted in this chapter. Typically,
since θ0 is a finite dimensional parameter, it will be overidentified because independence
restrictions are equivalent to an infinite number of covariance restrictions. Assumption UI(c)
further restricts our attention to models where there exists a bijection between scalars ε and
Y . Most of the results can be generalized to dY = dε > 1 straightforwardly, and this
assumption is done to ease calculations. Many models satisfy this restriction, such as most
linear, non-linear and quantile regression models. This restriction does rule out many discrete
Y models, such as binary response Y = 1(ε ≤ X ′θ0), but some of these models will satisfy
an independence restriction as in (1.3). Assumption UI(d) is substantially different from
the usual E [ε2] <∞ assumed for models with mean-independence restrictions or covariance
restrictions, since for many distributions with infinite variances (e.g. Cauchy, Student with

2 degrees of freedom), the location score
f ′ε(ε)

fε(ε)
is bounded, thus its Fisher information exists.

Therefore, independence restrictions can accommodate more models with thick-tailed error
distributions than those with moment-based restrictions. Finally, assumptions UI(e)-(f) are
regularity conditions necessary to insure the existence of the semiparametric efficiency bound
and will be discussed further in the context of an example.

Lemma 1.2.2 Under assumption (1.2.1) the efficient score of the model identified
by ρ(Y,W, θ)⊥X is:
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Seff(X, ε, θ0) = E [J(Y,W, θ0)|X, ε]− E [J(Y,W, θ0)|ε]

+
∂

∂ε
(E[ρθ(Y,W, θ0)|X, ε]− E[ρθ(Y,W, θ0)|ε])

+
f ′ε(ε)

fε(ε)
(E[ρθ(Y,W, θ0)|X, ε]− E[ρθ(Y,W, θ0)|ε])

where J(Y,W, θ0) =
∂

∂θ
log

∣∣∣∣ ∂∂y′ρ(Y,W, θ)

∣∣∣∣
θ=θ0

is the Jacobian. The efficient influence func-

tion is:

ψeff(X, ε, θ0) =
(
V eff(θ0)

)−1
Seff(X, ε, θ0)

where V eff(θ0) is the semiparametric efficiency bound:

V eff(θ0)−1 = Var [E [J(Y,W, θ0)|X, ε]− E [J(Y,W, θ0)|ε]]

+2Cov

(
E [J(Y,W, θ0)|X, ε]− E [J(Y,W, θ0)|ε] , ∂

∂ε
h(X, ε) +

f ′ε(ε)

fε(ε)
h(X, ε)

)
+Var

[
∂

∂ε
h(X, ε) +

f ′ε(ε)

fε(ε)
h(X, ε)

]

with h(X, ε) = E[ρθ(Y,W, θ0)|X, ε]− E[ρθ(Y,W, θ0)|ε].

Discussion of Lemma and Linear Regression Example

To gain an insight on the efficient score and variance in this model, it is useful to compare
them to their counterparts in the mean-independence model. Independence of ε and X
will still hold, but this information will not be used in the computation of the efficient
score function. For simplicity, we will assume that the Jacobian term is constant, and
therefore will not appear in the efficiency calculations. In the mean-independence case
E[ρ(Y,W, θ0)|X] = E[ρ(Y,W, θ0)], the efficient score and variance bound are:
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Seff
1 (X, ε, θ0) = (E[ρθ(Y,W, θ0)|X]− E[ρθ(Y,W, θ0)])

ε− E[ε]

Var [ε]

V eff
1 (θ0) =

Var [ε]

Var [E[ρθ(Y,W, θ0)|X]]
.

We can use the Cauchy-Schwarz inequality to show that V eff
1 (θ0) ≥ V eff(θ0). These

results fit in the optimal instrument framework, and the optimal instrument here is equal to
E[ρθ(Y,W, θ0)|X]−E[ρθ(Y,W, θ0)]. The main difference is the presence of the location score
f ′ε(ε)

fε(ε)
and the conditioning of ρθ(Y,W, θ0) on both X and ε, rather than only on X. We can

see that when E[ρθ(Y,W, θ0)|X, ε] − E[ρθ(Y,W, θ0)|ε] does not depend on ε, and when the

location score is equal to
ε− E[ε]

Var [ε]
the two efficient scores will be equal.

To illustrate the efficiency gains, consider the endogenous linear regression model in ex-
ample (1.1.2): ρ(Y,W, θ0) = Y − Wθ0 = ε with ε independent from X, the instrument.
Assumption UI(e) is trivially satisfied, and assumption UI(f) is satisfied if we assume that
W has a finite variance. The existence of moments of X is not required for the computation

of the efficiency bound. The efficient score under independence is Seff(X, ε, θ0) =
∂

∂ε
h(X, ε)+

f ′ε(ε)

fε(ε)
h(X, ε) where h(X, ε) = −E[W |X, ε] + E[W |ε]. When (W,X, ε) are trivariate normal,

we have that E[W |X, ε] is a linear function of X and ε, so that E[W |X, ε] = aX + bε for

some a and b. Therefore, h(X, ε) = −a(X −E[X]), and the term
∂

∂ε
h(X, ε) will be equal to

zero. Also, when the distribution of ε is normal with mean µ and variance σ2, the location

score
f ′ε(ε)

fε(ε)
is equal to

µ− ε
σ2

, and the inverse of its variance is σ2. This implies that indepen-

dence is equivalent to mean-independence when (Z,X, ε) are jointly normally distributed.
This equivalence is a natural consequence of the fact that jointly normal distributions are
uncorrelated if and only if they are independent.

From looking at the differences between these efficient scores, we expect efficiency gains
when: (1) the distribution of ε is not normal, and (2) when the conditional expectation
E[ρθ(Y,W, θ0)|X, ε] is nonlinear in X. In the exogenous linear regression model of example
(1.1.1) (ρ(Y,X, θ0) = Y −Xθ0⊥X) the only efficiency gains will come from the non-normality
of ε, and the ratio of the efficiency bounds is:

V eff
1 (θ0)

V eff(θ0)
= Var [ε] Var

[
f ′ε(ε)

fε(ε)

]
.

9



When this ratio is large, using the additional information in the independence restriction
will yield large efficiency gains compared to using only the mean-independence restriction.

To illustrate an alternative source of efficiency gains from using independence, consider
a pathological linear IV regression example. Let

Y = Wθ0 + ε,

and
W = X2ε+ η.

X is the instrument, and (X, ε, η) are jointly distributed along a trivariate normal distribution
with mean 0 and identity variance matrix. The two-stage least squares estimator will likely
have poor properties, since E[WX] = 0. In fact, we have that E[W |X] = 0, meaning that X
provides no useful information on the first moment of W . But it is clear that knowledge of X
should help in predicting W , since they are not independent. The efficiency bound for this
model under the mean-independence restriction E[ε|X] = E[ε] is infinite, therefore we cannot
use it to derive a

√
N -consistent estimator. In this model, it is useful to consider stronger

versions of the usual 2SLS assumption, specifically we instead work with the condition ε⊥X.
In this case, the efficiency bound of θ0 is equal to Var [ε2]

−1
Var [X2]

−1
, so identification of

θ0 is regular despite the fact that linear IV regression techniques cannot recover θ0.6 This
result can be connected to the literature on weak instruments, and shows that that using
covariance between non-linear functions of ε and Z as a basis for estimation relaxes the need
for Cov (W,X) 6= 0, as long as W and X are not independent. This example is somewhat
extreme, but we can see that if Cov (W,X) is small, but W and X depend non-linearly,
efficiency gains from using independence can be very large.

An important point is that throughout this discussion we have assumed that ε⊥X. Using
an estimator that assumes full independence when mean-independence holds, but indepen-
dence does not hold will likely lead to inconsistent estimates for θ0 and invalid standard
errors. For example, let

Y = Xθ0 + ε

and
ε = XU,

where U⊥X and E[U ] = 0. This is a linear regression model with E[εX] = E[X2]E[U ] = 0,
and multiplicative heteroskedasticity. Since E[ε2|X] = E[U2]X2, the variables ε and X are
not independent. θ0 is identified, since we have E[εX] = 0, but we do not have ε⊥X, and
therefore,

Y −Xθ⊥X

yields
X(U + θ0 − θ)⊥X,

and imposing θ = θ0 does not satisfy this relationship. In fact, unless U is a constant, no

6Since we assumed normality, higher moments of X and ε all exist.
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value of θ will satisfy this relationship, and therefore estimators based on this identifying
restriction will not be asymptotically consistent.

1.2.2 Conditional Independence

To compute the efficiency bound of θ0 in model (1.1), the following assumptions will suffice:

Assumption 1.2.3 (CI)

(a) (Parameter Space) dθ = 1 and Θ is compact;

(b) (Identification) ρ(Y,W, θ)⊥X|Z ⇒ θ = θ0;

(c) (Invertibility) dY = dε = 1 and ρ(·,W, θ) is invertible for all θ ∈ Θ a.s. - W ;

(d) (Finite Conditional Fisher Information) ε’s conditional density function fε|Z(·|·) is con-

tinuously differentiable in ε and 0 < E

[
f ′ε|Z(ε|Z)2

fε|Z(ε|Z)2

]
<∞;7

(e) (Differentiability) ρ(Y,W, θ) is differentiable with respect to θ a.s. - (Y,W );

(f) (Finite Second Moments of Derivative) E[‖ρθ(Y,W, θ0)‖2] <∞.

The assumptions required for lemma (1.2.4) are very similar to assumptions UI(a)-(f).

The main difference is in assumption CI(d), where the location score
f ′ε(ε)

fε(ε)
is replaced by

the conditional location score
f ′ε|Z(ε|Z)

fε|Z(ε|Z)
. This model nests the unconditional independence

model since we can let Z be a constant random variable, which will make all assumptions in
(1.2.3) equivalent to those in (1.2.1).

Lemma 1.2.4 Under assumptions (1.2.3) the efficient score of the model identified
by ρ(Y,W, θ)⊥X|Z is:

Seff(X, ε, Z, θ0) = E [J(Y,W, θ0)|X, ε, Z]− E [J(Y,W, θ0)|ε, Z]

+
∂

∂ε
(E[ρθ(Y,W, θ0)|X, ε, Z]− E[ρθ(Y,W, θ0)|ε, Z])

+
f ′ε|Z(ε|Z)

fε|Z(ε|Z)
(E[ρθ(Y,W, θ0)|X, ε, Z]− E[ρθ(Y,W, θ0)|ε, Z])

7f ′ε|Z(ε|Z) denotes the partial derivative of fε|Z(ε|Z) with respect to ε.
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where J(Y,W, θ0) =
∂

∂θ
log

∣∣∣∣ ∂∂y′ρ(Y,W, θ)

∣∣∣∣
θ=θ0

is the Jacobian. The efficient influence func-

tion is:

ψeff(X, ε, Z, θ0) =
(
V eff(θ0)

)−1
Seff(X, ε, Z, θ0)

where V eff(θ0) is the semiparametric efficiency bound:

V eff(θ0)−1 = Var [E [J(Y,W, θ0)|X, ε, Z]− E [J(Y,W, θ0)|ε, Z]]

+2cov

(
E [J(Y,W, θ0)|X, ε, Z]− E [J(Y,W, θ0)|ε, Z] ,

∂

∂ε
h(X, ε, Z)

+
f ′ε|Z(ε|Z)

fε|Z(ε|Z)
h(X, ε, Z)

)
+ Var

[
∂

∂ε
h(X, ε, Z) +

f ′ε|Z(ε|Z)

fε|Z(ε|Z)
h(X, ε, Z)

]

with h(X, ε, Z) = E[ρθ(Y,W, θ0)|X, ε, Z]− E[ρθ(Y,W, θ0)|ε, Z].

Discussion of Lemma and Semilinear Regression Example

Conditional independence is a stronger restriction than the following conditional mean-
independence restriction:

E[ρ(Y,W, θ0)|X,Z] = E[ρ(Y,W, θ0)|Z].

Assuming we have a model where the Jacobian term in the efficient score disappears (i.e.
E [J(Y,W, θ0)|X, ε, Z] − E [J(Y,W, θ0)|ε, Z] = 0), we can compute the efficient score under
the mean-independence restriction as in Chamberlain (1987), which is:

Seff
1 (X, ε, Z, θ0) = (E[ρθ(Y,W, θ0)|X,Z]− E[ρθ(Y,W, θ0)|Z])

ε− E[ε|Z]

E[Var [ε|Z]]

V eff
1 (θ0) =

E[Var [ε|Z]]2

E[Var [E[ρθ(Y,W, θ0)|X,Z]|Z] Var [ε|Z]]
.

If conditional mean-independence restrictions also identify θ0, we can compare the effi-
ciency bounds V eff(θ0) and V eff

1 (θ0). Comparing their efficient scores, we can see that the
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efficiency gains are larger when the data generating process has the following features: (1)

the conditional location score
f ′ε|Z(ε|Z)

fε|Z(ε|Z)
differs greatly from

ε− E[ε|Z]

E[Var [ε|Z]]
, that is, it is non-

normal; or (2), E[ρθ(Y,W, θ0)|X, ε, Z] depends non-linearly on X or Z. These conditions
are substantially similar to those in the unconditional independence case, and may offer
some guidance as to whether imposing conditional independence of the error will yield large
efficiency improvements.

In some cases, weakening the conditional independence assumption will result in a loss
of identification. Consider the semi-linear regression model Y = Wθ0 + G0(Z,U) with
U⊥(W,Z), a generalization of Robinson (1988)’s regression model also proposed in Santos

(2011). This model allows for heterogeneous effects of Z on Y through
∂

∂Z
G0(Z,U) since

G0(·, ·) is unknown and potentially non-linear. This is a form of unobserved heterogeneity,
a topic of great importance for microeconomic data, for example in the treatment effects
literature.8 The restriction E[U |W,Z] = E[U |Z] cannot be used to identify θ0 unless we we
assume that G0(Z,U) = g0(Z) + U , as in Robinson (1988). Let ε = G0(Z,U), and consider
the following set of additional assumptions:

Assumption 1.2.5 (SL)

(a) (Strict Monotonicity) G0(z, ·) is invertible for every value z ∈ Z a.s.;

(b) (Conditional Independence) U⊥W |Z;

(c) (Unconditional Independence) U⊥(W,Z).

Lemma 1.2.6 Under assumptions (1.2.3)(c)-(f) and either assumptions (1.2.5) (a) and (b)
or assumptions (1.2.5) (a) and (c), θ0 is identified and its efficiency bound is:

V eff(θ0) = E

(f ′ε|Z(G0(Z,U)|Z)

fε|Z(G0(Z,U)|Z)

)2

(W − E[W |Z])2

−1

.

This lemma shows that this model’s finite-dimensional parameter θ0 is identified, and
also that the efficiency bound does not depend on whether we make the unconditional or
conditional independence assumption. Intuitively, the unconditional independence restric-
tion SL(c) implies the conditional independence restriction SL(b) and also that U⊥Z, but
both U and Z only appear inside an unrestricted and potentially non-linear function G0(·, ·).
Because of this, U can be normalized in a way that lets it be independent from Z without al-
tering the other model assumptions. This bound will differ from the one in Robinson (1988)

8See Chesher (2003), Evdokimov (2009) and Imbens and Newey (2009) for example.
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because he only uses mean-independence rather than independence. If it is indeed true that
G0(Z,U) = g0(Z) + U the efficiency bound becomes

V eff(θ0) = E

[(
f ′U(U)

fU(U)

)2
]−1

E [Var [W |Z]]−1 ,

which is the bound computed in Bhattacharya and Zhao (1997) for Robinson’s model with
U⊥(W,Z). They compute the bound and derive an estimator which attains it, thereby
making the existence of Var [U ] unnecessary for estimation, since a finite Fisher information
for U will suffice. Our model places fewer restrictions on the unknown function, but the
efficiency bounds are the same in this special case, therefore it is more general. Since G0(z, ·)
was assumed invertible, we can normalize the distribution of U to be Uniform[0, 1] and get
that G0(Z, τ) is quantile τ of the non-parametric component.

1.2.3 Conditional Independence with Parameter in the Condition-
ing Variable

Denote Vθ(X, θ0) =
∂

∂θ
V (X, θ)|θ=θ0 . To compute the efficiency bound of θ0 in model (1.3),

the following assumptions will suffice:

Assumption 1.2.7 (CI2)

(a) (Parameter Space) dθ = 1 and Θ is compact;

(b) (Identification) Y⊥X|V (X, θ)⇒ θ = θ0;

(c) (Smoothness) The conditional density of Y given V = v is continuously differentiable in
v;

(d) (Differentiability) V (X, θ) is differentiable with respect to θ a.s. - X;

(e) (Finite Second Moments of Derivative) E [‖Vθ(X, θ0)‖2] <∞.

Assumption CI2(a) and CI2(b) are similar to those assumed in previous efficiency bound
calculations and are standard. Assumption CI2(c) assumes that the conditional distribution
of Y given V (X, θ0) is continuously differentiable in the index function V . This assumption
combined with CI2(d) and the chain rule ensures that the conditional density of Y given
V (X, θ) is differentiable in θ, so that our model is smooth, a necessary condition for efficiency
calculations. Note that if Y has discrete support, this is an assumption on the smoothness
of conditional probabilities rather than conditional densities.
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Lemma 1.2.8 Under (1.2.7) the efficient score of the model identified by Y⊥X|V (X, θ0) is:

Seff(X, V, Y, θ0) = (Vθ(X, θ0)− E[Vθ(X, θ0)|V ])

∂

∂V
fY |V (Y |V )

fY |V (Y |V )
;

The efficient influence function is:

ψeff(X, V, Y, θ0) =
(
V eff(θ0)

)−1
Seff(X, V, Y, θ0)

where V eff(θ0), the semiparametric efficiency bound, is:

V eff(θ0) = E

Var [Vθ(X, θ0)|V ]

 ∂

∂V
fY |V (Y |V )

fY |V (Y |V )


2

−1

.

Discussion of Lemma and Binary Choice Example

To illustrate this result, consider the binary choice model in example (1.1.5) with Y = 1(ε ≤
X ′θ0) and ε⊥X|X ′θ0, which implies that Y⊥X|X ′θ0. Here, V (X, θ0) = X ′θ0, and one of
the elements of θ0 is normalized to unity. The smoothness assumption here is equivalent
to assuming that at ε continuously distributed, a frequent assumption in the identification
of discrete choice models. Assumption CI2(e) also requires a finite variance for the non-
normalized element of X. Using the formula above, the efficiency bound is:

V eff(θ0)−1 = E


(
∂

∂θ
P (Y = 1|X ′θ)|θ=θ0

)2

P (Y = 1|X ′θ0)P (Y = 0|X ′θ0)



as in Cosslett (1987) and Klein and Spady (1993). This efficiency bound is the same as
that for the restriction ε⊥X, a stronger assumption which implies Y⊥X|X ′θ0, as shown in
Klein and Spady (1993). Since Y is a binary random variable, the conditional independence
restriction is equivalent to a mean-independence or single index restriction, as in Ichimura
(1993):
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E[Y |X] = P (Y = 1|X) = P (Y = 1|X,X ′θ0) = P (Y = 1|X ′θ0).

Therefore, the efficiency bound for the conditional independence restriction is the same
as the efficiency bound for the single-index restriction when Y is binary, and we see that
conditional independence restrictions are a generalization of single-index restrictions. We
can also consider multiple choice models with K > 2 alternatives where Y is a K by 1 vector
of binary random variables such that Yk = 1 indicates that alternative k was selected. In
this case, a conditional independence restriction of the type Y⊥X|X ′θ0 where X is a K by r
matrix of regressors, and θ0 is a r by 1 vector of coefficients will be sufficient for identification
of θ0 up to scale. Again, this model is equivalent to the mean-independence/single-index
restriction:

E[Y|X] = E[Y|X ′θ0].

As shown by Thompson (1993), the efficiency bound for using the conditional indepen-
dence restriction and the stronger ε⊥X are different, as opposed to the binary response
model. See Lee (1995) and Ruud (2000) for further details. Other semiparametric discrete
choice models will be identified using conditional independence restrictions, but not under
mean-independence restrictions. An example of such a model is a semi-parametric ordered
choice model such as the following:

Y =



0 if X ′θ0 + ε < 0

1 if X ′θ0 + ε ∈ [0, µ1)

2 if X ′θ0 + ε ∈ [µ1, µ2)
...

J if X ′θ0 + ε > µJ−1

.

Since Y is not binary, mean-independence and conditional independence differ. It will
be possible to identify θ0 with the restriction Y⊥X|X ′θ0, which is equivalent to P (Y =
j|X) = P (Y = j|X ′θ0) for j ∈ {0, 1, . . . , J}. More generally, we can consider the generalized
regression model of Han (1987) which lets Y = D(F (X ′θ0, ε)), where F (·) is a known strictly
monotone function, and D(·) is a known weakly monotone function. This general model
includes linear regression, censored regression, duration models and discrete choice models
as special cases. Letting ε follow a distributional single-index restriction as in Lee (1995),
that is ε⊥X|X ′θ0, we can show that Y⊥X|X ′θ0, a conditional independence restriction on
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observable variables which can identify θ0 under mild additional conditions.

1.2.4 Independence with Nuisance Function

We now consider model (1.4), which includes an unknown function F (·) in the residual
function. We let ρF (Y,W, θ0, F0(·))[w] denote the directional derivative of ρ with respect to
F (·) in the w direction evaluated at F0(·). Let α = (θ, F (·)) and α0 = (θ0, F0(·)). To perform
efficiency bound calculations, we make the following assumptions:

Assumption 1.2.9 (UI2)

(a) (Parameter Space) dθ = 1 and Θ is compact and F0 ∈ F , a convex set of functions;

(b) (Identification) ρ(Y,W, θ, F (·))⊥X ⇒ (θ, F (·)) = (θ0, F0(·));

(c) (Invertibility) dY = dε = 1 and ρ(·,W, θ, F (·)) is invertible for all (θ, F (·)) ∈ Θ×F a.s.
- W ;

(d) (Finite Fisher Information) ε has a continuously differentiable density function fε(·)

and 0 < E

[
f ′ε(ε)

2

fε(ε)2

]
<∞;

(e) (Differentiability) ρ(Y,W, θ, F (·)) is differentiable with respect to θ a.s. - (Y,W ) and
directionally differentiable with respect to F (·) a.s. - (Y,W );

(f) (Finite Second Moments of Derivatives) E [‖ρθ(Y,W, θ0, F0(·))‖2] <∞ and
E [‖ρF (Y,W, θ0, F0(·))[w]‖2] <∞ for all w ∈ F .

The assumptions presented above are similar to the assumptions in (1.2.1), but include
restrictions about directional derivatives with respect to the non-parametric component. We
assume in UI2(e) that the directional derivative exists, and in UI2(f) that it has finite second
moment. These assumptions are equivalent to those in (1.2.1) when there is no unknown
function F0.

Lemma 1.2.10 Under (1.2.9) the efficient score of the model identified by
ρ(Y,W, θ, F (·))⊥X ⇒ (θ, F (·)) = (θ0, F0(·)) is:

Seff(X, ε, α0) = E[Sθ + SF [w∗] + J [w∗]|X, ε]− E[Sθ + SF [w∗] + J [w∗]|ε]

where

Sθ = Sθ(W, ε,X, α0) =

∂

∂ε
fε,W,X(ε,W,X)

fε,W,X(ε,W,X)
ρθ(Y,W, θ0, F0(·)),

J [w] =
∂

∂θ
log

∣∣∣∣ ∂∂y′ρ(Y,W, α)|α=α0

∣∣∣∣+ log

∣∣∣∣ ∂∂y′ρ(Y,W, α0)

∣∣∣∣ [w],
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SF [w] =

∂

∂ε
fε,W,X(ε,W,X)

fε,W,X(ε,W,X)
ρ(Y,W, θ0, F0(·))[w],

and w∗ ∈ argminw∈FE[(E[Sθ + SF [w] + J [w]|X, ε]−E[Sθ + SF [w] + J [w]|ε])2]. The efficient
influence function is:

ψeff(X, ε, α0) =
(
V eff(α0)

)−1
Seff(X, ε, α0)

where V eff(α0), the semiparametric efficiency bound, is:

V eff(α0) = E
[
(E[Sθ + SF [w∗] + J [w∗]|X, ε] + E[Sθ + SF [w∗] + J [w∗]|ε])2

]−1
.

Discussion of Lemma and transformation IV example

We can give an interpretation to some of the terms in the efficiency bound, for example Sθ
is the parametric score, SF [w] is the non-parametric score (or the score associated with the
unknown function), and J [w] is the jacobian term. The direction w∗ can be interpreted as
the “least-favorable direction”, since it is the direction in which the directional derivative of
the model minimizes the additional information, as can be seen from the definition of w∗ as
a minimizer. Note that w∗ always exists since the function it minimizes is convex.

To illustrate this result, consider example (1.1.7): Y = Λ0(Wθ0 + ε) with ε⊥X, where
both Λ0(·) and θ0 are unknown. Let Λ0(·) be a smooth and strictly increasing function
from R to (0, 1), and let F0(·) denote its inverse. We assume that F (·) ∈ F , where F is
the class of strictly increasing, and continuously differentiable functions from (0, 1) into R.
Since ρ(Y,W, α) = F (Y ) − Wθ, this model will satisfy assumptions (1.2.9) if we assume
that E[F (Y )2] for all F ∈ F , ε has finite fisher information and W has finite variance.
Mild additional regularity conditions can allow this model to be identified by the work of
Torgovitsky (2012).9

This non-parametric transformation IV model can be motivated by a simple BLP (Berry
et al. (1995)) model. To put the model in context, we let Y ∈ (0, 1) be the market share,
Wθ0 + ε be the random utility level, and X be an instrument. The function Λ0(·) is an
invertible but unknown market share function that maps random utilities into market share.
Many BLP models impose parametric assumptions on idiosyncratic utility shocks. They
assume the shocks follow a type 1 extreme value distribution, which allows Λ0(·) to be a
logistic CDF. Recent work on these models have relaxed parametric assumptions on Λ0(·),
and have looked at the semiparametric estimation of θ0. See Berry et al. (2012) for theoretical

9It is worth noting that F0(·) and θ0 are not jointly identified unless we impose additional scale and
location constraints on F0(·). We therefore assume that F (1/2) = 0 and F ′(1/2) = 1 for all f ∈ F without
loss of generality.
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results on market share inversion, and Komunjer and Santos (2010) for estimation results in
another simple BLP model.

To compute the efficiency bound, we use the calculations provided in the proof of Lemma
(1.2.10), and we have that the parametric score is Sθ = −W , the nonparametric score eval-
uated at direction [w] is w(Y ), the Jacobian term is w′(Y ) and the least favorable direction
w∗ is defined implicitly as in lemma (1.2.10). The efficiency bound is then:

V eff(α0) = E
[
(E[Sθ + SF [w∗] + J [w∗]|X, ε]− E[Sθ + SF [w∗] + J [w∗]|ε])2

]−1
,

where

E[Sθ + SF [w] + J [w]|X, ε]− E[Sθ + SF [w] + J [w]|ε] =

(E[W − w(Y )|X, ε]− E[W − w(Y )|ε])f
′
ε(ε)

fε(ε)

+
∂

∂ε
(E[W − w(Y )|X, ε]− E[W − w(Y )|ε]) + E[w′(Y )|X, ε]−E[w′(Y )|ε].

Note that if there is no unknown function in ρ(·), meaning that F0(·) is assumed known,
all terms with [w] disappear, and the efficiency bound becomes that of the linear IV model.
In that case, the bound will depend solely on the joint distribution of (W,X, ε), and on the
value θ0, while the known transformation F0(·) will not affect the bound. Since the efficiency
bound depends on whether or not F0(·) is known, it will not be possible to estimate θ0

adaptively. To proceed with the estimation of θ0 in this example, one must consider F0(·)
as an infinite dimensional nuisance function that must be estimated alongside θ0. Also note
that w∗ often does not have a closed form expression, as it is defined as a function that
minimizes a criterion function.

1.3 Estimation

The estimator for model (1.2) is based on a criterion function containing a number of co-
variances between basis functions of X and ρ(Y,W, θ0). We define the mean-zero vector of
basis functions of X as q̂K(Xi) = q̂Ki , a K × 1 vector of the form q̂Ki = rKi − 1

N

∑N
j=1 r

K
j ,

with rKj a K × 1 vector of basis functions of X. Let qKi = rKi − E[rKi ]. Let ρ̂L(Yi,Wi, θ) =

ρ̂Li (θ) = pLi (θ)− 1
N

∑N
j=1 p

L
j (θ) where pLi (θ) is a L× 1 vector of basis functions of ρ(Yi,Wi, θ).

For example, they could be the first L powers of ρ(Yi,Wi, θ), stacked in a vector. Also, let
ρLi (θ) = pLi (θ)− E[pLj (θ)].

Estimation is based on the following zero-covariance conditions:
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E[pL(Yi,Wi, θ)⊗ rK(Xi)]− E[pL(Yi,Wi, θ)]⊗ E[rK(Xi)] = 0

⇒ E[ρL(Yi,Wi, θ)⊗ qK(Xi)] = 0

⇒ E[gKLi (θ)] = 0

a KL × 1 vector of moment conditions defined by gKLi (θ) = ρL(Yi,Wi, θ) ⊗ qK(Xi). Note
that this is not exactly a GMM problem: the function gKLi is not known a priori, since
both qK(Xi) and ρL(Yi,Wi, θ) involve expectations that need to be estimated. Essentially,
this problem relies on covariance conditions rather than on moment conditions. We will
show that the GMM framework can also be used to deliver asymptotically efficient estimates
of parameters identified through covariance conditions by modifying the optimal weighting
matrix to reflect the covariance structure of the estimating equations. Assuming K and L
fixed, the optimal GMM estimator of θ0 based on these KL moment conditions is:

θ̂ = argminθ∈ΘR̂
KL(θ)

R̂KL(θ) =
1

N

N∑
i=1

ĝKLi (θ)′

(
1

N

N∑
i=1

[ĝKLi (θ̃)ĝKLi (θ̃)′]

)−1

1

N

N∑
i=1

ĝKLi (θ)

= ˆ̄gKL(θ)′ ˆ̄ΩKL(θ̃)−1 ˆ̄gKL(θ)

where

ĝKLi (θ) = ρ̂L(Yi,Wi, θ)⊗ q̂K(Xi)

ˆ̄gKL(θ) =
1

N

N∑
i=1

ĝKLi (θ)

ˆ̄ΩKL(θ) =
1

N

N∑
i=1

[ĝKLi (θ)ĝKLi (θ)′]

Ω̄KL(θ) =
1

N

N∑
i=1

[gKLi (θ)gKLi (θ)′]

θ̃ = θ0 +Op(τN) with τN → 0

Here, θ̃ is a preliminary “first-step” estimator of θ0 that is usually, but not necessarily,√
N consistent, and ˆ̄ΩKL(θ̃) is the estimate of the variance-covariance matrix of the sample
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covariances. To ensure identification and consistency, we need to make further assumptions
about the basis functions:

Assumption 1.3.1 (Basis Functions)

(a) (X Basis Functions) dX = 1, supx∈X ‖rK(x)‖ ≤ ζ(K) with
√
K ≤ ζ(K), and E[rKi r

K′
i ]

has its smallest eigenvalue uniformly bounded away from 0;

(b) (ρ(Y,W, θ) Basis Functions) sup(y,w)∈Y×W ‖pL(θ0)(y, w)‖ ≤ ζ(L) with
√
L ≤ ζ(L), and

E[pLi (θ)pLi (θ)′] has its smallest eigenvalue uniformly bounded away from 0 for any θ in
a neighborhood of θ0;

(c) (Spanning) For each δ and continuous function v(x, ρ(y, w, θ)) ∈ R, there exists K,L
such that ‖v(x, ρ(y, w, θ))− A′(rK(x)⊗ ρL(y, w, θ))‖ < δ for a KL× 1 vector A.

Assumptions (1.3.1)(a) and (b) are rate conditions on the approximation functions. When
using complex exponentials on a bounded domain as basis functions, ζ(K) = C

√
K for a

bounded constant C, and the eigenvalue conditions are satisfied. If we were to use power
functions instead, ζ(K) would be directly proportional to K and restrictions on the range of
X and ρ(Y,W, θ) are needed as well. See Andrews (1991), Gallant and Souza (1991), Newey
(1997) and Donald et al. (2003) for more details. Without loss of generality we can assume
that both ρ(Y,W, θ) and X are bounded: independence of two random variables X and Y
is equivalent to independence of Φ(X) and Φ(Y ), where Φ is a bounded, invertible function
mapping from R to a bounded interval (e.g. the CDF of a continuously distributed random
variable). Assumption (1.3.1)(c) requires the basis functions to be complete, meaning that
they approximate arbitrarily well functions of their arguments.

We find an alternative representation for the independence restriction in model (1.2),
using the following definition:

Definition 1.3.2 (Measure-Determining Class) Let F be a class of functions, and X be
a random variable. If there exists a bijection between {E[f(X)] : f ∈ F} and the distribution
function of X, FX , we say that F is a measure determining class for X.

Well known examples measure-determining classes include {eit′X : t ∈ RdX},
{
∏dX

l=1 1(Xi ≤ tl) : t ∈ RdX}, and the set of all continuous bounded functions of X. If X
has discrete support, the set of indicators for all support points (minus one) of X is also a
convergence determining class. Independence of two random variables can be characterized
as an uncorrelatedness condition between functions in measure-determining classes:

Lemma 1.3.3 Let X ∈ RdX and Y ∈ RdY be random variables. Let F and G be measure-
determining classes of dimension dX and dY respectively. Then Cov (f(X), g(Y )) = 0 for all
(f, g) ∈ F × G if and only if X⊥Y .
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Therefore, going back to the setup in (1.2), we restate the independence restriction as
the following:

Cov (f(ρ(Y,W, θ0)), g(X)) = 0 for all (f, g) ∈ F × G. (1.6)

In the remainder of this chapter, we will focus on Fdε0 = {eis′· : s ∈ Rdε} and FdX0 =
{eit′· : t ∈ RdX} when they are continuous random variables, and on indicators at support
points if they are discrete random variables. Unlike moment-generating functions, equality
of characteristic functions on a positive measure interval does not imply equality everywhere
on the Euclidean space: one can construct two characteristic functions that are equal on
arbitrarily large intervals, but different elsewhere.10 Also, characteristic functions exist and
are bounded for all random variables.

We will assume that we are working with Fourier series basis functions, and that rKi =
ei~sKXi , where ~sK = [s1, . . . , sK ]′ is a K × 1 vector such that ~sK+1 = [~s′K , sK+1]′ and as

K → ∞, ~sK is dense in R.11 Similarly, pLi (θ) = ei~tLρ(Yi,Wi,θ), and ~tL is a L × 1 vector that
becomes dense in R as L → ∞. This basis will satisfy assumptions (1.3.1)(a)-(b) with
ζ(K) = O(

√
K) and ζ(L) = O(

√
L). The asymptotic denseness of the vectors will allow

assumption (1.3.1)(c) to be satisfied. The choice of basis and its implications are beyond the
scope of this chapter.

1.3.1 Consistency and Asymptotic Normality

Before deriving the estimator’s asymptotic properties, we make more assumptions about
regularity conditions. Denote by ρLθ (θ) the L× 1 vector of derivatives of ρL(θ) with respect
to θ.

Assumption 1.3.4 (Regularity Conditions)

(a) (Identification) ρ(Y,W, θ)⊥X =⇒ θ = θ0;

(b) (IID) {Xi, Yi,Wi}Ni=1 are identically and independently distributed;

(c) (Compact Parameter Space) θ ∈ Int(Θ) and Θ is compact;

(d) (Differentiability and Global Lipschitz of Residual Function) ρ(Y,W, θ) is twice differ-
entiable in a neighborhood of θ0 and ‖ρL(Y,W, θ̃) − ρL(Y,W, θ)‖ ≤ δL(Y,W )|θ̃ − θ|
and E[δL(Y,W )2|X] = Op(L) for any θ̃, θ in Θ. Also, ‖ρLθ (Y,W, θ̃) − ρLθ (Y,W, θ)‖ ≤
δθL(Y,W )|θ̃ − θ| and E[δθL(Y,W )2|X] = Op(L) for any θ̃, θ in Θ.

(e) (Invertibility) ρ(·,W, θ) is differentiable and invertible for all θ ∈ Θ, a.s. - W , and its
inverse function Y = m(·,W, θ) is continuous in θ;

10If we restrict our attention to random variables with analytic characteristic functions, equality on an
interval with positive Lebesgue measure will imply equality everywhere. Examples of distributions with
analytic characteristic functions include the normal and Laplace distributions. See Lukacs (1960).

11Throughout the chapter, we will use the notation e~a to denote the element by element exponentiation
of the vector ~a.
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(f) (Preliminary Estimator) θ̃N is a preliminary and consistent estimator of θ0 satisfying
‖θ̃N − θ0‖ = Op(τN), with τN → 0 as N →∞;

(g) (Finite Second Moments) ε has a continuously differentiable density function fε(·)

and 0 < E

[
f ′ε(ε)

2

fε(ε)2

]
<∞. Also, E[‖ρθ(Y,W, θ0)‖2] <∞;

(h) (Global Lipschitz Objective Function) supθ,θ̃∈Θ |R̂KL(θ) − R̂KL(θ̃)| ≤ D̂|θ − θ̃|α, where

D̂ = Op(1) and α > 0.

Most of these assumptions are similar to those in (1.2.1). Assumption (1.3.4)(d) is strong,
but is satisfied when ρ(Y,W, θ) is twice differentiable and additional mild conditions are sat-
isfied when using Fourier series. In (1.3.4)(f), we require the existence of a preliminary
consistent estimator. In the unconditional independence case, most parameters are overi-
dentified, therefore using an estimate coming from a fixed and finite number of moment con-
ditions will usually yield a consistent and

√
N consistent estimate. Assumption (1.3.4)(h)

is strong, and implies stochastic equicontinuity of the objective function. We are making
progress in trying to relax this condition with the help of lower-level assumptions. Similar
assumptions to those above can be found in Donald et al. (2003). Asymptotic normality and
consistency require that both K and L increase towards infinity along with the sample size,
but they need to increase at a rate slow enough that the asymptotic bias of θ̂ coming from
the increasing number of moment conditions goes to 0.

Theorem 1.3.5 (Consistency and Asymptotic Normality) Let Assumptions (1.3.1)

and (1.3.4) hold, K2L2(τN + 1√
N

) → 0, and K,L → ∞ as N → ∞, then θ̂
P−→ θ0 and

√
N(θ̂ − θ0)

d−→ N(0, Veff(θ0)), where Veff(θ0) is defined in Lemma (1.2.2).

A proof of this result is given in the appendix. The proof follows the methods in Newey
and McFadden (1994)’s chapter. Furthermore, we can derive a consistent optimal variance
estimate as follows:

V̂ =

[(
∂

∂θ
ĝKLi

(
θ̂
))′ (

Ω̂KL
(
θ̃
))−1

(
∂

∂θ
ĝKLi

(
θ̂
))]−1

.

Heuristically, this variance estimator will converge if the same rate conditions are satisfied.
These asymptotic results do not provide guidance as to the exact choice of rate for both

K and L since they only provide maximal rates of growth. For comparison’s sake, the
GMM-type estimator for mean-independence restrictions in Donald et al. (2003) required

that
Kζ(K)2

N
→ 0, which will be equivalent to K2/N → 0, while we require K2L2/

√
N → 0,

so if we let K = L, K must be of order o
(
N

1
8

)
, while in Donald et al. (2003) K must satisfy

K = o
(
N

1
2

)
.
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To prove efficiency of this estimator using zero-covariance restrictions, we recast co-
variance conditions as moment conditions by introducing additional ancillary parameters.
We then use the efficiency properties of GMM under moment conditions. For example
Cov (h(X, θ), Y ) = E[h(X, θ)(Y − E[Y ])] = 0 can be recasted as two moment conditions
with two parameters, the new parameter being E[Y ]. This also illustrates an alternative
method for computing the efficiency bound of models with independence restrictions which
involves the computation of the limit of the efficient GMM variance for fixed K and L.

When estimating models based on independence restrictions, a commonly used objective
function is the Cramer von-Mises distance between the joint distribution of ρ(Y,W, θ) and
X, and the product of their marginal distributions:

θ̂VM = argminθ∈Θ

∫ ∫
(F̂ρ(Y,W,θ),X(s, t)− F̂ρ(Y,W,θ)(s)F̂X(t))2dµ(s, t)

= argminθ∈Θ

∫ ∫
(Ĉov(1(ρ(Y,W, θ) ≤ s), 1(X ≤ t)))2dµ(s, t)

where µ(s, t) is a probability distribution on R2 specified by the econometrician. See Manski
(1983), Brown and Wegkamp (2002), Domı́nguez and Lobato (2004) and Komunjer and
Santos (2010). Since this integral cannot be evaluated directly, it can be approximated
through a discrete approximation:

θ̂KVM = argminθ∈Θh
K(θ)′WKhK(θ)

where hk(θ) = [Ĉov(1(ρ(Y,W, θ) ≤ s1), 1(X ≤ t1)), Ĉov(1(ρ(Y,W, θ) ≤ s2), 1(X ≤ t1)) . . .]′

is a K2 × 1 vector, and WK = diag{µ(s1, t1), µ(s2, t1), . . . µ(sK , tK)}. Therefore, CV-M
estimation of θ0 is similar to our approach, except that it requires a diagonal weighting
matrix. Since the optimal weighting matrix is usually non-diagonal, CV-M estimation cannot
reach the efficiency bound, even through a judicious choice for µ(·, ·) and large K.

1.3.2 Example and Discussion

Going back to the linear regression example (1.1.1), the efficient estimator we propose would
use the following covariances as a basis for estimation:

E[ei
~tL(Yi−Xiθ) ⊗ ei~sKXi ]− E[ei

~tL(Yi−Xiθ)]⊗ E[ei~sKXi ] = 0.

These KL covariances form the basis of estimation, and the user must select K, L and the

24



vectors ~sK and ~tL. K and L must satisfy the rate requirements specified in the consistency
and asymptotic normality theorem, and ~sK and ~tL are only constrained by the denseness
condition. For fixed K and L, the variance of the GMM estimator is:

V −1
KL(θ0) = Cov

(
f ′ε(ε)

fε(ε)
, ei

~tLε

)′
Var

[
ei
~tLε
]−1

Cov

(
f ′ε(ε)

fε(ε)
, ei

~tLε

)
×

Cov
(
X, ei~sKX

)′
Var

[
ei~sKX

]−1
Cov

(
X, ei~sKX

)

From this expression, we can see that Cov

(
f ′ε(ε)

fε(ε)
, ei~tLε

)′
Var

[
ei~tLε

]−1

Cov

(
f ′ε(ε)

fε(ε)
, ei~tLε

)
is

the variance of the projection of
f ′ε(ε)

fε(ε)
on L complex exponential functions. We checked earlier

that complex exponentials -or equivalently sines and cosines- can approximate continuous
functions arbitrarily well in mean-square. This directly translates into the variance of the

projection of
f ′ε(ε)

fε(ε)
converging to the variance of

f ′ε(ε)

fε(ε)
itself, as L→∞. A similar argument

will yield that Cov
(
X, ei~sKX

)′
Var

[
ei~sKX

]−1
Cov

(
X, ei~sKX

)
converges to the variance of X

as K → ∞. So we see that even if K and L are not allowed to grow with the sample size,
VKL(θ0) → V eff(θ0). We also get an ε-efficiency result as in Chamberlain (1992), that is for
every ε > 0, there exists K and L large enough so that

‖VKL(θ0)− V eff(θ0)‖ < ε.

Reasons to let K and L go to infinity are twofold. The first is to ensure that the
estimator’s asymptotic variance attains the efficiency bound asymptotically. The second is
that by letting K and L go to infinity and in turn letting the vectors ~sK and ~tL span the
real line, we are insuring the full use of the independence restriction. Full independence
can potentially be a necessary condition for the identification of θ0, since an arbitrary set of
covariance conditions might not provide global identification. Domı́nguez and Lobato (2004)
explore this question with respect to mean-independence restrictions.

A useful feature of relying on a GMM framework for estimation is that we can append
additional moment conditions efficiently, and derive the efficiency bound without relying on
the projection method. One potential application of this feature is to the model of Brown
and Newey (1998). They focus on the efficiency bound of θ0 = E[m(X, β0)] where m(·) is
a known function, and β0 is identified through ρ(X, β)⊥X. We can consider the following
model, a slight generalization of their setup:
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(
ρ(Y,W, β)⊥X

E[m(X, Y, Z,W, β)− θ] = 0

)
=⇒ (β, θ) = (β0, θ0).

Using the framework in the previous sections, we can convert this independence restriction
in an increasing number of covariance conditions, and append the extra moment condition
that identifies θ0 to it. Setting up a system of covariance and moment restrictions, we can
recover the efficiency bound derived by Brown and Newey (1998). Their approach consists
of approximating the efficient score using a series estimate, and then using a V-statistic type
criterion function. It is simple in the GMM framework to efficiently add moment conditions,
and possibly multiple independence, mean-independence or covariance restrictions in a single
system.

1.3.3 Feasible GMM Estimation Under Conditional Independence
Restrictions

We generalize our setup to include models that are identified through conditional indepen-
dence restrictions, such as model (1.1). One can do this similarly to the unconditional
independence case, by using the restriction:

ρ(Y,W, θ)⊥X|Z
⇐⇒Cov

(
eitρ(Y,W,θ), eisX |Z

)
= 0

⇐⇒E[eitρ(Y,W,θ)(eisX − E[eisX |Z])|Z] = 0

⇐⇒E[eitρ(Y,W,θ)(eisX − E[eisX |Z])eiuZ ] = 0

for all (s, t, u) ∈ R3.
Using this method requires the computation of a preliminary non-parametric estimator

of E[eisX |Z], which will not affect the efficiency bound if appropriate convergence conditions
are imposed. In many semi-parametric problems, we need the estimator to be op(N

−1/4).
See Robinson (1988) for an example. The feasible estimator of θ based on this equivalence
will be based on:

E[ei
~tLρ(Y,W,θ) ⊗ (ei~sKX − λ̂(~sK , Z))⊗ ei~uMZ ] = 0

where λ̂(~sK , Z) is a preliminary estimator of λ(~sK , Z) = E[ei~sKX |Z]. When Z is discrete, we
do not need to use a preliminary estimator, and can add some moment conditions to jointly
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estimate this conditional expectation with the other moments. For example, if Z is a binary
variable taking the values of 0 or 1, we can replace the term ei~uMZ by an indicator for Z
being equal to 1, since the distribution of this indicator is in a bijection with the distribution
of Z.12 When Z’s distribution is continuous, we need to use an approximating method such
as kernels, series or splines to estimate λ(~sK , Z) in a preliminary step. In keeping with the
spirit of the second step, it is possible to estimate λ(~sK , Z) using a series estimator with
complex exponential terms.

Estimator

We must select K,L and M , the dimensions of the vectors ~sK ,~tL and ~uM respectively. Also,
we let λ̂(~sK , Z) be the preliminary estimator of E[ei~sK |Z]. We must then compute the
asymptotic variance V (θ0) of the moment conditions:

ĥKLM(θ0) =
1

N

N∑
i=1

[ei
~tLρ(Yi,Wi,θ0) ⊗ (ei~sKXi − λ̂(~sK , Zi))⊗ ei~uMZi ]

√
NĥKLM(θ0)

d−→ N(0, V KLM(θ0))

Then the feasible estimator θ̂ is defined by:

θ̂ = argminθR̂(θ)KLM

R̂KLM(θ) = ĥKLM(θ)′(V̂ KLM(θ̃))−1ĥKLM(θ)

where V̂ KLM(θ) = 1
N

∑N
i=1[(ei~tLρ(Yi,Wi,θ)⊗(ei~sKXi−λ̂(~sK , Zi))⊗ei~uMZi)(ei~tLρ(Yi,Wi,θ)⊗(ei~sKXi−

λ̂(~sK , Zi)) ⊗ ei~uMZi)′] is an estimate of the matrix V KLM(θ0) defined above, and θ̃ is a
preliminary and consistent estimator for θ0.

Consistency and Asymptotic Normality

To prove consistency and asymptotic normality of the estimator defined above, we assume
the following:

Assumption 1.3.6 (Regularity Conditions)

(a) (Identification) ρ(Y,W, θ)⊥X|Z =⇒ θ = θ0;

(b) (IID) {Xi, Yi,Wi, Zi}Ni=1 are identically and independently distributed;

12trivially, since the indicator is equal to Z itself.
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(c) (Compact Parameter Space) θ ∈ Int(Θ) and Θ is compact;

(d) (Differentiability and Global Lipschitz of Residual Function) ρ(Y,W, θ) is twice dif-
ferentiable in a neighborhood of θ0 and ‖ρL(Y,W, θ̃) − ρ(Y,W, θ)‖ ≤ δ(Y,W )|θ̃ − θ|
and E[δ(Y,W )2|X] = Op(L) for any θ̃, θ in Θ. Also, ‖ρLθ (Y,W, θ̃) − ρθ(Y,W, θ)‖ ≤
δθ(Y,W )|θ̃ − θ| and E[δθ(Y,W )2|X] = Op(L) for any θ̃, θ in Θ.

(e) (Invertibility) ρ(·,W, θ) is differentiable and invertible for all θ ∈ Θ, a.s - W , and the
inverse function Y = m(·,W, θ) is continuous in θ;

(f) (Preliminary Estimator) θ̃N is a preliminary and consistent estimator of θ0 satisfying
‖θ̃N − θ0‖ = Op(τN), with τN → 0 as N →∞;

(g) (Finite Second Moments) ε has a continuously differentiable density function fε(·) and

0 < E

[
f ′ε|Z(ε|Z)2

fε|Z(ε|Z)2

]
<∞. Also, E[‖ρθ(Y,W, θ0)‖2] <∞;

(h) (Nonparametric First Stage) ‖λ̂(~sK , Z)− λ(~sK , Z)‖ = Op(νN) = op(
√
KN−1/4).

(i) (Global Lipschitz Objective Function) supθ,θ̃∈Θ |R̂KLM(θ)− R̂KLM(θ̃)| ≤ D̂|θ− θ̃|α, where

D̂ = Op(1) and α > 0.

These assumptions are similar to those in (1.3.4), and assumption (1.3.6)(h) is akin to
standard regularity condition for non-parametric terms in GMM problems. Since the vector
λ(~sK , Z) has K elements, we require that the approximation error increases with K at rate√
K, but decreases with N at rate N−1/4. These growth rate of K can be selected appro-

priately so that the estimation error from the non-parametric component is asymptotically
negligible. Assumption (1.3.6)(i) is strong, and implies stochastic equicontinuity of the ob-
jective function in this model. We are also making progress in trying to relax this condition
with the help of lower-level assumptions. We now present the asymptotic properties of the
estimator.

Theorem 1.3.7 (Estimator under Conditional Independence Restrictions) Let

(1.3.6) hold, K2L2M2(τN + 1√
N

) → 0, and K,L,M → ∞ as N → ∞, then θ̂
P−→ θ0 and

√
N(θ̂ − θ0)

d−→ N(0, V eff(θ0)), where V eff(θ0) is defined in (1.2.4).

This theorem shows conditions under which the estimator will attain the efficiency bound.
If K = L = M and the preliminary estimator is

√
N consistent, we must have that K =

o(N1/12) to ensure that the bias term goes away. Again, efficiency is achieved from letting
K,L and M increase, since this lets us use asymptotically all the information contained in
the conditional independence restriction.
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1.4 Feasible GMM Estimation Under Independence

Restrictions containing Unknown Functions

In this section, we conjecture a method which can be used to deliver an efficient estimator
for θ0 under ρ(Y,W, θ0, F0(·)) = ε⊥X. Ai and Chen (2003) propose a method to compute
efficient estimates for θ0 under E[ρ(Y,W, θ0, F0(·))|X] = 0, with F0(·) unknown. Their
method relies on approximating F0(·) with basis functions, so that the minimization is over
a finite dimensional sieve space, rather than an infinite dimensional functional space. For
exposition, we will approximate F0(·) with power series, and let F0(·) be a mapping between

R and R. Therefore, F̂J(a, φ) = φ1a + φ2a
2 + . . . + φJa

J , where φ is a J by 1 vector
of coefficients which multiply the basis functions approximating F (·). Note that ε⊥X is
equivalent to

E[eisε|X] = E[eisε]

for all s ∈ R. We can make use of Ai and Chen (2003)’s framework, and consider an infinite
number of conditional mean restrictions, indexed by s ∈ R, such that the estimating equation
is:

E[eisρ(Y,W,θ,F (·)) − E[eisρ(Y,W,θ,F (·))]|X] = 0⇐⇒ (θ, F (·)) = (θ0, F0(·)).

To fix ideas, we will consider the model Y = Xθ0 + g0(W ) + ε with ε⊥(X,W ). Using
the optimal weighting matrix provided in Ai and Chen (2003), we can see that the efficiency
bound of this model will be:

Σ0f(·)(s) =

∫
Cov

(
eisε, eis

′ε
)
f(s′)ds′,

‖f(.)‖2
Σ0

= ‖Σ−1
0 f(·)(s)‖2,

Dw0(X,W, s) = (−XisE[eisε] + isE[eisε]E[X|W ]),

V eff(α0) = E[‖Dw0(X,W, s)‖2
Σ0

]−1,

where Dw0(X,W, s) is a random function of X and W indexed by s ∈ R, Σ0 is an operator on
the set of functions F = {f : R→ R} with kernel k(s, s′) = Cov

(
eisε, eis

′ε
)
, and ‖ · ‖2

Σ0
is the

reproducing kernel Hilbert space norm associated with the operator Σ0. We have shown in

the appendix that ‖isE[eisε]‖2
Σ0

= E

[(
f ′ε(ε)

fε(ε)

)2
]−1

, and therefore the quantity Veff is equal

to Var [X − E[X|W ]]−1E

[(
f ′ε(ε)

fε(ε)

)2
]

. This bound is equal to the one computed using the

projection method in section 2.
To make this estimator operational, we could let

(θ̂, φ̂J) = argminθ∈Θ,φJ∈ΦJ
Ê
[
m̂(Xi)

′Σ̂(Xi)m̂(Xi)
]
,
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where ΦJ is a sieve space that becomes dense in Φ, the function space in which F0(·) resides, as

J →∞. m̂(X) = Ê[ei~sKρ(Yi,Wi,θ,F (·))−Ê[ei~sKρ(Yi,Wi,θ,F (·))]|Xi], and the conditional expectation
is computed using either a series approach (as in Ai and Chen (2003)) or kernel methods.
Also,

Σ̂(Xi) = Ê
[
(ei~sKρ(Yi,Wi,θ̃,F̃ (·)) − Ê[ei~sKρ(Yi,Wi,θ̃,F̃ (·))])

(ei~sKρ(Yi,Wi,θ̃,F̃ (·)) − Ê[ei~sKρ(Yi,Wi,θ̃,F̃ (·))])′|Xi

]
,

where (θ̃, F̃ (·)) is a consistent first step estimator for (θ0, F0(·)). Further work is needed to
list regularity conditions sufficient for consistency and asymptotic normality of the proposed
efficient estimator.

1.5 Monte-Carlo Study

To investigate the finite sample performance of the estimator, we perform Monte Carlo stud-
ies based on the unconditional independence restriction (1.2) for different data-generating
processes. Our first study is based on the design of Hsieh and Manski (1987) and investigates
the simple exogenous linear regression model Y = Xβ0 + ε with ε independent from X. We
let X be normally distributed with mean 0 and variance 1, and we set the parameter of
interest β0 = 1. We consider four types of distribution for the error ε: (a) a standard normal
distribution, (b) a 50/50 mixture combining N(−1, 1) and N(1, 4), two independent normal
distributions, (c) a mean zero Student’s-t distribution with three degrees of freedom and (d),
a Laplace (Double Exponential) with mean 0 and scale parameter equal to 1.

Estimation is based on the following covariance restrictions:

E[ei
~tL(Yi−Xiθ) ⊗ ei~sKXi ]− E[ei

~tL(Yi−Xiθ)]⊗ E[ei~sKXi ] = 0.

In practice, K and L must be selected, as well as ~sK and ~tL. We consider estimation
with K = L, and we let them range from 1 to 6, meaning that between 1 and 36 covariance
conditions are used for the estimation of θ0. For a fixed K, we let ~sK be the inverse standard
normal CDF evaluated at K equally spaced points on the [0, 1] interval.13 ~sK and ~tL are
theoretically unrestricted, except by the condition that requires them to become dense in R
as K and L go to infinity, and it is beyond the scope of this chapter to establish selection
rules for these gridpoints.

Table (1.1) reports the results in the exogenous linear regression example. The number

13When K is odd, one of the equally spaced points is exactly equal to 0.5, and and the inverse standard
CDF evaluated at 0.5 is equal to 0. Using 0 as a gridpoint is ruled out, since ei·0·X = 1 is constant and
cannot have a non-zero covariance with other random variables. We shift the equally spaced gridpoints by
0.01 to fix this issue.
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of replications is set to 1000. When ε is normally distributed, the ordinary least squares
estimator is already efficient since we assumed normality of the error term. We nevertheless
show that our estimator does not perform much worse for most choices of K and L and in fact
has a comparable MSE for the majority of choices of K and L. For larger K and L, we see
the performance somewhat deteriorate, as expected from the finite properties of GMM with
a large number of moments relative to N . For the mixture of normal distributions, we expect
our estimator to yield asymptotic improvements over OLS, which is no longer efficient. For K
and L between 2 and 5, the estimator based on independence exhibits a smaller bias, variance
and other dispersion measures than OLS. Performance for K = L = 1 is very similar to OLS,
and for K = 6 performance decreases. Performance of the independence-based estimator
relative to OLS is slightly better for the larger sample size of N = 500.

When the distribution of ε has fatter tails, as is the case when it has a Student and
Laplace distribution, the independence-based estimator has much smaller MSE when K = L
takes on values between 2 and 4. Again, when K = L = 1, the estimator’s properties
are very close to those of OLS and when K = L = 6, the MSE is larger than for other
estimators considered here. We nevertheless see that for a judicious choice for K and L, we
can get sizeable efficiency improvements from using the independence based-estimator when
the distribution of ε is non-normal. When ε is normally distributed or when the choice of
K = L is sub-optimal, performance is not dramatically affected.

We now consider some linear instrumental variables model of the form Y = Xβ0 + ε and
ε⊥Z. We compare the performance of the standard IV estimator βIV = (Z ′X)−1Z ′Y to the
estimator based on

E[ei
~tL(Yi−Xiθ) ⊗ ei~sKZi ]− E[ei

~tL(Yi−Xiθ)]⊗ E[ei~sKZi ] = 0

for different choices of K = L, ~sK and ~tL. We consider three designs with different levels of
non-linearity and non-normality. All three impose Y = Xβ0 + ε and β0 = 1.

1. Normality:

 X
ε
Z

 ∼ N(0,Σ) with Σ =

 2 1 1
1 2 0
1 0 1


2. Heavy tails: Z, ε and η are independently t(5) and X = Z(1 + ε) + sin(ε) cos(Z) + η

3. Skewness: Z, ε and η are independent 50/50 mixtures of a normal distribution N(−1, 1)
and a normal distribution N(1, 2). Furthermore, X = Z + Zε+ η

Table (1.2) details the simulation results for these three designs with N = 200 and
N = 500. The number of replications is set to 1000.

The IV estimator is efficient in the linear and normal design 1, and does perform better
than the alternative, and more so for N = 200. The sample variance, IQR and MSE of the
independence-based estimator is very close to that of the efficient IV, therefore performance
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Table 1.1: Exogenous Linear Regression Monte Carlo

N=200, ε with N(0, 1) distribution N=500, ε with N(0, 1) distribution

Bias S.Dev. Median IQR R. MSE Bias S.Dev. Median IQR R. MSE

OLS -0.0030 0.074 0.0046 0.10 1.00 -0.0002 0.045 -0.0010 0.062 1.00
K=L=1 -0.0027 0.073 0.0043 0.10 0.98 -0.0002 0.045 -0.0010 0.062 1.00
K=L=2 -0.0023 0.075 0.0032 0.10 1.04 -0.0001 0.046 -0.0005 0.062 1.05
K=L=3 -0.0023 0.081 0.0025 0.11 1.18 -0.0006 0.047 -0.0010 0.063 1.10
K=L=4 -0.0023 0.085 0.0014 0.12 1.33 -0.0011 0.050 -0.0009 0.065 1.25
K=L=5 -0.0019 0.090 -0.0011 0.12 1.47 -0.0011 0.053 -0.0021 0.069 1.40
K=L=6 -0.0002 0.091 -0.0069 0.12 1.51 -0.0001 0.056 -0.0016 0.072 1.55

N=200, ε with mixture distribution N=500, ε with mixture distribution

OLS -0.0024 0.13 -0.0037 0.18 1.00 0.0008 0.085 0.0012 0.12 1.00
K=L=1 -0.0023 0.13 -0.0026 -0.79 1.01 0.0007 0.085 0.0007 0.12 1.00
K=L=2 0.0002 0.12 -0.0043 0.16 0.91 0.0025 0.079 -0.0011 0.11 0.88
K=L=3 0.0008 0.12 0.0018 0.16 0.84 0.0005 0.073 0.0003 0.10 0.75
K=L=4 0.0006 0.13 -0.0006 0.18 1.01 0.0002 0.076 -0.0005 0.10 0.81
K=L=5 0.0013 0.14 0.0007 0.18 1.12 0.0013 0.084 0.0011 0.11 0.97
K=L=6 0.0011 0.14 0.0003 0.20 1.21 0.0018 0.090 0.0009 0.12 1.13

N=200, ε with Student distribution N=500, ε with Student distribution

OLS -0.0028 0.12 -0.0003 0.16 1.00 0.0037 0.077 0.0037 0.10 1.00
K=L=1 -0.0027 0.12 -0.0001 0.16 0.99 0.0034 0.074 0.0033 0.10 0.92
K=L=2 -0.0005 0.10 0.0019 0.13 0.64 0.0034 0.058 0.0030 0.08 0.57
K=L=3 -0.0023 0.10 -0.0017 0.13 0.64 0.0031 0.057 0.0045 0.08 0.55
K=L=4 -0.0021 0.10 0.0004 0.14 0.75 0.0036 0.057 0.0028 0.08 0.55
K=L=5 -0.0041 0.11 -0.0028 0.15 0.86 0.0040 0.062 0.0016 0.08 0.63
K=L=6 -0.0029 0.12 -0.0033 0.15 1.04 0.0044 0.071 0.0009 0.09 0.83

N=200, ε with Laplace distribution N=500, ε with Laplace distribution

OLS 0.0012 0.10 0.0002 0.14 1.00 0.0003 0.062 0.0014 0.083 1.000
K=L=1 0.0001 0.10 0.0010 0.14 1.01 -0.0002 0.062 0.0020 0.083 1.00
K=L=2 0.0016 0.09 0.0019 0.13 0.81 -0.0003 0.056 0.0021 0.077 0.82
K=L=3 0.0031 0.09 0.0099 0.12 0.84 -0.0005 0.055 0.0016 0.076 0.79
K=L=4 0.0015 0.10 0.0010 0.12 1.03 0.0005 0.058 0.0022 0.074 0.89
K=L=5 0.0022 0.11 0.0014 0.14 1.21 0.0013 0.069 0.0025 0.079 1.24
K=L=6 0.0032 0.12 0.0031 0.14 1.31 0.0011 0.074 0.0015 0.084 1.45

Notes: Y = Xβ0 + ε with ε⊥X, X ∼ N(0, 1) and ε following the specified distribution. The
mixture distribution is a 50/50 mixture combining N(−1, 1) and N(1, 4), two independent
normal distributions. The Student distribution is has mean zero and 3 degrees of freedom.
The Laplace has mean zero and scale parameter equal to 1. The number of replications is
set to 1000. The first column contains the mean bias, the second contains the square root of
the sampling variance of β̂, the third contains the median of β̂ − β0, the fourth contains the
75th quantile of β̂ minus its 25th quantile, and the last column contains the relative MSE of
the estimator vs. the OLS estimator’s MSE.
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Table 1.2: IV Linear Regression Monte Carlo

N=200, Design 1 N=500, Design 1

Bias S.Dev. Median IQR R.MSE Bias S.Dev. Median IQR R.MSE

IV -0.006 0.10 -0.002 0.14 1.00 -0.001 0.064 0.000 0.080 1.00
K=L=1 -0.006 0.10 -0.003 0.14 1.00 -0.002 0.064 0.001 0.080 1.00
K=L=2 0.010 0.11 0.015 0.15 1.04 0.005 0.065 0.008 0.081 1.06
K=L=3 0.036 0.10 0.040 0.14 1.12 0.019 0.066 0.022 0.083 1.15
K=L=4 0.063 0.11 0.066 0.14 1.39 0.035 0.067 0.036 0.084 1.42
K=L=5 0.082 0.11 0.088 0.14 1.65 0.051 0.071 0.055 0.087 1.90
K=L=6 0.096 0.11 0.101 0.14 1.92 0.068 0.071 0.070 0.090 2.36

N=200, Design 2 N=500, Design 2

Bias S.Dev. Median IQR R.MSE Bias S.Dev. Median IQR R.MSE
IV 0.002 0.079 0.002 0.09 1.00 -0.001 0.047 -0.002 0.061 1.00

K=L=1 0.002 0.075 0.002 0.09 0.90 -0.001 0.047 -0.001 0.060 0.99
K=L=2 0.002 0.044 0.002 0.06 0.30 0.001 0.028 0.001 0.038 0.36
K=L=3 0.001 0.045 0.003 0.06 0.32 0.001 0.029 0.001 0.037 0.38
K=L=4 -0.001 0.052 -0.001 0.06 0.42 0.001 0.031 0.000 0.038 0.42
K=L=5 -0.002 0.055 -0.003 0.07 0.48 0.001 0.033 0.000 0.041 0.48
K=L=6 -0.003 0.061 -0.001 0.07 0.59 0.000 0.036 0.002 0.045 0.60

N=200, Design 3 N=500, Design 3

Bias S.Dev. Median IQR R.MSE Bias S.Dev. Median IQR R.MSE
IV -0.001 0.074 0.002 0.096 1.00 -0.003 0.048 -0.002 0.066 1.00

K=L=1 -0.002 0.074 0.002 0.095 0.99 -0.003 0.048 -0.003 0.067 1.00
K=L=2 0.000 0.031 0.001 0.040 0.17 0.000 0.021 0.001 0.028 0.19
K=L=3 0.002 0.033 0.004 0.044 0.20 0.002 0.022 0.003 0.030 0.21
K=L=4 0.003 0.034 0.005 0.044 0.21 0.003 0.022 0.004 0.029 0.21
K=L=5 0.004 0.037 0.007 0.046 0.25 0.003 0.023 0.004 0.032 0.23
K=L=6 0.004 0.040 0.007 0.048 0.29 0.003 0.024 0.003 0.033 0.25

Notes: Y = Xβ0 + ε with ε⊥Z, X ∼ N(0, 1) and ε,X follow distributions specified in the
designs above. The number of replications is set to 1000. The first column contains the mean
bias, the second contains the square root of the sampling variance of β̂, the third contains
the median of β̂−β0, the fourth contains the 75th quantile of β̂ minus its 25th quantile, and
the last column contains the relative MSE of the estimator vs. the IV estimator’s MSE.
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is not too adversely impacted by the choice of an equally efficient but more computationally
challenging estimator. Measures of central tendency such as the bias and median deteriorate
when using the independence-based estimator, and increasingly so as K and L are larger.
This is a consequence of a bias term which is increasing in the number of moments used, but
asymptotically goes to 0 if rates are picked appropriately.

In design 2, we show large improvements in the MSE, sample variance and IQR from
using the independence-based estimate. There are also small bias and median improvements
as well. The slow-decaying tails of the distributions of X and ε and the non-linearity in
Z of E[X|Z, ε] both contribute to large efficiency improvements when using an estimator
which is efficient for ε⊥Z, rather than the IV estimator which is efficient under the weaker
Cov (Z, ε) = 0 restriction. The best performance coincides with a choice for K and L of 2
or 3, while again choosing K = L = 1 is not very different from choosing IV in terms of
performance.

Finally, design 3 exhibits properties similar to design 2, except that the non-normality
comes from the skewness of the distribution rather than the rate of decay for its tails. We
again see 80% reductions in the MSE when K,L are between 2 and 5, and smaller biases for
the majority of choices for K and L.

We also showcase the properties of the independence based estimator when the standard
estimator is inconsistent. We consider two designs, the first being a linear regression Y =
Xβ0 + ε, ε⊥X and ε is distributed along a standard Cauchy. The Cauchy’s moments do not
exist, therefore OLS will be inconsistent, but the estimator based on independence will be
consistent and asymptotically normal. The second design is Y = Xβ0 + ε, ε⊥Z and ε has
a standard Cauchy distribution. We compare our estimator to the standard linear IV, and
show that mean-square error improvements are substantial.

1.6 Conclusion and Directions for Future Research

In this chapter we computed the efficiency bound for finite-dimensional parameters under
various types of independence restrictions. We also proposed a GMM-type estimator which
attains the efficiency bound, and performed a Monte Carlo study to study its finite-sample
performance. There are several extensions of this chapter which could be interesting. The
first would be to formalize the estimation results related to the estimation of models with
unconditional independence restriction with nuisance functions, and to develop rates at which
the sieve space for F0(·) and the number of gridpoints in ~sK and ~tL must grow relative to
the sample size N . Also, it would be useful to develop a rule for choosing K and L based
on MSE calculations using higher-order expansions of the objective function, as in Donald
et al. (2008). Such a study would allow one to better determine rates for K and L, and
also to examine under what conditions the finite sample performance of the estimator will
be satisfactory.
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Table 1.3: Cauchy ε Monte Carlo

Linear Regression with Cauchy ε

Bias S. Dev. Median IQR R.MSE

OLS -0.441 8.55 0.054 1.56 1.000
K=L=1 0.009 0.29 0.002 0.28 0.001
K=L=2 -0.001 0.06 0.000 0.08 0.000
K=L=3 -0.003 0.06 -0.003 0.08 0.000
K=L=4 -0.001 0.05 -0.003 0.07 0.000
K=L=5 -0.001 0.05 -0.002 0.07 0.000
K=L=6 -0.002 0.05 -0.002 0.07 0.000

Linear IV with Cauchy ε

IV -0.132 7.16 -0.011 1.56 1.000
K=L=1 -0.001 0.00 0.003 0.27 0.000
K=L=2 0.002 0.01 0.004 0.08 0.000
K=L=3 0.000 0.02 0.003 0.07 0.000
K=L=4 0.003 0.02 0.007 0.07 0.000
K=L=5 0.005 0.02 0.007 0.06 0.000
K=L=6 0.009 0.02 0.012 0.07 0.000

Notes: In the first design, Y = Xβ0+ε with ε⊥X, X ∼ N(0, 1) and ε is standard Cauchy. In
the second design, Y = Xβ0 + ε with ε⊥Z, Z ∼ N(0, 1), X = Z + arctan(ε) + η, η ∼ N(0, 1)
and ε is standard Cauchy. The number of replications is set to 1000. The first column
contains the mean bias, the second contains the square root of the sampling variance of β̂,
the third contains the median of β̂− β0, the fourth contains the 75th quantile of β̂ minus its
25th quantile, and the last column contains the relative MSE of the estimator vs. the simple
estimator’s MSE.
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1.7 Proofs of Theorems and additional Lemmas

1.7.1 Efficiency Bound Calculations

Lemma 1.7.1 The nuisance tangent space in model (1.2) is given by:

Λ = Λ1s ⊕ Λ2s ⊕ Λ3s

where

Λ1s = [a1(W, ε,X) : E[a1(W, ε,X)|ε,X] = 0]

Λ2s = [a2(ε) : E[a2(ε)] = 0]

Λ3s = [a3(X) : E[a3(X)] = 0]

and these three subspaces are mutually orthogonal. Therefore projection of a zero-mean
function h on Λ is:

Π(h|Λ) = Π(h|Λ1s) + Π(h|Λ2s) + Π(h|Λ3s)

= h− E[h|ε,X] + E[h|ε] + E[h|X]

Proof. The density of the observed variables, fW,Y,X(w, y, x|θ) can be inverted to yield the
density of (W, ε,X) as such:

fW,Y,X(y, z, x|θ) = | ∂
∂y′

ρ(Y,W, θ)|fW,ε,X(w, ρ(y, w, θ), x)

= | ∂
∂y′

ρ(Y,W, θ)|fW |ε,X(w|ρ(y, w, θ), x)fε(ρ(y, w, θ))fX(x)

Consider this parametric submodel with three additional parameters:

| ∂
∂y′

ρ(Y,W, θ)|fW |ε,X(w|ρ(y, w, θ), x, γ1)fε(ρ(y, w, θ)|γ2)fX(x|γ3)
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and let γ10, γ20 and γ30 denote the true values of the submodel parameters. The parametric
submodel nuisance tangent spaces are, respectively:

Γγ1 = {BSγ1(W, ε,X) for all B}

Sγ1(W, ε,X) =
∂

∂γ1

log fW |ε,X(W |ε,X, γ10)

Γγ2 = {BSγ2(ε) for all B}

Sγ2(ε) =
∂

∂γ2

log fε(ε|γ20)

Γγ3 = {BSγ3(X) for all B}

Sγ3(X) =
∂

∂γ3

log fX(X|γ30)

Using results from Tsiatis (2006) Chapter 4, we get that the mean-square closures of the
nuisance tangent spaces are, respectively:

Λ1s = [a1(W, ε,X) : E[a1(W, ε,X)|ε,X] = 0]

Λ2s = [a2(ε) : E[a2(ε)] = 0]

Λ3s = [a3(X) : E[a3(X)] = 0]

We have Λ2s orthogonal to Λ3s by the independence of ε and X, and both Λ2s and
Λ3s are orthogonal to Λ1s by the fact that they are functions of the conditioning variables
involved the definition of Λ1s. The orthogonality of the subspaces allows us to write down
the projection on the direct sum of the subspaces as the sum of the projections on the three
subspaces. With Λ1s, Π(h|Λ1s) = h − E[h|ε,X] since for any a1(W, ε,X) ∈ Λ1s, we have
that:

E[a1(W, ε,X)′(h− Π(h|Λ1s))] = E[a1(W, ε,X)′E[h|ε,X]]

= E[E[a1(W, ε,X)|ε,X]′E[h|ε,X]]

= 0

For Λ2s, Π(h|Λ2s) = E[h|ε] since for any a2(ε) ∈ Λ2s, we have that:
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E[a2(ε)′(h− Π(h|Λ2s))] = E[a2(ε)′(h− E[h|ε])]
= E[a2(ε)′(E[h|ε]− E[h|ε])]
= 0

The proof for Λ3s is similar.
Proof of Lemma 1.2.2. The log-density of (Y,W,X) as a function of θ is equal to the
following:

fW,Y,X(W,Y,X|θ) = | ∂
∂y′

ρ(Y,W, θ)|fW,ε,X(W, ρ(Y,W, θ), X)

and the score of the log-likelihood with respect to θ evaluated at θ0 is:

Sθ(W, ε,X|θ0) =
∂

∂θ
log | ∂

∂y′
ρ(Y,W, θ)|θ=θ0 +

∂

∂θ
ρ(Y,W, θ)|θ=θ0

∂
∂ε
fW,ε,X(W, ε,X)

fW,ε,X(W, ε,X)

= J(Y,W, θ0) +
∂

∂θ
ρ(Y,W, θ)|θ=θ0

∂
∂ε
fW,ε,X(W, ε,X)

fW,ε,X(W, ε,X)

where J(Y,W, θ0) = ∂
∂θ

log | ∂
∂y′
ρ(Y,W, θ)|θ=θ0 is the Jacobian term. Projecting the score on

the nuisance tangent space and computing the residual, we obtain the efficient score:

Seff(X, ε, θ0) = E[Sθ(W, ε,X|θ0)|X, ε]− E[Sθ(W, ε,X|θ0)|X]− E[Sθ(W, ε,X|θ0)|ε]

= E[J(Y,W, θ0) + ρθ(Y,W, θ0)
∂
∂ε
fW,ε,X(W, ε,X)

fW,ε,X(W, ε,X)
|X, ε]−

E[J(Y,W, θ0) + ρθ(Y,W, θ0)
∂
∂ε
fW,ε,X(W, ε,X)

fW,ε,X(W, ε,X)
|X]

− E[J(Y,W, θ0) + ρθ(Y,W, θ0)
∂
∂ε
fW,ε,X(W, ε,X)

fW,ε,X(W, ε,X)
|ε]
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E[J(Y,W, θ0) + ρθ(Y,W, θ0)
∂
∂ε
fW,ε,X(W, ε,X)

fW,ε,X(W, ε,X)
|X, ε] = E[J(Y,W, θ0)|X, ε]+

E[ρθ(Y,W, θ0)|X, ε]f
′
ε(ε)

fε(ε)
+

∂

∂ε
E[ρθ(Y,W, θ0)|X, ε]

E[J(Y,W, θ0) + ρθ(Y,W, θ0)
∂
∂ε
fW,ε,X(W, ε,X)

fW,ε,X(W, ε,X)
|X] = 0

E[
∂

∂θ
ρ(Y,W, θ)|θ=θ0

∂
∂ε
fW,ε,X(W, ε,X)

fW,ε,X(W, ε,X)
|ε] = E[J(Y,W, θ0)|ε] + E[ρθ(Y,W, θ0)|ε]f

′
ε(ε)

fε(ε)

+
∂

∂ε
E[ρθ(Y,W, θ0)|ε]

and therefore the efficient score is,

Seff(X, ε, θ0) = E[J(Y,W, θ0)|X, ε]− E[J(Y,W, θ0)|ε] + h(X, ε)
f ′ε(ε)

fε(ε)
+

∂

∂ε
h(X, ε),

with
h(X, ε) = E[ρθ(Y,W, θ0)|X, ε]− E[ρθ(Y,W, θ0)|ε].

The efficient influence function and efficiency bound can both be computed directly using
the efficient score.

Lemma 1.7.2 The nuisance tangent space in model (1.1) is given by:

Λ = Λ1s ⊕ Λ2s ⊕ Λ3s ⊕ Λ4s

where
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Λ1s = [a1(W, ε,X, Z) : E[a1(W, ε,X, Z)|ε,X, Z] = 0]

Λ2s = [a2(ε, Z) : E[a2(ε, Z)|Z] = 0]

Λ3s = [a3(X,Z) : E[a3(X,Z)|Z] = 0]

Λ4s = [a4(Z) : E[a4(Z)] = 0]

and these four subspaces are mutually orthogonal. Therefore the projection of a zero-mean
function h on Λ is:

Π(h|Λ) = Π(h|Λ1s) + Π(h|Λ2s) + Π(h|Λ3s) + Π(h|Λ4s)

= h− E[h|ε,X, Z] + E[h|ε, Z] + E[h|X,Z]− E[h|Z]

Proof. The density of the observed variables, fW,Y,X,Z(w, y, x, z|θ) can be inverted to yield
the density of (W, ε,X, Z) as such:

fW,Y,X,Z(w, y, z, x|θ) = | ∂
∂y′

ρ(Y,W, θ)|fW,ε,X,Z(w, ρ(y, w, θ), x, z)

= | ∂
∂y′

ρ(Y,W, θ)|fW |ε,X,Z(w|ρ(y, w, θ), x, z)fε|z(ρ(y, w, θ)|z)fX|Z(x|z)fZ(z)

Consider this parametric submodel with four additional parameters:

| ∂
∂y′

ρ(Y,W, θ)|fW |ε,X,Z(z|ρ(y, z, θ), x, w, γ1)fε|Z(ρ(y, z, θ)|w, γ2)fX|Z(x|w, γ3)fZ(w|γ4)

and let γ10, γ20,γ30 and γ40 denote the true values of the submodel parameters. The
parametric submodel nuisance tangent spaces are, respectively:
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Γγ1 = {BSγ1(W, ε,X, Z) for all B}

Sγ1(W, ε,X, Z) =
∂

∂γ1

log fW |ε,X,Z(W |ε,X, Z, γ10)

Γγ2 = {BSγ2(ε, Z) for all B}

Sγ2(ε, Z) =
∂

∂γ2

log fε|Z(ε|Z, γ20)

Γγ3 = {BSγ3(X,Z) for all B}

Sγ3(X,Z) =
∂

∂γ3

log fX|Z(X|Z, γ30)

Γγ4 = {BSγ4(Z) for all B}

Sγ4(Z) =
∂

∂γ4

log fZ(Z|γ40)

Using results from Tsiatis (2006) Chapter 4, we get that the mean-square closures of the
nuisance tangent spaces are, respectively:

Λ1s = [a1(W, ε,X, Z) : E[a1(W, ε,X, Z)|ε,X, Z] = 0]

Λ2s = [a2(ε, Z) : E[a2(ε, Z)|Z] = 0]

Λ3s = [a3(X,Z) : E[a3(X,Z)|Z] = 0]

Λ4s = [a4(Z) : E[a4(Z)] = 0]

One can check directly that all these subspaces are mutually orthogonal. The orthog-
onality of the subspaces allows us to write down the projection on the direct sum of the
subspaces as the sum of the projections on the four subspaces.

Zith Λ1s, Π(h|Λ1s) = h− E[h|ε,X, Z] since for any a1(W, ε,X, Z) ∈ Λ1s, we have that:

E[a1(W, ε,X, Z)′(h− Π(h|Λ1s))] = E[a1(W, ε,X, Z)′E[h|ε,X, Z]]

= E[E[a1(W, ε,X, Z)|ε,X, Z]′E[h|ε,X, Z]]

= 0

For Λ2s, Π(h|Λ2s) = E[h|ε, Z]− E[h|Z] since for any a2(ε, Z) ∈ Λ2s, we have that:
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E[a2(ε, Z)′(h− Π(h|Λ2s))] = E[a2(ε, Z)′(h− E[h|ε, Z] + E[h|Z])]

= E[a2(ε, Z)′(E[h|ε, Z]− E[h|ε, Z] + E[h|Z])]

= E[a2(ε, Z)′E[h|Z]]

= E[E[a2(ε, Z)|Z]′E[h|Z]]

= 0

The proof for Λ3s is similar, and that for Λ4s is identical to that in the theorem concerning
unconditional independence.
Proof of Lemma 1.2.4. The log-density of (Y,W,X,Z) as a function of θ is equal to the
following:

fW,Y,X,Z(W,Y,X,Z|θ) = | ∂
∂y′

ρ(Y,W, θ)|fW,ε,X,Z(W, ρ(Y,W, θ), X, Z)

and the score of the log-likelihood with respect to θ evaluated at θ0 is:

Sθ(W, ε,X, Z|θ0) =
∂

∂θ
log | ∂

∂y′
ρ(Y,W, θ)|θ=θ0 + ρθ(Y,W, θ0)

∂
∂ε
fW,ε,X,Z(W, ε,X, Z)

fW,ε,X,Z(W, ε,X, Z)

= J(Y,W, θ0) + ρθ(Y,W, θ0)
∂
∂ε
fW,ε,X,Z(W, ε,X, Z)

fW,ε,X,Z(W, ε,X, Z)

Zhere J(Y,W, θ0) = ∂
∂θ

log | ∂
∂y′
ρ(Y,W, θ)|θ=θ0 is the Jacobian term. Projecting the score on

the nuisance tangent space and computing the residual, we obtain the efficient score:
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Seff(W,X, ε, Z) = E[J(Y,W, θ0) + Sθ(W, ε,X, Z|θ0)|X, ε, Z]−
E[J(Y,W, θ0) + Sθ(W, ε,X, Z|θ0)|X,Z]−
E[J(Y,W, θ0) + Sθ(W, ε,X, Z|θ0)|ε, Z]+

E[J(Y,W, θ0) + Sθ(W, ε,X, Z|θ0)|Z]

= E[J(Y,W, θ0) + ρθ(Y,W, θ0)
∂
∂ε
fW,ε,X,Z(W, ε,X, Z)

fW,ε,X,Z(W, ε,X, Z)
|X, ε, Z]

− E[J(Y,W, θ0) + ρθ(Y,W, θ0)
∂
∂ε
fW,ε,X,Z(W, ε,X, Z)

fW,ε,X,Z(W, ε,X, Z)
|X,Z]

− E[J(Y,W, θ0) + ρθ(Y,W, θ0)
∂
∂ε
fW,ε,X,Z(W, ε,X, Z)

fW,ε,X,Z(W, ε,X, Z)
|ε, Z]

+ E[J(Y,W, θ0) + ρθ(Y,W, θ0)
∂
∂ε
fZ,ε,X,W (Z, ε,X,W )

fZ,ε,X,W (Z, ε,X,W )
|Z]

E[J(Y,W, θ0) + ρθ(Y,W, θ0)
∂
∂ε
fW,ε,X,Z(W, ε,X, Z)

fW,ε,X,Z(W, ε,X, Z)
|X, ε, Z] = E[J(Y,W, θ0)|X, ε, Z]

+
∂

∂ε
E[ρθ(Y,W, θ0)|X, ε, Z]

+
f ′ε|Z(ε|Z)

fε|Z(ε|Z)
(E[ρθ(Y,W, θ0)|X, ε, Z]

E[J(Y,W, θ0) + ρθ(Y,W, θ0)
∂
∂ε
fW,ε,X,Z(W, ε,X, Z)

fW,ε,X,Z(W, ε,X, Z)
|X,Z] = 0

E[ρθ(Y,W, θ0)
∂
∂ε
fW,ε,X,Z(W, ε,X, Z)

fW,ε,X,Z(W, ε,X, Z)
|ε, Z] = E[J(Y,W, θ0)|ε, Z]

+
∂

∂ε
E[ρθ(Y,W, θ0)|ε, Z]

+
f ′ε|Z(ε|Z)

fε|Z(ε|Z)
(E[ρθ(Y,W, θ0)|ε, Z]

E[ρθ(Y,W, θ0)
∂
∂ε
fW,ε,X,Z(W, ε,X, Z)

fW,ε,X,Z(W, ε,X, Z)
|Z] = E[E[ρθ(Y,W, θ0)

∂
∂ε
fW,ε,X,Z(W, ε,X, Z)

fW,ε,X,Z(W, ε,X, Z)
|X,Z]|Z]

= E[0|Z] = 0
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and therefore the efficient score is,

Seff(X, ε, Z, θ0) = E[J(Y,W, θ0)|X, ε, Z]− E[J(Y,W, θ0)|ε, Z]+

h(X, ε, Z)
f ′ε|Z(ε|Z)

fε|Z(ε|Z)
+

∂

∂ε
h(X, ε, Z),

with
h(X, ε, Z) = E[ρθ(Y,W, θ0)|X, ε, Z]− E[ρθ(Y,W, θ0)|ε, Z].

The efficient influence function and efficiency bound can both be computed directly using
the efficient score.

Proof of Lemma 1.2.6. To prove the identification of θ0, consider the conditional
expectation of Y given X = x and Z = z:

E[Y |X = x, Z = z] = xθ0 + E[G0(Z,U)|X = x, Z = z].

If we assume that U⊥X|Z, we will have that

E[G0(Z,U)|X = x, Z = z] = E[G0(z, U)|Z = z],

and so θ0 =
∂

∂x
E[Y |X = x, Z = z]. If we assume U⊥(X,Z), we have that E[G0(z, U)] does

not depend on the value x, and therefore θ0 is identified here as well.
To make use of Lemma (1.2.4), we will show that U⊥X|Z if and only if G(Z,U) =

Y −Xθ0⊥X|Z. Let U⊥X|Z. Then,

P (G0(Z,U) < a|X = x, Z = z) = P (G0(z, U) < a|X = x, z = z)

= P (G0(z, U) < a|Z = z)

= P (G0(Z,U) < a|Z = z)

so that G0(Z,U)⊥X|Z if U⊥X|Z. Now, assume that G0(Z,U)⊥X|Z, which implies that:
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P (U < a|X = x, Z = z) = P (G0(Z,U) < G0(z, a)|X = x, Z = z)

= P (G0(z, Y ) < G0(z, a)|Z = z)

= P (Y < a|Z = z)

⇒U⊥X|Z.

We can now apply Lemma (1.2.4) and see that the efficiency bound is the one presented
in Lemma (1.2.6). Now, to show that the efficiency bound does not differ when we assume
U⊥(X,Z), we will use the following fact:

(U⊥X|Z and U⊥Z)⇔ U⊥(X,Z).

Define Ũ = Φ−1(FU |Z(U |Z)), where FU |Z(·) is the conditional CDF of U given Z, and Φ
is the CDF of a standard normal distribution. Since U is continuously distributed given
Z, we have that Ũ is N(0, 1) distributed, also independently from Z. Let G̃(Z, a) =
G(Z, (FU |Z(Φ(a)|Z))). G̃(Z, Ũ) = G(Z,U), and G̃(·) also satisfies Assumption (1.2.5) (a).

Ũ⊥Z by construction and we also have that Ũ⊥X|Z, which implies that Ũ⊥(X,Z). We
have therefore shown that we can renormalize the function G(·) so that U⊥Z without vio-
lating any of the assumptions necessary for this lemma, therefore, we can assume that U⊥Z
without loss of generality.

Lemma 1.7.3 The nuisance tangent space in model (1.3) is given by:

Λ = Λ1s ⊕ Λ2s

where

Λ1s = [a1(Y,X) : E[a1(Y,X)|Y, V ] = 0]

Λ2s = [a2(X) : E[a2(X)] = 0]

and these subspaces are mutually orthogonal. Therefore the projection of a zero-mean func-
tion h on Λ is:
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Π(h|Λ) = Π(h|Λ1s) + Π(h|Λ2s)

= E[h|Y, V ]− E[h|V ] + E[h|X] + E[h]

Proof. The density of the observed variables (Y,X) has the following decomposition:

fY,X(Y,X) = fY |X(Y |X)fX(X)

= fY |X,V (Y |X, V (X, θ))fX(X)

= fY |V (Y |V (X, θ))fX(X)

Consider this parametric submodel with parameters γ1 and γ2

fY |V (Y |V (X, θ), γ1)fX(X, γ2)

and let γ10 and γ20 denote the true value of the submodel parameters. The parametric
submodel nuisance tangent spaces are, respectively:

Γγ1 = {BSγ1(Y,X) for all B}

Sγ1(Y,X) =
∂

∂γ1

log fY |V (Y |V (X, θ0), γ10)

Γγ2 = {BSγ2(X) for all B}

Sγ2(X) =
∂

∂γ2

log fX(X|γ20)

Using results from Tsiatis (2006) Chapter 4, we get that the mean-square closures of the
nuisance tangent spaces are, respectively:

Λ1s = [a1(Y,X) : E[a1(Y,X)|V ] = 0 and a1(·) depends on X only through V ]

Λ2s = [a2(X) : E[a2(X)] = 0]

One can check directly that all these subspaces are orthogonal. The orthogonality of the
subspaces allows us to write down the projection on the direct sum of the subspaces as the
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sum of the projections on both subspaces.
With Λ1s, Π(h|Λ1s) = E[h|Y, V ]− E[h|V ] since for any a1(Y, V ) ∈ Λ1s, we have that:

E[a1(Y, V )′(h− Π(h|Λ1s))] = E[a1(Y, V )′(h− E[h|Y, V ] + E[h|V ])]

= E[a1(Y, V )′(E[h|Y, V ]− E[h|Y, V ] + E[h|V ])]

= E[a1(Y, V )′E[h|V ]]

= E[E[a1(Y, V )|V ]′E[h|V ]]

= 0,

and from previous results Π(h|Λ2s) = E[h|X]− E[h].
Proof of Lemma 1.3. The log-density of (Y,X) as a function of θ is equal to the following:

log fY,X(Y,X|θ) = log fY |V (Y |V (X, θ)) + log fX(X)

and the score of the log-likelihood with respect to θ evaluated at θ0 is:

Sθ(Y,X|θ0) = Vθ(X, θ0)

∂

∂V
fY |V (Y |V )

fY |V (Y |V )

Projecting the score on the nuisance tangent space, we obtain the efficient score:

Seff(Y,X, θ0) = Sθ(Y,X|θ0)− E[Sθ(Y,X|θ0)|Y, V ]+

E[Sθ(Y,X|θ0)|V ]− E[Sθ(Y,X|θ0)|X]

E[Sθ(Y,X|θ0)|Y, V ] = E[Vθ(X, θ0)|Y, V ]

∂

∂V
fY |V (Y |V )

fY |V (Y |V )

= E[Vθ(X, θ0)|V ]

∂

∂V
fY |V (Y |V )

fY |V (Y |V )

where the last equality comes from X⊥Y |V .
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E[Sθ(Y,X|θ0)|X] = Vθ(X, θ0)E

 ∂

∂V
fY |V (Y |V )

fY |V (Y |V )
|X


= Vθ(X, θ0)

∫ ∂

∂V
fY |V (y|V )

fY |V (y|V )
fY |X(y|X)dy

= Vθ(X, θ0)

∫ ∂

∂V
fY |V (y|V )

fY |V (y|V )
fY |V (y|V )dy

= Vθ(X, θ0)

∫
∂

∂V
fY |V (y|V )dy

= Vθ(X, θ0)
∂

∂V

∫
fY |V (y|V )dy

= 0

E[Sθ(Y,X|θ0)|V ] = E[E[Sθ(Y,X|θ0)|X, V ]|V ]

= E[E[Sθ(Y,X|θ0)|X]|V ]

= 0.

Therefore, the efficient score in this model is:

Seff(Y,X, θ0) = (Vθ(X, θ0)− E[Vθ(X, θ0)|V ])

∂

∂V
fY |V (Y |V )

fY |V (Y |V )
,

and the efficient influence function and variance bound can be computed directly using the
efficient score, completing the proof.

Lemma 1.7.4 The nuisance tangent space in model (1.4) is given by:

Λ = Λ1s ⊕ Λ2s ⊕ Λ3s ⊕ Λ4s

where
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Λ1s = [a1(W, ε,X) : E[a1(W, ε,X)|ε,X] = 0]

Λ2s = [a2(ε) : E[a2(ε)] = 0]

Λ3s = [a3(X) : E[a3(X)] = 0]

Λ4s =

a4(W, ε,X) = log | ∂
∂y′

ρ(Y,W, α0)|[w] +

∂

∂ε
fW,ε,X(W, ε,X)

fW,ε,X(W, ε,X)
ρ(Y,W, α0)[w], w ∈ F



and the first three subspaces are mutually orthogonal. Therefore, the projection of a zero-
mean function h on Λ is:

Π(h|Λ) = h−∆[w∗]− E[h−∆[w∗]|X, ε] + E[h−∆[w∗]|ε] + E[h−∆[w∗]|X]

where

∆[w] = log | ∂
∂y′

ρ(Y,W, α0)|[w] +

∂

∂ε
fW,ε,X(W, ε,X)

fW,ε,X(W, ε,X)
ρ(Y,W, α0)[w]

w∗ = argminw∈FE
[
(E[h−∆[w]|X, ε]− E[h−∆[w]|ε]− E[h−∆[w]|X])2]

Proof. The density of the observed variables, fW,Y,X(w, y, x|α) can be inverted to yield the
density of (W, ε,X) as such:

fW,Y,X(w, y, x|α) = | ∂
∂y′

ρ(Y,W, α)|fW,ε,X(w, ρ(y, w, α), x)

= | ∂
∂y′

ρ(Y,W, α)|fW |ε,X(w|ρ(y, w, α), x)fε(ρ(y, w, α))fX(x)

Consider this parametric submodel with four additional parameters:

| ∂
∂y′

ρ(Y,W, θ, F (·, γ4))|fW |ε,X(w|ρ(y, w, θ, F (·, γ4)), x, γ1)fε(ρ(y, w, θ, F (·, γ4))|γ2)fX(x|γ3)
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and let γ10, γ20, γ30 and γ40 denote the true values of the submodel parameters. The para-
metric submodel nuisance tangent spaces are, respectively:

Γγ1 = {BSγ1(W, ε,X) for all B}

Sγ1(W, ε,X) =
∂

∂γ1

log fW |ε,X(W |ε,X, γ10)

Γγ2 = {BSγ2(ε) for all B}

Sγ2(ε) =
∂

∂γ2

log fε(ε|γ20)

Γγ3 = {BSγ3(X) for all B}

Sγ3(X) =
∂

∂γ3

log fX(X|γ30)

Γγ4 = {BSγ4(W, ε,X) for all B}
Sγ4(W, ε,X) = ∆[w].

Using results from Tsiatis (2006) Chapter 4, we get that the mean-square closures of the
nuisance tangent spaces are, respectively:

Λ1s = [a1(W, ε,X) : E[a1(W, ε,X)|ε,X] = 0]

Λ2s = [a2(ε) : E[a2(ε)] = 0]

Λ3s = [a3(X) : E[a3(X)] = 0]

Λ4s = [∆[w] : w ∈ F ]

Using previous results, we see that Λ1s, Λ2s and Λ3s are mutually orthogonal. To show
that

Π(h|Λ) = h−∆[w∗]− E[h−∆[w∗]|X, ε] + E[h−∆[w∗]|ε] + E[h−∆[w∗]|X],

we will use the fact that the projection minimizes the expectation of the squared distance
between h and the projection of h onto Λ. We choose (a1(·), a2(·), a3(·),∆[·]) ∈ ×4

i=1Λis such
that

E
[
(h−∆[w]− a1(W, ε,X)− a2(ε)− a3(X))2]
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is minimized. The minimization over ×4
i=1Λis can be done sequentially, such that h−∆[w]

is projected on ×3
i=1Λis for any w ∈ F , and then this projection is further projected on Λ4s.

Using previous results, the projection of h−∆[w] on ×3
i=1Λis is

h−∆[w]− E[h−∆[w]|X, ε] + E[h−∆[w]|ε] + E[h−∆[w]|X],

and therefore,

w∗ = argminw∈FE
[
(h−∆[w]− E[h−∆[w]|X, ε] + E[h−∆[w]|ε] + E[h−∆[w]|X])2] .

Proof of Lemma 1.2.10. The log-density of (Y,W,X) as a function of α is equal to the
following:

fW,Y,X(W,Y,X|θ) = | ∂
∂y′

ρ(Y,W, α)|fW,ε,X(W, ρ(Y,W, α), X)

and the score of the log-likelihood with respect to θ evaluated at α0 is:

Sθ(W, ε,X|α0) =
∂

∂θ
log | ∂

∂y′
ρ(Y,W, α)|α=α0 + ρθ(Y,W, α0)

∂
∂ε
fW,ε,X(W, ε,X)

fW,ε,X(W, ε,X)

= J(Y,W, α0) + ρθ(Y,W, α0)
∂
∂ε
fW,ε,X(W, ε,X)

fW,ε,X(W, ε,X)

where J(Y,W, θ0) = ∂
∂θ

log | ∂
∂y′
ρ(Y,W, α)|α=α0 is the Jacobian term. Projecting the score on

the nuisance tangent space and computing the residual, we obtain the efficient score:

Seff(X, ε, α0) = E[Sθ(W, ε,X|α0)−∆[w∗]|X, ε]− E[Sθ(W, ε,X|θ0)−∆[w∗]|X]

−E[Sθ(W, ε,X|θ0)−∆[w∗]|ε]− E[Sθ(W, ε,X|θ0)−∆[w∗]|X] = 0

and therefore the efficient score is,
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Seff(X, ε, α0) = E[Sθ(W, ε,X|α0)−∆[w∗]|X, ε]− E[Sθ(W, ε,X|θ0)−∆[w∗]|ε]
= E[Sθ(W, ε,X|α0) + SF [w∗] + J [w∗]|X, ε]−
E[Sθ(W, ε,X|α0) + SF [w∗] + J [w∗]|ε].

The efficient influence function and efficiency bound can both be computed directly using
the efficient score.
Proof of lemma (1.3.3). (⇐): If X is independent from Y , then f(X) is independent
from g(Y ) for any functions f, g. Since independence implies uncorrelatedness, we are done.
(⇒): Let Z = (X, Y ), then H = F × G is a convergence determining class for Z. Let
Z̃ = (X̃, Ỹ ) where X̃ ( and Ỹ ) has the same distribution as X ( and Y ), but with X̃⊥Ỹ .
Then,

Cov (f(X), g(Y )) = 0 for all (f, g) ∈ F × G
⇒ E[f(X)g(Y )] = E[f(X)]E[g(Y )] for all (f, g) ∈ F × G

⇒ E[h(Z)] = E[h(Z̃)] for all h ∈ H

⇒ Z
d
= Z̃

Therefore, Z = (X, Y ) has independent marginal distributions.

1.7.2 Consistency under Unconditional Independence

Lemma 1.7.5 Let assumption 1.3.1 hold. Without loss of generality, we can assume that
E[qKi ] = 0,
E[qKi q

K′
i ] = IK and supx∈X ‖qK(x)‖ ≤ C

√
K. We can also assume that, E[ρL(θ)] = 0∀θ,

E[ρLi (θ0)ρLi (θ0)′] = IL and sup(w,y)∈W×Y ‖ρL(θ0)(y, w)‖ ≤ C
√
L.

Proof. Note that the projection based estimators are invariant to a linear transformation
of the rKi . Letting B1 = E[rKi r

K′
i ]−1/2, E[B1r

K
i (B1r

K
i )′] = IK , and supx∈X‖B1r

K
i ‖ ≤ C

√
K

where C is the inverse of the smallest eigenvalue of E[rKi r
K′
i ], which is bounded away from

0 by assumption. Letting B2 = (IK − E[rKi ]E[rKi ]′)−1/2, E[B2B1q
K
i (B2B1q

K
i )′] = IK . The

proof for ρL is similar.
Let R(θ) = ‖E[g(·, ·, θ)]‖2

Ω, where g(s, t, θ) = Cov
(
eisρ(Y,W,θ), eitX

)
and ‖g‖Ω denotes the

reproducing kernel Hilbert space norm of g. See Parzen (1959) for more details on Hilbert
spaces and reproducing kernel spaces.

Lemma 1.7.6 (Identification) R(θ) = 0⇒ θ = θ0
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Proof.

R(θ) = 0⇒ Ω−1/2E[g(·, ·, θ)] = 0

⇔ E[g(·, ·, θ)] = 0 Since Ω−1/2 is an invertible operator

⇔ Cov
(
eisρ(Y,W,θ), eitX

)
= 0 for all s, t ∈ R

⇔ ρ(Y,W, θ)⊥X since complex exponentials are a convergence determining class

⇔ θ = θ0 from the identifying assumption.

Lemma 1.7.7 (Continuity) R(θ) is continuous in θ for all θ ∈ Θ̃, a compact subset of the
parameter space Θ.

Proof.
Let Θ̃ = Θ∩{θ : R(θ) ≤ C}, where C is a constant such that 0 < C <∞. This restriction

is imposed to avoid having an infinite valued population objective function. Constraining
the parameter space in such a way is not restrictive, because it eliminates parameters for
which the population objective is extremely large. We rule out that R(θ) =∞ when θ 6= θ0

later through an assumption about the conditional density of ε and the residual function
ρ(·).

We have that

R(θ) = ‖Cov
(
eisρ(Y,W,θ), eitX

)
‖2

Ω

Cov
(
eisρ(Y,W,θ), eitX

)
= E[eisρ(Y,W,θ)eitX ]− E[eisρ(Y,W,θ)]E[eitX ]

= E[eisρ(m(ε,W,θ0),W,θ)eitX ]− E[eisρ(m(ε,W,θ0),W,θ)]E[eitX ]

m(·,W, θ) is the inverse function of ρ(·,W, θ), which exists and is differentiable by assumption
(1.3.4)(d).

E[eisρ(m(ε,W,θ0),W,θ)|X,W ] =

∫
eisρ(m(ε,W,θ0),W,θ)f(ε|X,W )dε
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Let u = ρ(m(ε,W, θ0),W, θ), which implies that ε = ρ(m(u,W, θ),W, θ0). Also, we see that

du =
∂

∂ε
ρ(m(ε,W, θ0),W, θ)dε

= g(ε,W, θ)dε

= g(ρ(m(u,W, θ),W, θ0),W, θ)dε.

Also note that g(ε,W, θ0) = 1. Therefore,

E[eisρ(m(ε,W,θ0),W,θ)|X,W ] =

∫
eisufε|X,W (ρ(m(W,u, θ),W, θ0)|X,W )

g(ρ(m(u,W, θ),W, θ0),W, θ)
du

=

∫
eisu

fε|X,W (ρ(m(W,u, θ),W, θ0)|X,W )

fε|X,W (u|X,W )
×

fε|X,W (u|X,W )

g(ρ(m(u,W, θ),W, θ0),W, θ)
du

since the conditional density of ε is non-zero

= E[eisε
fε|X,W (ρ(m(W, ε, θ),W, θ0)|X,W )

fε|X,W (ε|X,W )
×

1

g(ρ(m(ε,W, θ),W, θ0),W, θ)
|X,W ].

Let

U(X, ε, θ) = E[
fε|X,W (ρ(m(W, ε, θ),W, θ0)|X,W )

g(ρ(m(ε,W, θ),W, θ0),W, θ)fε|X,W (ε|X,W )
|X, ε]

Cov
(
eisρ(Y,W,θ), eitX

)
= E[U(X, ε, θ)eisεeitX ]− E[U(X, ε, θ)eisε]E[eitX ]

Using an argument similar to that in the proof of the efficiency bound equivalence, we see
that:

R(θ) = E[(U(X, ε, θ)− E[U(X, ε, θ)|ε])2].

By assumption (1.3.4), we have that E[U(X,W, ε)2] < ∞ on a neighborhood of θ0. To
show continuity, see that by assumptions (1.3.4)(c)-(e) fε|X,W (ρ(m(W, ε, θ),W, θ0)|X,W ) is

continuous in θ, and so is
1

g(ρ(m(ε,W, θ),W, θ0),W, θ)
. Therefore, U(X, ε, θ) is continuous in

θ, and R(θ) is continuous in θ on when R(θ) <∞. Note that this implies that Θ̃ = Θ∩ {θ :
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R(θ) ≤ C} is compact, since {θ : R(θ) ≤ C} is closed by the continuity of R(·) and bounded
by picking C small enough.

Let ΩKL(θ0) = E[ρLi (θ0)ρLi (θ0)′] ⊗ E[qKi q
K′
i ] and ̂̄ΩKL

(θ̃) = 1
N

∑N
i=1 ρ̂

L
i (θ̃)ρ̂Li (θ̃)′ ⊗ q̂Ki q̂K′i .

Also, let ‖A‖2 =
√

tr(A2) denote the Hilbert-Schimdt norm and ‖A‖∞ = λmax(A) be the
spectral norm of A, where λmax(A) is the largest eigenvalue of A, a symmetric matrix.

Lemma 1.7.8 Let ρL(θ) and qK be basis functions that satisfy assumption (1.3.1). Let

θ̃ − θ0 = Op(τN), then ‖̂̄ΩKL

(θ̃) − ΩKL(θ0)‖2
P−→ 0 if KLτN → 0,

√
KL

N

√
K
√
L → 0

and

√
KL

N

√
K +

√
L

N
→ 0 as N → ∞. Also, ‖ ˜̄ΩKL(θ̃)−1 − ΩKL(θ0)−1‖ P−→ 0 if if the same

rates for K and L are chosen.

Proof. Let

Ω1 = ΩKL(θ0)

= E[ρLi (θ0)ρLi (θ0)′]⊗ E[qKi q
K′
i ]

Ω2 =
1

N

N∑
i=1

ρLi (θ0)ρLi (θ0)′ ⊗ qKi qK′i

Ω3 =
1

N

N∑
i=1

ρLi (θ0)ρLi (θ0)′ ⊗ q̂Ki q̂K′i

Ω4 =
1

N

N∑
i=1

ρ̂Li (θ0)ρ̂Li (θ0)′ ⊗ q̂Ki q̂K′i

Ω5 = ̂̄ΩKL

(θ̃) =
1

N

N∑
i=1

ρ̂Li (θ̃)ρ̂Li (θ̃)′ ⊗ q̂Ki q̂K′i

By lemma (1.7.5), we assume without loss of generality

E[‖Ω2 − Ω1‖2
2] = E[‖ 1

N

N∑
i=1

ρLi (θ0)ρLi (θ0)′ ⊗ qKi (qKi )′ − E[ρLi (θ0)ρLi (θ0)′]⊗ E[qKi (qKi )′]‖2]

= E[‖ 1

N

N∑
i=1

Ai ⊗Bi − E[Ai]⊗ E[Bi]‖2]

where Ai = ρLi (θ0)ρLi (θ0)′, and WLOG, E[Ai] = IL. Similarly, Bi = qKi q
K′
i and E[Bi] =

IK . Let Ci = Ai ⊗ Bi − E[Ai] ⊗ E[Bi]. Using independence of Ai and Bi, we have that
E[Ci] = 0. Therefore:
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E[‖ 1

N

N∑
i=1

Ci‖2
2] =

1

N2
tr(

N∑
i=1

E[C2
i ] +

∑
i<j

E[CiCj])

=
1

N
trE[C2

i ]

=
1

N
tr(E[A2

i ⊗B2
i ]− E[Ai]

2 ⊗ E[Bi]
2)

=
1

N
tr(E[A2

i ]⊗ E[B2
i ]− IKL)

=
1

N
tr(E[A2

i ])tr(E[B2
i ])−

KL

N

=
1

N
E[‖ρLi (θ0)‖4]E[‖qKi ‖4]− KL

N

≤ 1

N

√
L

2
L
√
K

2
K − KL

N

≤ 1

N
K2L2

which implies, by Markov’s inequality, that ‖Ω2 − Ω1‖2 = Op(
KL√
N

).

E[‖Ω3 − Ω2‖2
2] = E[‖ 1

N

N∑
i=1

ρLi (θ0)ρLi (θ0)′ ⊗ (qKi q
K′
i − q̂Ki qK′i ‖2]

= E[‖ 1

N

N∑
i=1

Ai ⊗Bi‖2]

=
1

N
E[tr(A2

i )tr(B
2
i )] +

N − 1

N
E[(tr(AiAj)tr(BiBj)]

=
1

N
E[tr(A2

i )]E[tr(B2
i )] +

N − 1

N
E[(tr(AiAj)]E[tr(BiBj)]

Where Ai = ρLi (θ0)ρLi (θ0)′ and Bi = (qKi q
K′
i − q̂Ki q̂

K′
i ), and the last line follows from

the independence of Ai and Bi. Note that E[tr(A2
i )] = E[‖ρLi (θ0)‖4] ≤

√
L

2
L = L2, and

E[(tr(AiAj)] = tr(E[Ai]E[Aj]) = tr(IL) = L. Also:
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E[tr(B2
i )] = tr(E[(qKi q

K′
i − (qKi − q̄K)(qKi − q̄K)′)2])

= E[‖q̄K‖4]

=
1

N3
E[‖qKi ‖4] +

3(N − 1)K

N3

Also, since Bi and Bj are not independent, we need to expand the expression, and we
get the following:

tr(E[BiBj]) = tr(E[(qKi q
K′
i − (qKi − q̄K)(qKi − q̄K)′)(qKj q

K′
j − (qKj − q̄K)(qKj − q̄K)′)])

= 4tr(E[q̄K(q̄K)′qKi q
K′
j ])− 3E[‖q̄K‖4]

=
8K

N2
− 3

N3
E[‖qKi ‖4]− 9(N − 1)K

N3

Therefore,

E[‖Ω3 − Ω2‖2
2] =

1

N
E[‖ρLi (θ0)‖4](

1

N3
E[‖qKi ‖4] +

3(N − 1)K

N3
)+

N − 1

N
L(

8K

N2
− 3

N3
E[‖qKi ‖4]− 9(N − 1)K

N3
)

≤ Op(

√
L

2
L
√
K

2
K

N4
+

√
L

2
LK

N3
+
KL

N2
+
L
√
K

2
K

N3
)

⇒ ‖Ω3 − Ω2‖2 = Op(

√
L
√
K
√
LK

N2
+

√
KL(
√
K +

√
L)

N3/2
+

√
KL

N
)

So, using Markov’s inequality, we see that ‖Ω3 − Ω2‖2
P−→ 0 as long as

√
L
√
K
√
LK

N2
,

√
KL(
√
K +

√
L)

N3/2
and

√
KL

N
all go to 0 as N goes to infinity. Now,
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E[‖Ω4 − Ω3‖2
2] = E[‖ 1

N

N∑
i=1

(ρ̂Li (θ0)ρ̂Li (θ0)′ − ρLi (θ0)ρLi (θ0)′)⊗ q̂Ki q̂K′i ‖2]

= E[‖ 1

N

N∑
i=1

Ai ⊗Bi‖2]

=
1

N
E[tr(A2

i )tr(B
2
i )] +

N − 1

N
E[(tr(AiAj)tr(BiBj)]

=
1

N
E[tr(A2

i )]E[tr(B2
i )] +

N − 1

N
E[(tr(AiAj)]E[tr(BiBj)]

Using similarities between these set of expectations and the previous set, we can see that

E[tr(A2
i )] =

1

N3
E[‖ρLi (θ0)‖4] +

3(N − 1)L

N3
and E[(tr(AiAj)] =

8L

N2
− 3

N3
E[‖ρLi (θ0)‖4] −

9(N − 1)L

N3
.

Note that E[tr(B2
i )] = E[‖qKi ‖4](1 − 4

N
+

6

N2
− 3

N3
) + K(N − 1)(

6

N2
− 9

N3
). Also,

tr(E[BiBj]) = K(1 − 4

N
+ 2

N − 1

N2
+

8

N
− 9

N − 1

N3
) + E[‖qKi ‖4](

2

N2
− 3

N3
). Adding and

multiplying the non-dominated terms, we get that

E[‖Ω4 − Ω3‖2
2] ≤ 1

N4
(
√
L

2
L+NL)(

√
K

2
K +

K

N
) +

1

N2
(L−

√
L

2
L

1

N
)(K +

√
K

2
K

N2
)

⇒ ‖Ω4 − Ω3‖2 = Op(

√
L
√
K
√
LK

N2
+

√
KL(
√
K +

√
L)

N3/2
+

√
KL

N
)

Finally, by assumption (1.3.4), we have that ‖ρ̂Li (θ̃) − ρ̂Li (θ0)‖ ≤ δL(Wi)‖θ̃ − θ0‖ with
δL(Wi) = OP (

√
L), and therefore

‖Ω5 − Ω4‖2 ≤
1

N

N∑
i=1

‖ρ̂Li (θ̃)ρ̂Li (θ̃)′ − ρ̂Li (θ0)ρ̂Li (θ0)′‖‖q̂Ki q̂K′i ‖

≤ 1

N

N∑
i=1

(‖ρLi (θ0)‖‖δL(Yi,Wi)‖|θ̃ − θ0|+ ‖δL(Yi,Wi)‖2|θ̃ − θ0|2)‖qKi ‖2
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but, we have that ‖ρLi (θ0)‖ = Op(
√
L), ‖δL(Yi,Wi)‖ = Op(

√
L), |θ̃ − θ0| = Op(τN) and

‖qKi ‖2 = Op(
√
K

2
). Combining those, we get that:

‖Ω5 − Ω4‖ ≤ Op(
√
K

2√
L
√
LτN +

√
K

2
Lτ 2

N)

= Op(KLτN)

Using the Triangle inequality, we see that if ‖Ωi+1 − Ωi‖2
P−→ 0 for i ∈ {1, . . . , 4}, the

Hilbert-Schmidt norm of ˜̄ΩKL(θ̃)− ΩKL(θ0) will converge in probability to 0.
Also, ‖Ω−1

5 − Ω−1
1 ‖2 = ‖Ω−1

5 (Ω1 − Ω5)Ω−1
1 ‖2 ≤ ‖Ω−1

5 ‖∞‖Ω1 − Ω5‖2‖Ω−1
1 ‖∞. We as-

sumed that the minimum eigenvalue of Ω1 was uniformly bounded away from 0, therefore
‖Ω−1

1 ‖∞ = Op(1). Also, we have that |λmin(Ω5) − λmin(Ω1)| ≤ ‖Ω1 − Ω5‖2, and therefore
λmin(Ω5) = Op(1) + Op(‖Ω1 − Ω5‖2), which is also Op(1) assuming the rate condition is

satisfied. Therefore, we also have that ‖Ω−1
5 − Ω−1

1 ‖2
P−→ 0.

Lemma 1.7.9 ‖ˆ̄gKL(θ)− E[gKL(θ)]‖ P−→ 0 if

√
KL

N
→ 0 as N →∞.

Proof. Let

g1 = ˆ̄gKL(θ)

=
1

N

N∑
i=1

ρ̂Li (θ)⊗ qKi

g2 =
1

N

N∑
i=1

ρLi (θ)⊗ qKi

g3 = E[ρLi (θ)⊗ qKi ]

= E[gKL(θ)]

then ‖g1 − g3‖ ≤ ‖g1 − g2‖+ ‖g2 − g3‖, and:
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‖g1 − g2‖ = ‖ 1

N

N∑
i=1

(pLi (θ)− pLi (θ)− (
1

N

N∑
j=1

pLj (θ)− E[pLj (θ)]))⊗ qKi ‖

= ‖ 1

N

N∑
i=1

(pLi (θ)− E[pLi (θ)])‖‖ 1

N

N∑
i=1

qKi ‖

= ‖ 1

N

N∑
i=1

ρLi (θ)‖‖ 1

N

N∑
i=1

qKi ‖

≤ Op(

√
L

N
)Op(

√
K

N
)

= Op(

√
KL

N
)

‖g2 − g3‖ = ‖ 1

N

N∑
i=1

(ρLi (θ)⊗ qKi − E[ρLi (θ)⊗ qKi ])‖

≤ Op(

√
KL

N
).

Therefore, using the triangle inequality, ‖ˆ̄gKL(θ)− E[gKL(θ)]‖ P−→ 0.

Lemma 1.7.10 R̂(θ)
P−→ R(θ) for all θ ∈ Θ̃ if K2L2(τN + 1√

N
)→ 0 as N →∞.

Proof. Let
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R1(θ) = R̂KL(θ)

= ˆ̄gKL(θ)′ ˆ̄ΩKL(θ̃)−1 ˆ̄gKL(θ)

R2(θ) = ˆ̄gKL(θ)′ΩKL(θ0)−1 ˆ̄gKL(θ)

R3(θ) = E[gKL(θ)]′ΩKL(θ0)−1E[gKL(θ)]

R4(θ) = R(θ)

|R1(θ)−R2(θ)| = |ˆ̄gKL(θ)′( ˆ̄ΩKL(θ̃)−1 − ΩKL(θ0)−1)ˆ̄gKL(θ)|

≤ ‖ˆ̄gKL(θ)‖2‖ ˆ̄ΩKL(θ̃)−1 − ΩKL(θ0)−1‖

= (‖gKL(θ)‖+ ‖ˆ̄gKL(θ)− E[gKL(θ)]‖)2‖ ˆ̄ΩKL(θ̃)−1 − ΩKL(θ0)−1‖

= (Op(
√
K
√
L) +Op(

√
KL

N
))2×

Op(KLτN +

√
KL

N

√
K
√
L+

√
KL

N

√
K +

√
L

N
)

also, we have that:

|R2(θ)−R3(θ)| ≤ |(ˆ̄gKL(θ)− E[gKL(θ)])′ΩKL(θ0)−1(ˆ̄gKL(θ)− E[gKL(θ)])|
≤ ‖ˆ̄gKL(θ)− E[gKL(θ)]‖2‖ΩKL‖

= Op(

√
KL

N
)2Op(

√
KL)

= Op(
K3/2L3/2

N
)

Finally,

|R3(θ)−R4(θ)| = |‖E[gKL(θ)]‖2
ΩKL − ‖E[g(·, ·, θ)]‖2

Ω

P−→ 0

where ‖g‖2
ΩKL = g′ΩKL−1

g, and if K and L → ∞. The proof of this fact can be found in
Parzen (1959), and relies on assumption (1.3.1)(c). Using the triangle inequality, we have

shown that R̂KL(θ)
P−→ R(θ) for all θ ∈ Θ̃.
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Proof of Theorem (1.3.5). Using lemmas (1.7.7), (1.7.6),(1.7.10) and assumption (1.3.4)
we have the following:

• Compact parameter space Θ̃

• R(θ) is continuous on Θ̃

• |R̂KL(θ)− R̂KL(θ′)| ≤ D̂|θ − θ′|α with D̂ = Op(1)

• R̂KL(θ)
P−→ R(θ) for all θ ∈ Θ̃

By Newey and McFadden (1994), 3 and 4 imply uniform convergence of R̂KL(θ) to R(θ)
which then implies consistency of the estimator.

1.7.3 Asymptotic Normality under Unconditional Independence

Let ˆ̄G(θ) = 1
N

∑N
i=1 ρ̂

L
iθ(θ)⊗ q̂Ki , Ḡ(θ) = 1

N

∑N
i=1 ρ

L
iθ(θ)⊗ qKi and G(θ) = E[ρLiθ(θ)⊗ qKi ]. Also,

Lemma 1.7.11 ‖ ˆ̄G(θ̃) − E[G(θ0)]‖ P−→ 0 if τN
√
KL +

√
KL

N
→ 0 as N → ∞, where

‖θ̃ − θ0‖ = Op(τN).

Proof.

‖ ˆ̄G(θ̃)− ˆ̄G(θ0)‖ = ‖ 1

N

N∑
i=1

(ρ̂Liθ(θ̃)− ρ̂Liθ(θ))⊗ (ei
~tLXi − 1

N

N∑
j=1

ei
~tLXj)‖

≤ 1

N

N∑
i=1

‖ρ̂Liθ(θ̃)− ρ̂Liθ(θ)‖‖ei
~tLXi − 1

N

N∑
j=1

ei
~tLXj‖

≤ |θ̃ − θ0|
1

N

N∑
i=1

δ̃L(Wi)‖ei
~tLXi − 1

N

N∑
j=1

ei
~tLXj‖

= Op(τN
√
LK).

Also, by arguments similar to those in (1.7.9), we will have that

‖ ˆ̄G(θ0)− Ḡ(θ0)‖ = Op(

√
K
√
L√

N
)

‖Ḡ(θ0)− E[G(θ0)]‖ = Op(

√
K
√
L√

N
)
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Using the triangle inequality, we see that the rate condition stated in the lemma is

sufficient to ensure that ‖ ˆ̄G(θ̃)− E[G(θ0)]‖ P−→ 0.

Lemma 1.7.12 The efficiency bound from the continuum of moment conditions is equal to

that computed using the projection method. ‖ ∂
∂θ
g(θ0)‖−2

Ω = V −1
eff (θ0)

Proof.

‖ ∂
∂θ
g(θ0)‖2

Ω = (
∂

∂θ
g(θ0),Ω−1 ∂

∂θ
g(θ0))

∂

∂θ
g(s, t, θ0) = Cov

(
isρθ(Y,W, θ0)eisε, eitX

)
= E[iseisεW (X, ε)eitX ]− E[iseisεW (X, ε)]E[eitX ]

where W (X, ε) = E[ρθ(W, θ0)|X, ε].

= E[iseisεW (X, ε)eitX ]− E[iseisεW (X, ε)]E[eitX ]

= −
∫ ∫

Wε(X, ε)fε(ε) +W (X, ε)f ′ε(ε)

fε(ε)
eitXeisεdεdX+∫ ∫

Wε(X, ε)fε(ε) +W (X, ε)f ′ε(ε)

fε(ε)
eisεdεE[eitX ]

= −(E[Λ(X, ε)eitXeitε]− E[Λ(X, ε)eitε]E[eitX ]

where Λ(X, ε) =
Wε(X, ε)fε(ε) +W (X, ε)f ′ε(ε)

fε(ε)
.

Using the Fourier transform, we can write:

Λ(X, ε) =

∫ ∫
eit
′X+is′εΛ̃(s′, t′)ds′dt′

where Λ̃ is the Fourier transform of Λ. Therefore,
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= −(E[Λ(X, ε)eitXeitε]− E[Λ(X, ε)eitε]E[eitX ]

= −
∫ ∫ ∫ ∫

ei(s+s
′)εei(t+t

′)XdεdXΛ̃(s′, t′)ds′dt′+∫ ∫ ∫ ∫
ei(s+s

′)εeit
′XdεdXΛ̃(s′, t′)ds′dt′E[eitX ]

= −ΩΛ̃(s, t)

Therefore,

‖ ∂
∂θ
g(θ0)‖2

Ω = (ΩΛ̃,Ω−1ΩΛ̃) = (ΩΛ̃, Λ̃), and then:

(ΩΛ̃, Λ̃) =

∫ ∫
ΩΛ̃(s, t)Λ̃(s, t)dsdt

=

∫ ∫ ∫ ∫
k(s′, t′, s, t)Λ̃(s′, t′)Λ̃(s, t)dsds′dtdt′

=

∫
· · ·
∫
ei(s+s

′)εei(t+t
′)XΛ̃(s′, t′)Λ̃(s, t)fX(X)fε(ε)dsds

′dtdt′dXdε−∫
· · ·
∫
ei(s+s

′)εeitX+it′X′Λ̃(s′, t′)Λ̃(s, t)fX(X)fε(ε)dsds
′dtdt′dXdX ′dε

=

∫ ∫
Λ(X, ε)2fX(X)fε(ε)dXdε−∫ ∫ ∫
Λ(X, ε)Λ(X ′, ε)fX(X)fX(X ′)fε(ε)dXdX

′dε

= E[Λ(X, ε)2]− E[E[Λ(X, ε)|ε]2]

= V −1
eff

Lemma 1.7.13 If, K2L2(τN + 1√
N

)→ 0, then
√
N(θ̂ − θ0)

d−→ N(0, Veff).

Proof. We have that
√
N(θ̂ − θ0) = −

√
N
∂

∂θ
R̂KL(θ0)(

∂2

∂θ2
R̂KL(θ̄))−1, with θ̄ in between θ0

and θ̂. We can see that:
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∂2

∂θ2
R̂KL(θ̄) = 2 ˆ̄G(θ̄)′ ˆ̄ΩKL(θ̃)−1 ˆ̄G(θ̄) + 2 ˆ̄Gθ(θ̄)

′ ˆ̄ΩKL(θ̃)−1 ˆ̄g(θ̄)

| ˆ̄G(θ̄)′ ˆ̄ΩKL(θ̃)−1 ˆ̄G(θ̄)− ‖E[G(·, θ0)]‖2
Ω| ≤ | ˆ̄G(θ̄)′ ˆ̄ΩKL(θ̃)−1 ˆ̄G(θ̄)− ˆ̄G(θ0)′ ˆ̄ΩKL(θ0)−1 ˆ̄G(θ0)|

+ | ˆ̄G(θ0)′ ˆ̄ΩKL(θ0)−1 ˆ̄G(θ0)− ˆ̄G(θ0)′ΩKL(θ0)−1 ˆ̄G(θ0)|

+ | ˆ̄G(θ0)′ΩKL(θ0)−1 ˆ̄G(θ0)−G(θ0)′ΩKL(θ0)−1G(θ0)|
+ |G(θ0)′ΩKL(θ0)−1G(θ0)− ‖E[G(·, θ0)]‖2

Ω|
= (1) + (2) + (3) + (4)

(1) ≤ 2| ˆ̄G(θ0)′ ˆ̄ΩKL(θ̃)−1 ˆ̄G(θ̄)+

( ˆ̄G(θ̄)− ˆ̄G(θ0))′ ˆ̄ΩKL(θ̃)−1( ˆ̄G(θ̄)− ˆ̄G(θ0))|
≤ Op(

√
NKL) +Op(NKL)

= Op(
√
NKL)

(2) ≤ Op(τNK
2L2)

(3) ≤ Op(
KL

N
)

(4) = oP (1)

ˆ̄Gθ(θ̄)
′ ˆ̄ΩKL(θ̃)−1 ˆ̄g(θ̄) ≤ ‖ ˆ̄Gθ(θ̄)‖‖ ˆ̄ΩKL(θ̃)−1‖∞‖ˆ̄g(θ̄)‖

≤ Op(
√
KL)Op(1)Op(τN

√
KL)‖

Also,

√
N
∂

∂θ
R̂KL(θ0) = 2 ˆ̄G(θ0)′ ˆ̄ΩKL(θ̃)−1 ˆ̄g(θ0)‖

√
N ˆ̄G(θ̄)′ ˆ̄ΩKL(θ̃)−1 ˆ̄g(θ0)−

√
NE[GKL(θ0)]′ΩKL(θ0)−1ḡ(θ0)‖
P−→ 0

since,
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√
N‖ ˆ̄G(θ̄)′ ˆ̄ΩKL(θ̃)−1 ˆ̄g(θ0)−E[GKL(θ0)]′ ˆ̄ΩKL(θ̃)−1 ˆ̄g(θ0)‖ ≤

√
N‖ ˆ̄G(θ0)− E[GKL(θ0)]‖‖ ˆ̄ΩKL(θ̃)−1‖‖ˆ̄g(θ0)‖

=
√
NOp(τN

√
KL+

√
KL

N
)Op(KL)Op(τN

√
KL+

√
KL

N
)

P−→ 0

√
N‖E[GKL(θ0)]′ ˆ̄ΩKL(θ̃)−1 ˆ̄g(θ0)− E[GKL(θ0)]′ΩKL(θ0)−1ḡ(θ0)‖ ≤

√
N‖E[GKL(θ0)]‖

·‖ ˆ̄ΩKL(θ̃)−1 ˆ̄g(θ0)− ΩKL(θ0)−1ḡ(θ0)‖

=
√
NOp(

√
KL)Op(

K3/2L3/2τN√
N

)

P−→ 0.

If these conditions are satisfied,
√
NE[GKL(θ0)]′ΩKL(θ0)−1ḡ(θ0) converges by a standard

CLT to a N(0, V −1
eff ) random variable. Combining these two facts, we get the result.

1.7.4 Consistency under Conditional Independence

Let g(s, t, u, θ) = eisρ(Y,W,θ)(eitX − E[eitX |Z])eiuZ , and let Ω be the operator defined by
the kernel k(s, t, u, s′, t′, u′) = E[Cov

(
eisε, eis

′ε|Z
)

Cov
(
eitX , eit

′X |Z
)
ei(u+u′)Z ]. Let R(θ) =

‖E[g(·, ·, ·, θ)]‖2
Ω.

Lemma 1.7.14 (Identification) R(θ) = 0⇒ θ = θ0

Proof.

R(θ) = 0⇒ Ω−1/2E[g(·, ·, ·θ)] = 0

⇔ E[g(·, ·, ·, θ)] = 0 Since Ω−1/2 is an invertible operator

⇔ Cov
(
eisρ(Y,W,θ), eitX |Z

)
= 0 for all s, t ∈ R

⇔ ρ(Y,W, θ)⊥X|Z :complex exponentials are a convergence determining class

⇔ θ = θ0 from the identifying assumption.
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Lemma 1.7.15 (Continuity) R(θ) is continuous in θ for all θ ∈ Θ̃, a compact subset of
the parameter space Θ.

Proof.
Proof is similar to that of (1.7.7), and uses the smoothness in ρ(·, ·, θ) and the conditional

density of ε given Z
Let pLi (θ) denote the basis for ρ(Y,W, θ), qKi the basis for X and tMi the basis for W . Let

λ(K,Z) = E[qKi |Z], and λ̂(K,Z) be its estimate. Let

̂̄ΩKLM

(θ) =
1

N

N∑
i=1

pLi (θ)pLi (θ)′ ⊗ (qKi − λ̂(K,Z))(qKi − λ̂(K,Z))′ ⊗ tMi tM ′i ,

Ω̄KLM(θ) =
1

N

N∑
i=1

pLi (θ)pLi (θ)′ ⊗ (qKi − λ(K,Z))(qKi − λ(K,W ))′ ⊗ tMi tM ′i ,

ΩKLM(θ) = E[pLi (θ)pLi (θ)′ ⊗ (qKi − λ(K,Z))(qKi − λ(K,Z))′ ⊗ tMi tM ′i ].

Lemma 1.7.16 Let θ̃ − θ0 = Op(τN), and ‖λ̂(K,Z)− λ(K,Z)‖ = Op(νN), and then

‖̂̄ΩKLM

(θ̃) − ΩKLM(θ0)‖2
P−→ 0 if KLMτN → 0,

√
KLM

N

√
K
√
Lζ(M) → 0, LM

√
KνN +

LMν2
N

and

√
KLM

N

√
K +

√
L+ ζ(M)

N
→ 0 Also, ‖̂̄ΩKLM

(θ̃)−1 − ΩKLM(θ0)−1‖2
P−→ 0 if the same

rates for K and L are chosen.

Proof. Let

Ω1 = ΩKLM(θ0)

Ω2 = Ω̄KLM(θ0)

Ω3 = Ω̄KLM(θ̃)

Ω4 = ̂̄ΩKLM

(θ̃)

By arguments similar to those in the proof of (1.7.8), we will have that ‖Ω3 − Ω1‖2
P−→ 0

when KLMτN → 0,

√
KLM

N

√
K
√
Lζ(M) → 0 and

√
KLM

N

√
K +

√
L+ ζ(M)

N
→ 0. Let

us now conisder ‖Ω4 − Ω3‖2:
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‖Ω4 − Ω3‖2 ≤
1

N

N∑
i=1

‖pLi (θ̃)pLi (θ̃)′‖2‖(qKi − λ̂(K,Z))(qKi − λ̂(K,Z))′−

(qKi − λ(K,Z))(qKi − λ(K,Z))′‖2×
‖tMi tM ′i ‖2

≤ Op(LM)
1

N

N∑
i=1

(2‖qKi (λ̂(K,Z)− λ(K,Z))′‖2+

2‖λ(K,Z)(λ̂(K,Z)− λ(K,Z))′‖2 + ‖(λ̂(K,Z)− λ(K,Z))(λ̂(K,Z)− λ(K,Z))′‖2)

≤ Op(LM)
1

N

N∑
i=1

(4
√
KνN + ν2

N)

= Op(LM
√
KνN + LMν2

N)

Lemma 1.7.17 ‖ˆ̄gKLM(θ)−E[gKL(θ)]‖ P−→ 0 if

√
KLM

N
→ 0 and

√
LMνN → 0 as N →∞.

Proof. Let

g1 = ˆ̄gKLM(θ)

=
1

N

N∑
i=1

pLi (θ)⊗ (qKi − λ̂(K,Z))⊗ tMi

g2 =
1

N

N∑
i=1

pLi (θ)⊗ (qKi − λ(K,Z))⊗ tMi

g3 = E[ρLi (θ)⊗ (qKi − λ(K,Z))⊗ tMi ]

= E[gKLM(θ)]

then ‖g1 − g3‖ ≤ ‖g1 − g2‖+ ‖g2 − g3‖, and:
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‖g1 − g2‖ = ‖ 1

N

N∑
i=1

pLi (θ)⊗ (λ(K,Z)− λ̂(K,Z))⊗ tMi ‖

≤ 1

N

N∑
i=1

‖pLi (θ)‖‖λ(K,Z)− λ̂(K,Z)‖‖tMi ‖

= Op(
√
KMνN)

‖g2 − g3‖ ≤ Op(

√
KLM

N
).

Therefore, using the triangle inequality, ‖ˆ̄gKLM(θ)− E[gKLM(θ)]‖ P−→ 0.

Lemma 1.7.18 R̂(θ)
P−→ R(θ) for all θ ∈ Θ̃ if K2L2M2(τN + 1√

N
)→ 0 and

(
√
K
√
Lζ(M))2LMν2

N → 0 as N →∞.

Proof. The proof uses lemmas (1.7.17) and (1.7.16), and is analogous to that of lemma
(1.7.10).
Proof of Theorem (1.3.7). Using lemmas (1.7.15), (1.7.14),(1.7.18) and assumptions
(1.3.6) we have the following:

• Compact parameter space Θ̃

• R(θ) is continuous on Θ̃

• |R̂KLM(θ)− R̂KLM(θ′)| ≤ D̂|θ − θ′|α with D̂ = Op(1)

• R̂KLM(θ)
P−→ R(θ) for all θ ∈ Θ̃

By Newey and McFadden (1994), 3 and 4 imply uniform convergence of R̂KLM(θ) to R(θ)
which then implies consistency of the estimator.

1.7.5 Asymptotic normality under Conditional Independence

Let ˆ̄G(θ) = 1
N

∑N
i=1 p

L
iθ(θ)⊗(qKi −λ̂(K,W ))⊗tMi , Ḡ(θ) = 1

N

∑N
i=1 p

L
iθ(θ)⊗(qKi −λ(K,W ))⊗tMi

and G(θ) = E[pLiθ(θ)⊗ (qKi − λ(K,W ))⊗ tMi ].

Lemma 1.7.19 ‖ ˆ̄G(θ̃)−E[G(θ0)]‖ P−→ 0 if τN
√
KLM +

√
KLM

N
+LMνN → 0 as N →∞,

where ‖θ̃ − θ0‖ = Op(τN).
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Proof. The proof is analogous to (1.7.11).

Lemma 1.7.20 The efficiency bound from the continuum of moment conditions is equal to

that computed using the projection method. ‖ ∂
∂θ
g(θ0)‖−2

Ω = V −1
eff (θ0)

Proof.

‖ ∂
∂θ
g(θ0)‖2

Ω = (
∂

∂θ
g(θ0),Ω−1 ∂

∂θ
g(θ0))

∂

∂θ
g(s, t, u, θ0) = E[Cov

(
isρθ(Y,W, θ0)eisε, eitX |Z

)
eiuZ ]

= E[iseisεV (X, ε, Z)eitXeiuZ ]− E[E[iseisεV (X, ε, Z)|Z]E[eitX |Z]eiuZ ]

where V (X, ε,W ) = E[ρθ(Y,W, θ0)|X, ε, Z].

= E[iseisεV (X, ε, Z)eitXeiuZ ]− E[E[iseisεV (X, ε, Z)|Z]E[eitX |Z]eiuZ ]

= −(E[Λ(X, ε, Z)eitXeitεeiuZ ]− E[E[Λ(X, ε, Z)eitε|Z]E[eitX |Z]eiuZ ]

where Λ(X, ε, Z) =
Vε(X, ε, Z)fε|Z(ε|Z) + V (X, ε, Z)f ′ε|Z(ε|Z)

fε|Z(ε|Z)
.

Using the Fourier transform, we can write:

Λ(X, ε,W ) =

∫ ∫ ∫
eit
′X+is′ε+iu′W Λ̃(s′, t′, u′)ds′dt′du′

where Λ̃ is the Fourier transform of Λ. Therefore,

= −(E[Λ(X, ε, Z)eitXeitεeiuZ ]− E[E[Λ(X, ε, Z)eitε|Z]E[eitX |Z]eiuZ ]

= −
∫
· · ·
∫
ei(s+s

′)εei(t+t
′)Xei(u+u′)Zf(ε,X, Z)dεdXdZΛ̃(s′, t′, u′)ds′dt′du′

+

∫
· · ·
∫
ei(s+s

′)εeit
′Xf(ε|Z)dεf(X|Z)dXE[eitX |Z]ei(u+u′)Zf(Z)dZΛ̃(s′, t′, u′)ds′dt′du′

= −ΩΛ̃(s, t, u)

Therefore,
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‖ ∂
∂θ
g(θ0)‖2

Ω = (ΩΛ̃,Ω−1ΩΛ̃) = (ΩΛ̃, Λ̃), and then:

(ΩΛ̃, Λ̃) =

∫ ∫ ∫
ΩΛ̃(s, t, u)Λ̃(s, t)dsdtdu

=

∫ ∫ ∫ ∫ ∫ ∫
k(s′, t′, u′, s, t, u)Λ̃(s′, t′, u′)Λ̃(s, t, u)dsds′dtdt′dudu′

= E[Λ(X, ε, Z)2]− E[E[Λ(X, ε, Z)|ε, Z]2]

= V −1
eff

Lemma 1.7.21 If K2L2M2(τN + 1√
N

)→ 0 as N →∞, then
√
N(θ̂ − θ0)

d−→ N(0, Veff).

Proof. We have that
√
N(θ̂ − θ0) = −

√
N
∂

∂θ
R̂KLM(θ0)(

∂2

∂θ2
R̂KLM(θ̄))−1, with θ̄ lying

between θ0 and θ̂. We can see that:

∂2

∂θ2
R̂KLM(θ̄) = 2 ˆ̄G(θ̄)′ ˆ̄ΩKLM(θ̃)−1 ˆ̄G(θ̄) + 2 ˆ̄Gθ(θ̄)

′ ˆ̄ΩKLM(θ̃)−1 ˆ̄g(θ̄)

| ˆ̄G(θ̄)′ ˆ̄ΩKLM(θ̃)−1 ˆ̄G(θ̄)− ‖E[G(·, θ0)]‖2
Ω| ≤ | ˆ̄G(θ̄)′ ˆ̄ΩKLM(θ̃)−1 ˆ̄G(θ̄)− ˆ̄G(θ0)′ ˆ̄ΩKLM(θ̃)−1 ˆ̄G(θ0)|

+ | ˆ̄G(θ0)′ ˆ̄ΩKL(θ̃)−1 ˆ̄G(θ0)− ˆ̄G(θ0)′ΩKLM(θ0)−1 ˆ̄G(θ0)|

+| ˆ̄G(θ0)′ΩKLM(θ0)−1 ˆ̄G(θ0)−G(θ0)′ΩKLM(θ0)−1G(θ0)|
+ |G(θ0)′ΩKLM(θ0)−1G(θ0)− ‖E[G(·, θ0)]‖2

Ω|
= (1) + (2) + (3) + (4)

(1) ≤ Op(
KLM√

N
) +Op(

KLM

N
)

= Op(
KLM√

N
)

(2) ≤ Op(K
2L2M2τN +KL2M2ν2

N)

(3) ≤ Op(
KLM

N
)

(4) = oP (1)

ˆ̄Gθ(θ̄)
′ ˆ̄ΩKLM(θ̃)−1 ˆ̄g(θ̄) ≤ ‖ ˆ̄Gθ(θ̄)‖‖ ˆ̄ΩKLM(θ̃)−1‖∞‖ˆ̄g(θ̄)‖

≤ Op(
√
KLM)Op(1)Op(τN

√
KLM + νN

√
LM)‖
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Also,

√
N
∂

∂θ
R̂KLM(θ0) = 2 ˆ̄G(θ0)′ ˆ̄ΩKLM(θ̃)−1 ˆ̄g(θ0)‖

√
N ˆ̄G(θ̄)′ ˆ̄ΩKLM(θ̃)−1 ˆ̄g(θ0)−

√
NE[G(θ0)]′ΩKLM(θ0)−1ḡ(θ0)‖
P−→ 0

since,

√
N‖ ˆ̄G(θ̄)′ ˆ̄ΩKLM(θ̃)−1 ˆ̄g(θ0)− E[G(θ0)]′ ˆ̄ΩKLM(θ̃)−1 ˆ̄g(θ0)‖ ≤

√
N‖ ˆ̄G(θ0)− E[G(θ0)]‖‖ ˆ̄ΩKLM(θ̃)−1‖∞‖ˆ̄g(θ0)‖

=
√
NOp(τN

√
KLM +

√
KLM

N
+
√
LMνN)×

Op(1)Op(τN
√
KLM +

√
KLM

N
+
√
LMνN)

P−→ 0

√
N‖E[G(θ0)]′ ˆ̄ΩKLM(θ̃)−1 ˆ̄g(θ0)− E[GKL(θ0)]′ΩKLM(θ0)−1ḡ(θ0)‖ ≤

√
NOp(

√
KLM)Op

(
K3/2L3/2M3/2τN +K1/2L3/2M3/2νN√

N

)
P−→ 0

if these conditions are satisfied,
√
NE[G(θ0)]′ΩKLM(θ0)−1ḡ(θ0) converges by a standard

CLT to a N(0, V −1
eff ) random variable. Combining these two facts, we get the result.
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Chapter 2

Estimation of Quantile Effects in Panel Data with

Random Coefficients

2.1 Introduction

The recent paper Graham and Powell (2012) introduced a panel data model with correlated
random coefficients. The panel structure allows to identify individual effects through ob-
serving repeated observations for each unit. The coefficients in their model are random, and
might depend on the covariates. This relaxes the classical fixed coefficients approach, which
imposes that treatment effects are equal across different units. The goal of that paper was to
identify and estimate the average partial effect (APE), which is the average (over the covari-
ates) of the random coefficient. This measure is related to the average structural function and
can be interpreted as the average of the (random) effect of an increase by 1 of the covariates.
Their results are derived under a continuous covariates assumption, and just identification,
where the number of time periods equals the number of random coefficients. Under these
assumptions, the APE estimator converges at a rate slower than root-N due to the irregular
identification, in contrast to Chamberlain (1982) which covers the over-identified case.

This chapter studies a model similar to that in Graham and Powell (2012) but focuses
on the estimation of quantiles of the distribution of the correlated random coefficients. We
define the ACQE, the average conditional quantile effect, and the UQE, the unconditional
quantile effect as a function of the distribution of the random coefficient. The ACQE is
the average (over the covariates) of the distribution of the coefficients, conditional on the
covariates. It is a measure of the average magnitude of the random coefficient. The UQE is
the unconditional quantile of the distribution of the random coefficients. For example, we
can interpret the median UQE as the median size of the effect of an exogenous increase in a
covariate.

In this chapter, we derive estimators for the ACQE and the UQE in a just-identified panel
data model with discrete covariates. The first case we consider, that we term the regular case,
has covariates distributed discretely with a mass point of stayers, i.e. units with determinant
equal to 0. We show the root-N consistency of our estimators and compute their asymptotic
distribution. The second case we consider, the bandwidth case, has a shrinking mass of
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“near-stayers” with determinant shrinking to 0, and a shrinking mass of exact stayers. We
propose this model to approximate a model where covariates are distributed continuously, as
is the case in Graham and Powell (2012). We show the root-NhN consistency of estimators
for the ACQE and UQE, compute their asymptotic distribution and then draw parallels to
the continuous case.

We introduce the model in the next section, then present additional assumptions for the
two different cases proposed here. We then show our asymptotic results for the ACQE and
the UQE, before concluding.

2.2 General Model

Let Y = (Y1, . . . , YT )′ be a T × 1 vector of outcomes and X = (X1, . . . ,XT )′ a T ×P matrix
of regressors with Xt ∈ XtN ⊂ RP and X ∈ XT

N where XT
N = ×t∈{1,...,T}XtN . The subscript

N allows for the regressors’ support to change with the sample size. Available is a random
sample {(Yi,Xi)}Ni=1 from a distribution F0N , which can depend on the sample size. The tth

period outcome for a random draw from F0N is given by

Yt = X′tBt, t = 1, . . . , T. (2.1)

We assume that, conditional on X, the P components of Bt are comonotonic:

(Bt|X = x)
D
=
(
F−1
B1t|X (V |x) , . . . , F−1

BPt|X (V |x)
)
, V ∼ U [0, 1] . (2.2)

We also make the following common trends / stationarity assumption

FBp1|X (b|x) = FBpt|X (b+ ∆pt (b)|x) , t = 2, . . . , T, p = 1, . . . , P. (2.3)

Solving for ∆pt (b) yields

∆pt (b) = F−1
Bpt|X

(
FBp1|X (b|x)

∣∣x)− b,
which after changing variables to τ = FBp1|X (b|x) gives

βpt (τ ; x)− βp1 (τ ; x) = δpt (τ) ,

for βpt (τ ; x) = QBpt|X (τ |x). Differences in the conditional quantile functions of Bpt and
Bps for t 6= s do not depend on X.

Let QYt|X (τ |x) denote the τ th conditional quantile function of Yt given X = x; under
(2.1), (2.2) and (2.3) we have

QYt|X (τ |x) = x′t (β (τ ; x) + δt (τ)) , t = 1, . . . , T

where, β (τ ; x) = (β11 (τ ; x) , . . . , βP1 (τ ; x))′ , δt (τ) = (δ1t (τ) , . . . , δPt (τ))′ and we normalize
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δ1 (τ) to a vector of zeros. In an abuse of notation let

QY|X (τ |x) =


QY1|X (τ |x)
QY2|X (τ |x)

...
QYT |X (τ |x)

 , W =


0′P · · · 0′P
X′2 · · · 0′P
...

. . .
...

0′P · · · X′T

 , δ (τ) =

 δ2 (τ)
...

δT (τ)

 .

Stacking equations we get

QY|X (τ |x) = Wδ (τ) + Xβ (τ ; X) . (2.4)

More generally we study estimators based on (2.4) where W is a T × Q function of X; in
the benchmark model described above Q = (T − 1)P .

2.2.1 Examples

Generalization of linear quantile regression model Let the tth period outcome be
given by

Yt = X′t (β (Ut) + δt) , t = 1, . . . , T (2.5)

with x′tβ (ut) increasing in the scalar ut for all ut ∈ Ut and all xt ∈ Xt. We leave the
conditional distribution of U1 unrestricted, but assume marginal stationarity of Ut given X
as in, for example, Manski (1987) :

U1|X
D
= Ut|X, t = 2, . . . , T

Under marginal stationarity we may define the conditionally standard uniform random vari-
able Vt = FU1|X (Ut|X) and rewrite (2.1):

Yt = X′t

(
β
(
F−1
U1|X (Vt|X)

)
+ δt

)
= X′t (β (Vt; X) + δt) , t = 1, . . . , T.

This gives
QYt|X (τ |x) = x′t (β (τ ; x) + δt) , t = 1, . . . , T.

This example is a very natural generalization of the random coefficient represention of the
linear quantile regression model (e.g., Koenker (2005); pp. 59 - 62) to panel data. Note
its fixed effects nature: the conditional distribution of U1 given X is unrestricted. Here,
the comonotoncity assumption on the random coefficients is equivalent to the assumption of
one-dimensional heterogeneity.

Note that we can write Ut = A + Vt and assume V1|X,A
D
= Vt|X,A for t = 2, . . . , T ;

this makes the ‘fixed effects’ nature of the model clearer.
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Location-scale panel data model Let the tth period outcome be given by

Yt = X′tβt + X′tγ (Ut) (2.6)

= X′tβt + X′tγ (A+ Vt) .

with x′tγ(ut) increasing in ut for all ut ∈ Ut and all xt ∈ Xt. This is equivalent to a
comonotonicity assumption on the vector of coefficients γ(·).

Assume that the first element of Xt is a constant. Setting γ =
(
1, 0′P−1

)
yields the linear

model studied by Chamberlain (1984). Maintaining marginal stationarity of Ut we get

QYt|X (τ |x) = x′t
(
βt + γQA+V1|X (τ |x)

)
= x′t (β (τ ; x) + δt) ,

for β (τ ; x) = β1 + γQA+V1|X (τ |x) and δt = βt − β1.
Both of the above models are more restrictive than the baseline set-up. This opens the

door to potential testing of these extra restrictions.

2.2.2 Estimands

We focus on two main estimands in this chapter. The unconditional quantile effects (UQE)
associated with the pth regressor is

βp (τ) = inf
{
bp1 ∈ R : FBp1 (bp1) ≥ τ

}
. (2.7)

If each individual in the population is given an additional unit of Xp1, the effect on out-
comes will be less than or equal to βp (τ) for 100τ percent of the population. To get the
corresponding object for a tth period intervention we add δpt (τ).

This is the quantile analog of an average partial effect (APE). Under our comonotonicity
assumption this object is also related to differences in the quantile structural function (QSF)
studied by Imbens and Newey (2009) and Chernozhukov et al. (2013).

We can generalize this idea to define ‘decomposition effects’ (cf., Melly (2006); Cher-
nozhukov et al. (2009); Rothe (2010)) as well as deal with the case where the elements of Xt

are functionally dependent (cf., Graham and Powell (2012)).
The second estimand is the average conditional quantile effect (ACQE). This object is

similar to the average derivative quantile regression coefficients studied in Chaudhuri et al.
(1997). It is also related to measures of average conditional inequality used in labor economics
(e.g., Angrist et al. (2006); Lemieux (2006)). The P × 1 vector of ACQEs in our model is
given by

β (τ) = E [β1 (τ ; X)] . (2.8)
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2.3 Additional Assumptions

We now impose additional restrictions on the support of X and on the number of random
coefficients.

2.3.1 Discrete Support

We first restrict our attention to the case where the support of X is discrete. The probabilities
and support points are indexed by N , the sample size, and may depend on it.

When Xt is discrete, the support of the entire regressor sequence X = (X1, . . . ,XT )′

is finite: X ∈ XN = {x1N , . . . ,xMN} . Without loss of generality assume that the first
m = 1, . . . , L ≤ M of these support points correspond to mover realizations of X such that
rank (xmN) = P . We further divide the mover realizations into “strict”-movers and “near”-
stayers. A mover realization xmN is a strict-mover if rank (limN→∞ xmN) = P , and is a
near-stayer if rank (limN→∞ xmN) < P . Without loss of generality, let m = 1, . . . , L1 ≤ L
denote the strict- movers and m = L1 + 1, . . . , L denote the near-movers.

The remaining support points (m = L+ 1, . . . ,M) correspond to stayer realizations with
rank (xmN) < P . Let XM

N = {xmN : rank (xmN) = P} and XS
N = {xmN : rank (xmN) < P}

be mutually exclusive subsets of XN consisting of the mover and stayer support points
respectively. Let pmN = Pr (X = xmN) denote the probability associated with these support
points.

In some cases, we will be unable to identify the UQE and ACQE as defined in the
previous paragraphs. This can be due to the inability to identify certain characteristics of
the distribution of the random ceofficients for stayers. Using this notation the movers UQE
associated with the pth element of X1 is

βMpN (τ) = inf
{
bp1 ∈ R : FBp1|X∈XMN

(
bp1|X ∈ XM

N

)
≥ τ

}
, (2.9)

while the corresponding movers ACQE is

β
M

pN (τ) = EN
[
βp1 (τ ; X)|X ∈ XM

N

]
. (2.10)

2.3.2 Just-identification and additional support assumptions

We also assume that the number of time periods, T is equal to the number of random
coefficients P . With T = P , the matrix X is square, and therefore it has full rank if
and only if det X 6= 0. We denote det X as D ∈ DN = {d1, . . . ,dK ,−hN , hN , 0}. We
let PN(D = hN) = PN(D = −hN) = bhN for some b ≥ 0, and we define dK+1 = −hN ,
dK+2 = hN and dK+3 = 0. We also let the probability of observing a singular X be
PN(D = 0) = πN0 = π0 + 2bhN . Finally, PN(D = dk) = πNk for k ∈ {1, . . . , K} with∑K

k=1 π
N
K = 1 − 4bhN − π0, with 4bhN + π0 < 1 for all N . We also let πk = limN→∞ π

N
k ,

so that
∑K

k=0 πk = 1. Note that throughout the text, the absence of the N subscript on
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probabilities or support points indicates that we are dealing with sequence limits, which we
always assume exists.

In this setup, observations with D = 0 are stayers, D = ±hN are near-stayers while
D = dk for k = 1, . . . , K denotes strict-mover realizations. The inclusion of near-stayers
is a way to approximate a continuous distribution of D, letting some movers (those with
D = ±hN) have very similar characteristics as stayers (D = 0).

We let qmN |k = PN(X = xmN |D = dk), qmN |−h = PN(X = xmN |D = −hN), qmN |h =
PN(X = xmN |D = hN) and qmN |0 = PN(X = xmN |D = 0). For simplicity, we assume that
qmN |· does not vary with N , so that conditional on the value of the determinant, which has
varying support, the distribution of X does not vary with the sample size. We also assume
that qm|h = qm|−h = qm|0 for all m = 1, . . . ,M .

We let either π0 > 0 or b > 0 in this chapter. This means that there is always a
non-zero fraction of observations that are stayers. If we allow π0 > 0, that fraction is
also asymptotically positive, which means that we can estimate some of their distributional
features (i.e. time effects) with root-N consistent estimators. On the other hand, if we also
have b = 0, we cannot learn about its some other features, (i.e. the random coefficients’
distribution) since there are no movers nearby. In this setup, we will only be able to recover
the movers’ ACQE and UQE. We term this setup the “regular case”.

On the other hand, if we have b > 0, π0 = 0, the time effects will be estimated at rate
root-NhN since the fraction of stayers is of order hN , which implies a slower rate of conver-
gence. The bandwidth case allows for using near-stayer observations to approximate stayers’
behavior. This allows us to recover the true ACQE and UQE since we can approximate the
stayers’ contribution to the estimands with that of the near-stayers’. We use the “bandwidth
case” (b > 0) as an approximation of the continuous case as in Graham and Powell (2012)
since it allows for a singularity among stayer observations but also irregular (non root-N)
identification of coefficients. This approximation simplifies calculations since the prelimi-
nary conditional quantile estimator for discrete conditioning variables is a straightforward
one. In the presence of continuously-distributed covariates, there are estimators proposed in
the literature (e.g. Belloni et al. (2011), Qu and Yoon (2011)) that have different desirable
and undesirable features in the context of this chapter. The properties of the ACQE in the
bandwidth case will have similar properties to the APE in Graham and Powell (2012), and
here b will have a similar interpretation as φ0 in Graham and Powell (2012), the density of
the determinant evaluated at 0.

We do not consider here the case where both π0 > 0 and b > 0, since in this case we
need to estimate the stayers’ random coefficient using a shrinking fraction of the sample size
(near-stayers). This is similar to an estimation of a nonparametric derivative, and will suffer
from a rate deterioration over the bandwidth case, since the ACQE and UQE would now
converge at the rate root-Nh3

N instead of root-NhN .
Throughout we maintain the following assumptions:

Assumption 2.3.1 (Random Sampling) {Yi,Xi}Ni=1 is a random sample from the pop-
ulation of interest. The distribution can vary with the sample size.
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Assumption 2.3.2 (Bounded and Continuous Densities) The conditional distribu-

tion FYt|X (yt|x) has density fYt|X (yt|x) such that φ (τ ; x) = fYt|X

(
F−1
Yt|X (τ |x)

∣∣∣x) and

φ′ (τ ; x) are uniformly bounded for all τ ∈ (0, 1), all x ∈ XN , and all t = 1, . . . , T. Also,
this conditional distribution does not vary with the sample size N . Finally, fYt|X (yt|x),
FYt|X (yt|x) and F−1

Yt|X (yt|x) are all continuous in x.

Assumption 2.3.3 (Bounded Y) The support of Yt is compact for all t ∈ {1, . . . , T}.

Let

F̂Yt|X (yt|xmN) =

[
N∑
i=1

1 (Xi = xmN)

]−1

×

[
N∑
i=1

1 (Xi = xmN) 1 (Yit ≤ yt)

]
,

be the empirical cumulative distribution function of Yt for the subsample of units with
X = xmN . We estimate the τ th conditional quantile of Yt by

Π̂t (τ ; xmN) = F̂−1
Yt|X (yt|xmN) = inf

{
yt : F̂Yt|X (yt|xm) ≥ τ

}
,

where Πt (τ ; X) denotes the tth element of Π (τ ; X) . Note that Π̂ (·; xlN) and Π̂ (·; xmN) for
l 6= m are conditionally uncorrelated given {X}Ni=1.

Define

ρst (τ, τ ′; X) =
Pr (Yis ≤ Πs (τ ; X) , Yit ≤ Πt (τ ; X))− ττ ′

min (τ, τ ′)− ττ ′
, s, t = 1, . . . , T (2.11)

and

Λ (τ, τ ′; X) =


1

fY1|X(Π1(τ ;X))fY1|X(Π1(τ ′;X))
· · · ρ1T (τ,τ ′;X)

fY1|X(Π1(τ ;X))fYT |X(ΠT (τ ′;X))

...
. . .

...
ρ1T (τ,τ ′;X)

fYT |X(ΠT (τ ;X))fY1|X(Π1(τ ′;X))
· · · 1

fYT |X(ΠT (τ ;X))fYT |X(ΠT (τ ′;X))

 . (2.12)

Using this notation, an adaptation of standard results on quantile processes in the cross
sectional context, gives our first result:

Proposition 2.3.4 Suppose that Assumptions 2.3.1, 2.3.2 and 2.3.3 are satisfied, then√
NpmN

(
Π̂ (τ ; xmN)−Π (τ ; xmN)

)
converges in distribution to a mean zero Gaussian pro-

cess ZQ (·, ·) on τ ∈ (0, 1) and xmN ∈ XN, where ZQ (·, ·) is defined by its covariance function
Σ (τ,xl,τ

′,xm) = E
[
ZQ (τ,xl) ZQ (τ ′,xm)′

]
with

Σ (τ,xl,τ
′,xm) = (min (τ, τ ′)− ττ ′)Λ (τ, τ ′; xl) · 1 (l = m)

for l,m = 1, . . . , L.
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These results are a standard generalization of process convergence results for uncondi-
tional quantiles. Convergence for support points with probability that shrink to 0 at rate hN
will be of order root-NhN since the is effective sample size used to estimate this conditional
quantile is proportional to NhN rater than N . Convergence here is on τ ∈ (0, 1) since we
assume that Yt has compact support. If Yt’s support was unbounded, results would instead
hold uniformly on τ ∈ [ε, 1− ε] for arbitrary ε satisfying 0 < ε < 1/2. We now proceed with
the identification and estimation of the time effect δ(·). Let X∗ denote the adjoint matrix of
X. From equation (2.4), we have that

X∗QY|X (τ |x) = W∗δ (τ) +Dβ (τ ; X) ,

where W∗ = X∗W. Let xlN be a stayer realization (xlN ∈ XS
N), therefore l ∈ {L+1, . . . ,M}

and D = 0. Then, for any l ∈ {L+ 1, . . . ,M}, we have:

w∗′lNx∗lNQY|X (τ |xlN) = w∗′lNw∗lNδ (τ) . (2.13)

The time effect is over identified if L + 1 < M , and we can recover it in multiple ways.
We choose here to average over the stayer realizations:

δ (τ) =

(
M∑

l=L+1

w∗′lNw∗lNplN

)−1 M∑
l=L+1

w∗′lNx∗lNQY|X (τ |xlN) plN . (2.14)

Note that this expression is also equal to

E
[
W∗′W∗|D = 0

]−1 E
[
W∗′X∗QY|X (τ |X) |D = 0

]
.

We then define the analog estimator:

δ̂ (τ) =

(
M∑

l=L+1

w∗′lNw∗lN p̂lN

)−1 M∑
l=L+1

w∗′lNx∗lNQ̂Y|X (τ |xlN) p̂lN . (2.15)

where p̂lN = 1
N

∑N
i=1 1(Xi = xlN) is the empirical probability associated with the lth real-

ization. This estimator can also be written down as:

δ̂(τ) =

(
1

N

N∑
i=1

W∗′
iW

∗
i1(|Di| < hN)

)−1

1

N

N∑
i=1

W∗′
iX
∗
i Q̂Y|X (τ |Xi) 1(Di < hN). (2.16)

Proposition 2.3.5 Let NhN →∞ as N →∞. Under assumptions 2.3.1, 2.3.2 and 2.3.3,
we have that
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√
NπN0

(
δ̂ (τ)− δ (τ)

)
d−→ Zδ(τ)

on τ ∈ (0, 1), with

E [Zδ(τ)Zδ(τ
′)′] = (min(τ, τ ′)− ττ ′)E

[
W∗′W∗|D = 0

]−1×

E
[
W∗′X∗Λ(τ, τ ′; X)X∗′W∗|D = 0

]
E
[
W∗′W∗|D = 0

]−1
.

Note that this result holds no matter if π0 > 0 or π0 = 0. In the case where π0 > 0, this
estimator is root-N consistent since we are using a non-shrinking fraction of observations in
our estimate. When b > 0 and π0, we are using a number of observations approximately
equal to 2bNhN which makes the rate of convergence equal to root-NhN .

Having identified the time effect δ(τ), we can now recover the conditional distribution of
the coefficient of interest. Again premultiplying the model by the adjoint matrix of X, we
get:

X∗QY|X (τ |x) = W∗δ (τ) +Dβ (τ ; X) .

The conditional β can be recovered for both strict and near movers (D 6= 0) in the
following way:

β (τ ; X) =
X∗QY|X (τ |x)−W∗δ (τ)

D

We now turn to the estimation of two different functionals of the conditional beta: the
ACQE and the UQE.

2.4 Estimation of the ACQE

We again distinguish between the regular case where π0 > 0 and b = 0, and the bandwidth
case where π0 = 0 and b > 0, as these will have different rates of convergence and asymptotic
variances.

2.4.1 ACQE in the regular case

In this case, we have a fixed fraction of stayers and no near-stayers. We focus on the
estimation of the movers’ ACQE, defined in (2.10). The estimator we propose averages
estimates for conditional betas using sample probabilities. The conditional betas estimates
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also rely on estimates for δ(·), the time effect. We first compute the asymptotic distribution
of an infeasible estimator, computed assuming δ(·) is known. We assume for simplicity that
all support points and probabilities do not vary with N , the sample size.

Proposition 2.4.1 Let

̂̄βMI (τ) =

1
N

∑N
i=1 X−1

i

(
Q̂Y|X (τ |Xi)−Wiδ(τ)

)
1(Xi ∈ XM)

1
N

∑N
i=1 1(Xi ∈ XM)

=

L1∑
l=1

x−1
l

(
Q̂Y|X (τ |xl)−Wlδ(τ)

)
q̂Ml

be the infeasible movers’ ACQE, where qMl = pl
1−π0 , is the conditional probability of real-

ization l conditional on being a mover realization, and let q̂Ml =
1
N

∑N
i=1 1(Xi=xl)

1
N

∑N
i=1 1(det(Xi)6=0)

. Under

assumptions 2.3.1, 2.3.2 and 2.3.3, we have that:

√
N

(̂̄βMI (τ)− β̄M(τ)

)
d−→ ZI(τ)

on τ ∈ (0, 1) for ZI(·) a gaussian process with covariance equal to

E [ZI(τ)ZI(τ
′)′] = Ψ1(τ, τ ′) + Ψ2(τ, τ ′)

Ψ1(τ, τ ′) =
1

1− π0

Cov
(
β(τ,X), β(τ ′,X)|X ∈ XM

)
Ψ2(τ, τ ′) =

min (τ, τ ′)− ττ ′

1− π0

E
[
X−1Λ(τ, τ ′,X)X−1′|X ∈ XM

]
.

The form of the covariance function in Theorem 2.4.1 mirrors the basic form found by
Chamberlain (1992) for the average partial effect estimand (see also Graham and Powell
(2012)). This parallel is easiest to see for the case where τ = τ ′. In that case the first
component Ψ1(τ, τ) equals the variance (over X) of the conditional quantile effects β (τ ; X).
The second term Ψ2(τ, τ) equals the average of the variances of the individual CQE estimates

β̂ (τ ; X) when δ (τ) is known. The final term, not included here, captures the asymptotic
penalty associated with having to estimate δ (τ). Since this is the infeasible ACQE, this
penalty does not affect the estimate. It is also of note that this estimator is independent
of δ̂(·), since we are using non-overlapping subsamples (units with D 6= 0 and D = 0,
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respectively) to compute the respective estimates. We now turn our attention to the feasible
ACQE and compute its asymptotic variance.

Proposition 2.4.2 Let

̂̄βM(τ) =

1
N

∑N
i=1 X−1

i

(
Q̂Y|X (τ |Xi)−Wiδ̂(τ)

)
1(Xi ∈ XM)

1
N

∑N
i=1 1(Xi ∈ XM)

=

L1∑
l=1

x−1
l

(
Q̂Y|X (τ |xl)−Wlδ̂(τ)

)
q̂Ml

be the feasible movers’ ACQE, where qMl = pl
1−π0 , is the conditional probability of realization l

conditional on being a mover realization, and let q̂Ml =
1
N

∑N
i=1 1(Xi=xl)

1
N

∑N
i=1 1(det(Xi)6=0)

. Under assumptions

2.3.1, 2.3.2 and 2.3.3, we have that:

√
N

(̂̄βM(τ)− β̄M(τ)

)
d−→ Z(τ) = ZI(τ) +

Ξ0√
π0

Zδ(τ)

on τ ∈ (0, 1), and Ξ0 = E
[
X−1W|X ∈ XM

]
. The variance of the gaussian process Z(·) is

defined as

E [Z(τ)Z(τ ′)′] = Ψ1(τ, τ ′) + Ψ2(τ, τ ′) + Ξ0Ψ3(τ, τ ′)Ξ′0

Ψ1(τ, τ ′) =
1

1− π0

Cov
(
β(τ,X), β(τ ′,X)|X ∈ XM

)
Ψ2(τ, τ ′) =

min (τ, τ ′)− ττ ′

1− π0

E
[
X−1Λ(τ, τ ′,X)X−1′|X ∈ XM

]
Ψ3(τ, τ ′) =

min(τ, τ ′)− ττ ′

π0

×

E
[
W∗′W∗|D = 0

]−1 E
[
W∗′X∗Λ(τ, τ ′; X)X∗′W∗|D = 0

]
E
[
W∗′W∗|D = 0

]−1
.

The asymptotic variance of the feasible estimator differs from the infeasible term due to the
presence of term Ψ3(·), which is the asymptotic variance of

√
N(δ̂(·)− δ(·)), weighted by Ξ0.

We have established the identification and a consistent estimate for the movers’ ACQE
in the case where there is a point mass of stayers, but no near-stayers to help identify the
stayer’s main coefficient β(τ ; X). We now focus on the identification and estimation of the
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true ACQE in the bandwidth case, where there is a shrinking fraction of stayers and a equal
amount of near-stayers.

2.4.2 ACQE in the bandwidth case

First note, that when π0 = 0, the time effect estimator δ̂(τ) is root-NhN consistent rather
than root-N due to the shrinking fraction of the sample used to estimate it. We use the
same estimator for the ACQE that is used in the case where π0 > 0 and b = 0. In this case
the difference between the ACQE and the movers’ ACQE will be O(hN) meaning that it
will asymptotically disappear under appropriate rate assumptions on hN . Here is the main
result:

Proposition 2.4.3 Let

̂̄βN(τ) =

1
N

∑N
i=1 X−1

i

(
Q̂Y|X (τ |Xi)−Wiδ̂(τ)

)
1(|Di| ≥ hN)

1
N

∑N
i=1 1(|Di| ≥ hN)

=
L∑
l=1

x−1
l

(
Q̂Y|X (τ |xl)−Wlδ̂(τ)

)
q̂Ml

be the feasible movers’ ACQE, where qMl = pl
1−π0 , is the conditional probability of realization l

conditional on being a mover realization, and let q̂Ml =
1
N

∑N
i=1 1(Xi=xl)

1
N

∑N
i=1 1(|Di|≥hN )

. Under assumptions

2.3.1, 2.3.2 and 2.3.3 , and if NhN →∞ and Nh3
N → 0 as N →∞, we have that:

√
NhN

(̂̄β(τ)− β̄N(τ)
)

d−→ Z(τ)

for τ ∈ (0, 1), and

E [Z(τ)Z(τ ′)′] = Ψ1(τ, τ ′) + Ξ0Ψ2(τ, τ ′)Ξ′0
Ψ1(τ, τ ′) = 2bE [X∗Λ(τ, τ ′,X)X∗′|D = 0]

Ψ2(τ, τ ′) =
1

2b
E
[
W∗′W∗|D = 0

]−1×

E
[
W∗′X∗Λ(τ, τ ′,X,X)X∗′W∗|D = 0

]
E
[
W∗′W∗|D = 0

]−1
,

where Ξ0 = limN→∞ EN
[
X−1W|X ∈ XM

N

]
.
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We can interpret the asymptotic results in the following way: there is a bias term of
order O(hN) due to trimming of stayers, which represent a fraction proportional to hN of
the sample. This vanishes since Nh3

N goes to 0 as N goes to infinity.
There is also some randomness due to the random coefficient itself, β(τ ; X). This term

vanishes asymptotically, since it is of order Op

(
1√
N

)
. This is in contrast to the framework

with non-shrinking probabilities on all probability points, where the order of convergence
is root-N everywhere. We could potentially improve asymptotic properties of a variance

estimate for ̂̄β(·) by correcting for this lower order term. In this framework, this source of
noise is dominated by the variance coming from the estimation of the conditional betas for
near-stayers.

This variance, coming from Ψ1(·, ·) is due to estimation error of the conditional quantiles.
It can be further decomposed in the estimation error of conditional quantiles for strict-
movers, and that for near-stayers. Since there is a non-shrinking fraction of strict-movers,
the conditional quantiles for strict-movers can be estimated at root-N rate and, when these
quantiles are averaged using the sampling distribution of X, their contribution remain of the
order root-N .

The contribution of near-stayers to the variance is analogous to the reason the estimator
β̂I in Graham and Powell (2012) converges at the rate root-NhN . The conditional quantiles
for near-stayers is estimated at rate root-NhN since there is a shrinking fraction (equal to
2bhN) of near-stayers. These quantiles are premultiplied by X−1 = X∗

D
, and since D = ±hN ,

this makes the quantile error divided by the determinant of order Op

(
1√
Nh3N

)
, which is

a problem since we need to assume Nh3
N → 0 to get rid of the bias term. Fortunately,

this problem goes away since the quantile error divided by the determinant is weighted by
the empirical probability for these near-movers, which is of order O(hN). Combining these
terms, the contribution of near-movers to the infeasible ACQE remains root-NhN . This is
the dominant term in the asymptotic expansion of this estimator when using the bandwidth
framework.

The term Ψ2(·, ·) is the contribution of δ̂(·) to the estimation error. The errors from
the estimation of conditional quantiles for movers and from the estimation of time effects
are independent since they rely on different subsamples, making their linear combination’s
asymptotic variance easier to compute. The estimation error of the time effect is premulti-

plied by Ξ̂N = 1
N

∑N
i=1

W∗
i 1(|Di| ≥ hN)

Di

, which converges in probability to Ξ0, a well defined

limit under the assumptions here. This is analogous to the structure of the APE in Graham
and Powell (2012).

2.5 Estimation of the UQE

In this section, we derive a consistent and asymptotically normal estimator for the UQE
(as defined in 2.7) and for the movers’ UQE (defined in 2.9) processes, in the bandwidth
and regular discrete case, respectively. We first focus on the regular discrete case and the
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estimation of the movers’ UQE.

2.5.1 UQE in the Regular Case

In this case, let β̂Mp (τ) be an estimate of the pth component of the movers’ UQE at quantile
τ defined by

1

N

N∑
i=1

1
(
Xi ∈ XM

) ∫ 1

0

(
1
(
β̂p(u,Xi) ≤ β̂Mp (τ)

)
− τ
)
du = 0. (2.17)

We assume here that the integral over u can be computed without approximation re-
quired. This can be justified by the use of interpolation around a finite number of points to
compute the conditional beta’s process’ estimate, which means that an integral could poten-
tially be computed exactly. This estimator is the τth quantile of the empirical distribution
of βp(U,X) given that X ∈ XM , which is approximated by the distribution of β̂p(U,X). To
derive the estimator’s asymptotic properties, we first compute the asymptotic distribution
of the CDF of β̂p(U,X) and then invert it at βMp (τ). The actual estimate for the movers’
UQE is computed in a similar fashion using a CDF estimate.

Proposition 2.5.1 Let p ∈ {1, . . . , P}. Then we have that

√
N
(
β̂Mp (τ)− βMp (τ)

)
d−→ ZUQE(τ)

on τ ∈ (0, 1) with ZUQE(·) being a Gaussian process. Let d = FBp|X(βMp (τ),X) and d′ =
FBp|X(βMp (τ ′),X). The covariance of this Gaussian process is equal to:

E [ZUQE(τ)ZUQE(τ ′)′] =
Ψ1(τ, τ ′) + Ψ2(τ, τ ′) + Ψ3(τ, τ ′)

fBp|X∈XM (βMp (τ))fBp|X∈XM (βMp (τ ′))

Ψ1(τ, τ ′) = E
[
fBp|X(βMp (τ),X)fBp|X(βMp (τ ′),X)X−1(min(d, d′)− dd′)×

Λ(d, d′,X)X−1′|X ∈ XM
]

Ψ2(τ, τ ′) =
1

π0

E
[
fBp|X(d,X)X−1WZδ(FBp|X(βMp (τ),X))×

Zδ(FBp|X(βMp (τ ′), X̃))′W̃′X̃−1′fBp|X(d′, X̃)|X ∈ XM , X̃ ∈ XM
]

Ψ3(τ, τ ′) =
1

1− π0

Cov
(
d, d′|X ∈ XM

)

where X and X̃ are independent copies.
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We can see that the asymptotic variance of the UQE also has a three term decomposition
with a similar interpretation to the ACQE. The first term Ψ1(·, ·) represents the uncertainty
due to to the estimation of the conditional quantiles for movers, while the second term
Ψ2(·, ·) is due to the estimation error of the time effect. Together, they give the estimation
error of estimating conditional betas for movers. Finally, Ψ3(·, ·) represents the inherent
error due to the fact that coefficients are random and correlated with X. Again, we can see
that these three terms are due to three independent sources of variation: the variation in
Y conditional on X being a mover realization, the variation in Y conditional on X being a
stayer realization, and the variation in X itself. These three sources lead to Ψ1(·, ·), Ψ2(·, ·)
and Ψ3(·, ·) respectively. We now consider the asymptotic distribution of the UQE in the
bandwidth case:

2.5.2 UQE in the Bandwidth Case

We define the same estimator as in the regular case, which inverts the unconditional beta’s
CDF at quantile τ . For this estimator, asymptotic rate of convergence will be root-NhN as
in the ACQE’s case, and its asymptotic variance also contains two terms. Here is the main
proposition.

Proposition 2.5.2 Let p ∈ {1, . . . , P}, NhN → ∞ and Nh3
N → 0 as N → ∞. Then we

have that

√
NhN

(
β̂pN(τ)− βpN(τ)

)
d−→ ZUQE(τ)

on τ ∈ (0, 1) with ZUQE(·) being a Gaussian process. Let d = FBp|X(βp(τ),X) and d′ =
FBp|X(βp(τ

′),X). The covariance of this Gaussian process is equal to:

E [ZUQE(τ)ZUQE(τ ′)′] =
Ψ1(τ, τ ′) + Ψ2(τ, τ ′)

fBp(βp(τ))fBp(βp(τ
′))

Ψ1(τ, τ ′) = 2bE
[
fBp|X(βp(τ),X)fBp|X(βp(τ

′),X)X∗×
(min(d, d′)− dd′)Λ(d, d′,X)X∗′|D = 0]

Ψ2(τ, τ ′) = 2bE
[
fBp|X(d,X)W∗Zδ(FBp|X(βp(τ),X))Zδ(FBp|X(βp(τ

′), X̃))′×

W̃∗′fBp|X(d′, X̃)|D = 0, D̃ = 0
]

where X and X̃ are independent copies.

The asymptotic variance of the estimator contains two terms, the first relating to the
estimation of conditional quantiles for near-stayers, while the second term reflects the esti-
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mation error related to the time effect. The strict movers have no influence on the asymptotic

variance since their contribution is of order Op

(
1√
N

)
. It would be again possible to get small

sample improvements in the variance estimate by using a correction for this lower order term.
The term reflecting the variance of the random coefficient is washed away here, since it is

also of order Op

(
1√
N

)
. This result is analogous to the ACQE’s variance in the bandwidth

case. There is also a bias term of order O(hN) that vanishes as Nh3
N → 0. This bias arises

from estimating the movers’ UQE, which converges to the true UQE at rate O(hN).

2.6 Conclusion

We have derived the asymptotic distribution of the ACQE and the UQE in a just-identified
panel data model with correlated random coefficients. In the regular case, we show the root-
N consistency for estimators of the ACQE and UQE, and compute the asymptotic variance
of these estimators. We also consider the bandwidth case as an approximation for the
continuous case, then show the root-NhN consistency for estimators of the ACQE and UQE.
We then compute the asymptotic variance of these estimators. The small-sample properties
of our estimators and the distribution of the estimators when covariates are continuously
distributed represent areas of future research.

2.7 Proofs of Propositions

Proof of proposition 2.3.4. See Proposition 2.1 in Graham-Hahn-Powell (2011). We
instead use Lyapunov’s central limit theorem for support points and probabilities that are
indexed by N .

Lemma 2.7.1 In the bandwidth discrete case,

1

NhN

N∑
i=1

W∗′
iW

∗
i1(|Di| < hN)

P−→ 2E
[
W∗′W∗|D = 0

]
b

where PN(D = 0) = 2bhN .
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Proof.

1

NhN

N∑
i=1

W∗′
iW

∗
i1(|Di| < hN) = 2b

M∑
l=L+1

w∗′lNw∗lN
p̂lN

PN(D = 0)

P−→ 2b
M∑

l=L+1

w∗′lw
∗
lql|0

= 2E
[
W∗′W∗|D = 0

]
b

Lemma 2.7.2 In the bandwidth discrete case,

1√
NhN

N∑
i=1

W∗′
iX
∗
i

(
Q̂Y|X (τ |Xi)−QY|X (τ |Xi)

)
1(|Di| < hN)

d−→ Z1(τ)

with E [Z1(τ)Z1(τ ′)′] = 2bE [W∗′X∗Σ(τ, τ ′,X,X)X∗′W∗|D = 0].

Proof.

1√
NhN

N∑
i=1

W∗′
iX
∗
i

(
Q̂Y|X (τ |Xi)−QY|X (τ |Xi)

)
1(|Di| < hN)

=
1√
NhN

N∑
i=1

W∗′
iX
∗
i

(
Q̂Y|X (τ |Xi)−QY|X (τ |Xi)

)
1(Di = 0)

=

√
N

hN

M∑
l=L+1

w∗′lNx∗lN

(
Q̂Y|X (τ |xlN)−QY|X (τ |xlN)

)
p̂lN

=
M∑

l=L+1

w∗′lNx∗lN
√
NplN

(
Q̂Y|X (τ |xlN)−QY|X (τ |xlN)

) p̂lN√
plNhN

=
M∑

l=L+1

w∗′lNx∗lN
√
NplN

(
Q̂Y|X (τ |xlN)−QY|X (τ |xlN)

)
×

p̂lN√
plNPN(D = 0)

√
2b

d−→
√

2b
M∑

l=L+1

w∗′lx
∗
lZQ(τ,xl)

√
ql|0

= Z1(τ)
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Since E[ZQ(τ,xl)ZQ(τ ′,xm)′] = Σ(τ, τ ′,xl,xm) = (min (τ, τ ′)−ττ ′)Λ (τ, τ ′; xl)·1 (l = m),
we get that:

E [Z1(τ)Z1(τ ′)] = 2b
M∑

l=L+1

W∗
l
′x∗l Σ(τ, τ ′,xl,xl)x

∗′
l W∗

l ql|0

= 2bE
[
W∗′X∗Σ(τ, τ ′,X,X)X∗′W∗|D = 0

]
.

Lemma 2.7.3 In the regular discrete case,

1

N

N∑
i=1

W∗′
iW

∗
i1(Di = 0)

P−→ E
[
W∗′W∗|D = 0

]
π0.

Proof. Straightforward use of LLN.

Lemma 2.7.4 In the regular discrete case,

1√
N

N∑
i=1

W∗′
iX
∗
i

(
Q̂Y|X (τ |Xi)−QY|X (τ |Xi)

)
1(|Di| < hN)

d−→ Z1(τ)

with E [Z1(τ)Z1(τ ′)′] = π0E [W∗′X∗Σ(τ, τ ′,X,X)X∗′W∗|D = 0].

Proof.
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1√
N

N∑
i=1

W∗′
iX
∗
i

(
Q̂Y|X (τ |Xi)−QY|X (τ |Xi)

)
1(|Di| < hN)

=
1√
NhN

N∑
i=1

W∗′
iX
∗
i

(
Q̂Y|X (τ |Xi)−QY|X (τ |Xi)

)
1(Di = 0)

=
√
N

M∑
l=L+1

w∗′lx
∗
l

(
Q̂Y|X (τ |Xl)−QY|X (τ |Xl)

)
p̂l

=
M∑

l=L+1

w∗′lx
∗
l

√
Npl

(
Q̂Y|X (τ |Xl)−QY|X (τ |Xl)

) p̂l√
pl

=
M∑

l=L+1

w∗′lx
∗
l

√
Npl

(
Q̂Y|X (τ |Xl)−QY|X (τ |Xl)

) p̂l√
plπ0

√
π0

d−→
√
π0

M∑
l=L+1

w∗′lx
∗
lZQ(τ,xl)

√
ql|0

= Z1(τ)

Since E[ZQ(τ,xl)ZQ(τ ′,xm)′] = Σ(τ, τ ′,xl,xm) = (min (τ, τ ′)−ττ ′)Λ (τ, τ ′; xl)·1 (l = m),
we get that:

E [Z1(τ)Z1(τ ′)] = π0

M∑
l=L+1

w∗′lx
∗
l Σ(τ, τ ′,xl,xl)x

∗′
l w∗lql|0

= π0E
[
W∗′X∗Σ(τ, τ ′,X,X)X∗′W∗|D = 0

]
.

Proof of proposition 2.3.5.
We complete the proof in the discrete bandwidth case first: b > 0 and π0 = 0. In this

case, 1(|Di| < hN) = 1(Di = 0), since we have a (shrinking) mass of “exact” stayers, and no
units in between the near-movers (|Di| = hN) and these stayers. Combining lemmas 2.7.1

and 2.7.2, we can derive the asymptotic distribution of δ̂(τ) in the bandwidth case.
We can use lemmas 2.7.3 and 2.7.4 to prove the analogous result in the discrete movers’

case.
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Proof of propositions 2.4.1.

̂̄βMI (τ)− β̄M(τ) =

1
N

∑N
i=1 X−1

i

(
Q̂Y|X (τ |Xi)− Q̂Y|X (τ |Xi)

)
1(Xi ∈ XM)

1
N

∑N
i=1 1(Xi ∈ XM)

+

1
N

∑N
i=1 X−1

i QY|X (τ |Xi) 1(Xi ∈ XM)
1
N

∑N
i=1 1(Xi ∈ XM)

− E
[
X−1
i QY|X (τ |Xi) |Xi ∈ XM

]
=

L1∑
l=1

x−1
l

(
Q̂Y|X (τ |xl)−QY|X (τ |xl)

)
q̂Ml +

L1∑
l=1

x−1
l QY|X (τ |xl) (q̂Ml − qMl )

= T1(τ) + T2(τ)

where qMl = pl
1−π0 , is the conditional probability of realization l conditional on being a mover

realization, and let q̂Ml =
1
N

∑N
i=1 1(Xi=xl)

1
N

∑N
i=1 1(det(Xi)6=0)

.

Using Slutsky’s theorem, we can see that
√
NT1(τ)

d−→
∑L1

l=1 x−1
l ZQ(τ,xl)

√
pl

1−π0 , and its
asymptotic covariance function is equal to:

E

[
L1∑
l=1

x−1
l ZQ(τ,xl)

√
pl

1− π0

L1∑
l=1

ZQ(τ ′,xl)
′x−1′
l

√
pl

1− π0

]
=

min(τ, τ ′)− ττ ′

1− π0

×

E
[
X−1Λ(τ, τ ′,X)X−1′|X ∈ XM

]
.

The second source of variation comes from term T2(τ) =
∑L1

l=1 x−1
l QY|X (τ |xl) (q̂Ml −qMl ).

Using the delta method, we can see that this term converges in distribution like such:

√
NT2(τ)

d−→ N

(
0,

Var
[
β(τ,X|X ∈ XM)

]
1− π0

)
.

To conclude, we note that T1(τ) and T2(τ) are independent, since the source of variation
in T2(τ) comes solely from variation in X, while the variation in T1(τ) is conditional on X,
and therefore independent of X.
Proof of proposition 2.4.3.

The population estimand is:
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β̄N(τ) = EN [β(τ,X)]

= EN [βD(τ,D)]

where βD(τ,D) = EN [β(τ,X)|D] and the subscript N on the expectation operator reflects
the fact that the support of X can vary with the sample size. Let’s consider a four-term
decomposition of this estimator minus its probability limit:

̂̄βN(τ)− β̄N(τ) =
1
N

∑N
i=1 X−1

i Wi1(|Di| ≥ hN)
1
N

∑N
i=1 1(|Di| ≥ hN)

(
δ̂(τ)− δ(τ)

)

+

1
N

∑N
i=1 X−1

i

(
Q̂Y|X (τ |Xi)−QY|X (τ |Xi)

)
1(|Di| ≥ hN)

1
N

∑N
i=1 1(|Di| ≥ hN)

+
1
N

∑N
i=1 β(τ,Xi)1(|Di| ≥ hN)
1
N

∑N
i=1 1(|Di| ≥ hN)

− EN [β(τ,Xi)1(|D| ≥ hN)]

PN(|Di| ≥ hN)

+
EN [β(τ,X)1(|D| ≥ hN)]

PN(|D| ≥ hN)
− EN [β(τ,X)]

= T1(τ) + T2(τ) + T3(τ) + T4(τ).

We will consider the asymptotic behavior of these four terms separately from T4(τ) to
T1(τ). First, term T4(τ) can be shown to be of order O(hN).

First, we have PN(|D| ≥ hN) = 1− PN(D = 0) = 1− 2bhN . Also,

EN [β(τ,X)1(|D| ≥ hN)] = EN [β(τ,X)]− EN [β(τ,X)1(|D| = 0)]

= EN [β(τ,X)]− EN [β(τ,X)|D = 0]PN(D = 0)

= EN [β(τ,X)]− βD(τ, 0)2bhN .

Therefore, we have that:
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T4(τ) =
EN [β(τ,X)1(|D| ≥ hN)]

PN(|D| ≥ hN)
− EN [β(τ,X)]

=
(EN [β(τ,X)]− βD(τ, 0)) 2bhN

1− 2bhN
= O(hN).

Then, term T3(τ) can be shown to be of order Op

(
1√
N

)
. We will use the delta method

to find the asymptotic order of the distribution of term T3(τ). First, let

ZN,i =

(
β(τ,Xi)1(|Di| ≥ hN)− EN [β(τ,X)1(|D| ≥ hN)]

1(|Di| ≥ hN)− PN(|D| ≥ hN)

)
.

Then, the variance of ZN,i is equal to:

Var [ZN,i] =

(
Σ11 Σ12

Σ′12 Σ22

)
Σ11 = VN(β(τ,X))− E [β(τ,X)β(τ,X)′1(D = 0)] +

βD(τ, 0)2bhN(2EN [β(τ,X)1(|D| ≥ hN)]− βD(τ, 0)2bhN)

= VN(β(τ,X)) +O(hN)

Σ12 = 2bhN(EN [β(τ,X)]− βD(τ, 0))

Σ22 = (1− 2bhN)2bhN

Using these results and Lyapunov’s CLT, we see that 1
N

∑N
i=1 ZN,i converges in distribu-

tion if premultiplied by a matrix ΨN =

 √N 0

0

√
N

hN

. Using the delta method, we see

that

√
N

(
1
N

∑N
i=1 β(τ,Xi)1(|Di| ≥ hN)
1
N

∑N
i=1 1(|Di| ≥ hN)

− EN [β(τ,X)1(|D| ≥ hN)]

PN(|D| ≥ hN)

)
d−→

N
(

0, lim
N→∞

VN(β(τ,X))) ,
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since the denominator converges in distribution faster than the numerator. We now check

that term T2(τ) will be of order Op

(
1√
NhN

)
. First, we see that the denominator

1

N

N∑
i=1

1(|Di| ≥ hN)
P−→ 1

if hN → 0 as N →∞.

The numerator, 1
N

∑N
i=1 X−1

i

(
Q̂Y|X (τ |Xi)−QY|X (τ |Xi)

)
1(|Di| ≥ hN) contains units

from both strict-movers (|Di| 9 0) and for near-movers (|Di| > 0 and Di → 0). We can
linearly decompose the numerator into two terms, one of which containing near-stayers and
one for strict-movers.

Consider first the term T2(τ)′ which contains the strict-movers:

√
NT2(τ)′ =

1√
N

N∑
i=1

X−1
i

(
Q̂Y|X (τ |Xi)−QY|X (τ |Xi)

)
1(|Di| > hN)

=

L1∑
l=1

x−1
l

√
NplN

(
Q̂Y|X (τ |xl)−QY|X (τ |xl)

) p̂lN√
plN

d−→
L1∑
l=1

x−1
l ZQ(τ,xl)

√
pl.

Consider first the term T2(τ)′′ which contains the near-stayers:

√
NhNT2(τ)′′ =

√
NhN

1

N

N∑
i=1

X∗i
Di

(
Q̂Y|X (τ |Xi)−QY|X (τ |Xi)

)
1(|Di| = hN)

=
L∑

l=L1+1

x∗l
√
NplN

(
Q̂Y|X (τ |xlN)−QY|X (τ |xlN)

) p̂lN√
plN2bhN

√
2b

d−→
L∑

l=L1+1

x∗lZQ(τ,xl)
√
ql|02b.

Now, finally, we consider term T1(τ). δ̂(τ) − δ(τ) is of order Op

(
1√
NhN

)
and is inde-

pendent of term T2(τ), since it is computed with a different segment of the sample. We also

95



consider the probability limit of the term attached to it, Ξ̂N =
1
N

∑N
i=1 X−1

i Wi1(|Di| ≥ hN)
1
N

∑N
i=1 1(|Di| ≥ hN)

:

1

N

N∑
i=1

W∗
i 1(|Di| ≥ hN)

Di

= E
[
E [W∗|D = hN ]

1

hN
1(Di = hN)

]
−

E
[
E [W∗|D = −hN ]

1

hN
1(Di = −hN)

]
+

E
[

W∗
i 1(|Di| > hN)

Di

]
+ oP (1)

= b(E [W∗|D = hN ]− E [W∗|D = −hN ]) +Op(1)

= Op(hN) +Op(1)

We can then see that Ξ̂N has a well defined probability limit. We can now compute the

asymptotic distribution of ̂̄βM(τ)− β̄(τ) easily. Since Nh3
N → 0, the bias term vanishes, and

and so does the term containing the variance of β(τ ; Xi), since it will be of order root-hN
when multiplied by the rate

√
NhN . This completes the proof.

Proof of proposition 2.5.1.
We start by deriving the asymptotic distribution of the CDF of β̂(U ; X) with U unformly

[0, 1] distributed, independently from X:

L∑
l=1

∫ 1

0

1(β̂p(u,xl) ≤ c)duq̂Ml − FBp|X∈XM (c) =
L∑
l=1

∫ 1

0

1(β̂p(u,xl) ≤ c)duq̂Ml −

L∑
l=1

∫ 1

0

1(βp(u,xl) ≤ c)duqMl

=
L∑
l=1

(∫ 1

0

1(β̂p(u,xl) ≤ c)duq̂Ml −
∫ 1

0

1(βp(u,xl) ≤ c)du

)
q̂Ml +

+
L∑
l=1

∫ 1

0

1(βp(u,xl) ≤ c)du
(
q̂Ml − qMl

)
= T1(c) + T2(c)
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Using the functional delta method on term T1(τ), we can see that:

√
NT1(c) =

√
N

L∑
l=1

(∫ 1

0

1(β̂p(u,xl) ≤ c)du−
∫ 1

0

1(βp(u,xl) ≤ c)du

)
q̂Ml

d−→ Z1(c)

E [Z1(c)Z1(c′)′] = E
[
fBp|X(c,X)X−1(min(FBp|X(c,X), FBp|X(c′,X)) −

FBp|X(c,X)FBp|X(c′,X))Λ(FBp|X(c,X), FBp|X(c′,X),X)×
X−1′fBp|X(c′,X)|X ∈ XM

]
+

1

π0

E
[
fBp|X(c,X)X−1WZδ(FBp|X(c,X)) ×

Zδ(FBp|X(c′, X̃))′W̃′X̃−1′fBp|X(c′, X̃)|X, X̃ ∈ XM
]

The second term’s convergence is straightforward and similar to previous proofs:

√
NT2(c) =

√
N

L∑
l=1

∫ 1

0

1(βp(u,xl) ≤ c)du(q̂Ml − qMl )

d−→ Z2(c)

E [Z2(c)Z2(c′)′] =
1

1− π0

Cov
(
FBp|X(c,X), FBp|X(c′,X)|X ∈ XM

)

Let ZF (c) = Z1(c) + Z2(c) and observe that Z1(·) and Z2(·) are independent since they
are computed with different subsamples. Then, using the delta method, we get that

√
N
(
β̂Mp (τ)− βMp (τ)

)
d−→

ZF (βMp (τ))

fBp|X∈XM (βMp (τ))
.

Proof of proposition 2.5.2.
We again start by deriving the asymptotic distribution of the CDF of β̂(U ; X) with U

independent from X:
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L∑
l=1

∫ 1

0

1(β̂pN(u,xl) ≤ c)duq̂MlN − FBp(c) =
L∑
l=1

∫ 1

0

1(β̂pN(u,xlN) ≤ c)duq̂MlN−

L∑
l=1

∫ 1

0

1(βp(u,xlN) ≤ c)duqMlN

=
L∑
l=1

(∫ 1

0

1(β̂p(u,xlN) ≤ c)du−
∫ 1

0

1(βp(u,xlN) ≤ c)du

)
q̂MlN+

L∑
l=1

∫ 1

0

1(βp(u,xlN) ≤ c)du
(
q̂MlN − qMlN

)
+

FBp|X∈XMN
(c)− FBp(c)

= T1(c) + T2(c) + T3(c)

We can decompose the mover realizations in T1(c) into its near-stayer realizations (T ′′1 (c))
and its strict mover realizations (T ′1(c)):

T1(c) = T ′1(c) + T ′′1 (c)

T ′1(c) =

L1∑
l=1

(∫ 1

0

1(β̂pN(u,xlN) ≤ c)du−
L1∑
l=1

∫ 1

0

1(βp(u,xlN) ≤ c)du

)
q̂MlN

= Op

(
1√
N

)

because the conditional betas are root-N consistent for strict movers. In the case of near-
stayers, T ′′1 (c) will be root-NhN consistent because:

√
NhNT

′′
1 (c) =

L∑
l=L1+1

√
Nh3

N

(∫ 1

0

1(β̂pN(u,xlN) ≤ c)du−
∫ 1

0

1(βp(u,xlN) ≤ c)du

)
2bq̂MlN
2bhN

and since the conditional betas for near-stayers are of order Op

(
1√
Nh3N

)
, this expression will

converge in distribution. The probabilities
q̂MlN

2bhN
will converge in probability to ql|0. Using
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the functional delta method, we can get that:√
Nh3

N

(∫ 1

0

1(β̂pN(u,xlN) ≤ c)du−
∫ 1

0

1(βp(u,xlN) ≤ c)du

)
d−→ Z ′(l, c)

E [Z ′(l, c)Z ′(l′, c′)′] =
1

2bql|0
fBp|X(c,xl)fBp|X(c′,xl)x

∗
l

(
min(FBp|X(c,xl), FBp|X(c′,xl))− ×

FBp|X(c,xl)FBp|X(c′,xl)
)

Λ(FBp|X(c,xl), FBp|X(c′,xl),X)x∗′l 1(l = l′)+

1

2b
fBp|X(c,xl)w

∗
l E
[
Zδ(FBp|X(c,xl))Zδ(FBp|X(c′,xl′))

′]w∗′l′ fBp|X(c′,xl′).

Using the Slutsky’s theorem, we get that

√
NhNT

′′
1 (c)

d−→ Z1(c)

E [Z1(c)Z1(c′)′] = 4b2

L∑
l=L1+1

L∑
l′=L1+1

E [Z ′(l, c)Z ′(l′, c′)′] ql|0ql′|0

= 2bE
[
fBp|X(c,X)X∗(min(FBp|X(c,X), FBp|X(c′,X)− FBp|X(c,X)FBp|X(c′,X)) ×

Λ(FBp|X(c,X), FBp|X(c′,X),X)X∗′fBp|X(c′,X)|D = 0
]

+

2bE
[
fBp|X(d,X)W∗Zδ(FBp|X(βp(τ),X))

Zδ(FBp|X(βp(τ
′), X̃))′W̃∗′fBp|X(d′, X̃)|D = 0, D̃ = 0

]
.

Using similar arguments to the proof for the ACQE, we can see that T2(c) is of order

Op

(
1√
N

)
, and therefore will be asymptotically negligible. Finally, T3(c) will be of order

O(hN) with a similar argument as well. This, along with the assumption that Nh3
N → 0 will

imply that Z1(c) is the only asymptotic component in the estimation of the unconditional
CDF of the random coefficient. Using this fact, we can see that:

ZUQE(τ) =
Z1(βp(τ))

fBp(βp(τ))
.
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