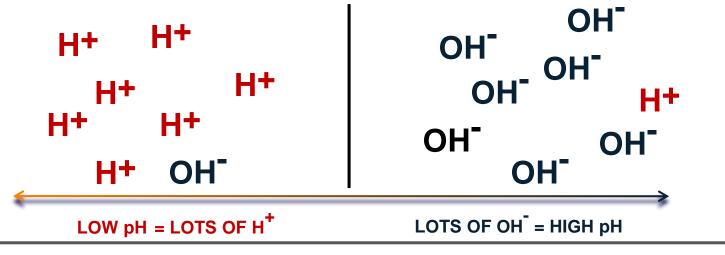
Essentials of pH Measurement

ThermoFisher SCIENTIFIC


Tim Meirose, Technical Sales Manager Thermo Scientific Electrochemistry Products The Theoretical Definition

pH = - log a_H

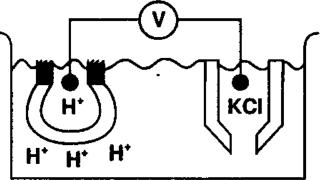
- a_H is the free hydrogen ion *activity* in a sample, not total ions.
- In solutions that contain other ions, activity and concentration are not the same. The activity is an *effective* concentration of hydrogen ions, rather than the true concentration; it accounts for the fact that other ions surrounding the hydrogen ions will shield them and affect their ability to participate in chemical reactions.
- These other ions effectively change the hydrogen ion concentration in any process that involves H⁺. pH electrodes are an ISE for hydrogen.

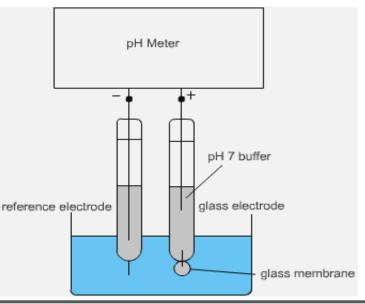
What is pH?

- pH = "Potential Hydrogen" or Power of Hydrogen
- The pH of pure water around room temperature is about 7. This is considered "neutral" because the concentration of hydrogen ions (H⁺) is exactly equal to the concentration of hydroxide (OH⁻) ions produced by dissociation of the water.
- Increasing the concentration of H⁺ in relation to OH⁻ produces a solution with a pH of less than 7, and the solution is considered "acidic".
- Decreasing the concentration H⁺ in relation to OH⁻ produces a solution with a pH above 7, and the solution is considered "alkaline" or "basic".

What is pH?

• The pH Scale


- Each pH unit is a factor 10 in [H⁺]
 - pH of Cola is about 2.5. This is 10x more acidic than Orange Juice (pH of 3.5)
 - Cola is 100x more acidic than Beer! (pH of 4.5)


Representative pH values					
Substance	рН				
Hydrochloric Acid, 10M	-1.0				
Lead-acid battery	0.5				
Gastric acid	1.5 – 2.0				
Lemon juice	2.4				
Cola	2.5				
Vinegar	2.9				
Orange or apple juice	3.5				
Beer	4.5				
Acid Rain	<5.0				
Coffee	5.0				
Tea or healthy skin	5.5				
Milk	6.5				
Pure Water	7.0				
Healthy <u>human</u> <u>saliva</u>	6.5 – 7.4				
Blood	7.34 – 7.45				
Seawater	7.7 – 8.3				
Hand soap	9.0 – 10.0				
Household ammonia	11.5				
Bleach	12.5				
Household lye	13.5				

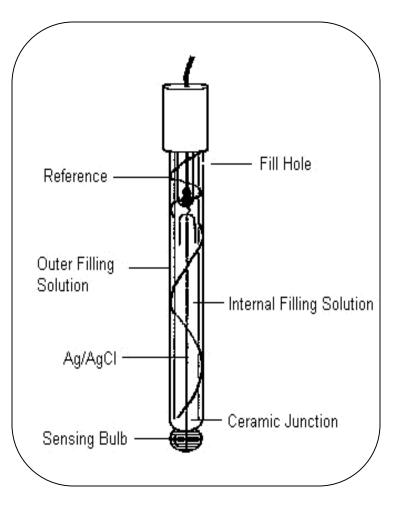
Thermo Fisher

pH Measurement System

- When two solutions containing different concentrations of H⁺ ions are separated by a glass membrane, a voltage potential is developed across the membrane. (Sensing electrode)
- A voltage potential is also generated from the reference electrode.
- The pH meter measures the voltage potential difference (mV) between the sensing electrode and the outside sample (reference electrode) and via an algorithm displays a pH value.

pH Measurement System

- The pH Meter
 - Acts as a volt meter
 - Translates electrode potential (mV) to pH scale
- Meter functions
 - Stores calibration curve
 - Adjusts for temperature changes
 - Adjusts electrode slope
 - Signals when reading is stable
- Features
 - mV and relative mV scales
 - Recognizes US Standard Buffers
 - Number of calibration points
 - Display information
 - RS232 or recorder outputs
 - Datalogging
 - GLP/GMP compliant


Measuring pH

- How do electrodes work?
 - If two solutions are separated by an ion-permeable membrane, they will equilibrate.
 - If the electrode membrane is permeable to ONLY one ion species, a charge will quickly develop that opposes further ion movement.
 - The charge that develops across the membrane is proportional to the difference in the ion concentration on the other side.

pH Measurement System

The pH Electrode

- Combination
- Sensing Half-Cell
- Reference Half-Cell

Internal filling solution (Sensing)

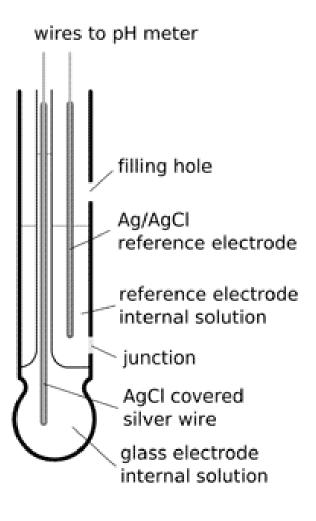
Buffer solution

Outer Filling solution (Reference)

Saturated AgCl, KCl

Common References

- Calomel (going, going....)
- Ag/AgCl
- ROSS[™]


pH Measurement System – Reference Electrode

- In a two electrode system a reference electrode is needed to complete the "circuit".
 - Combination electrode has the reference built in.
- The reference wire or element is typically encased in Saturated AgCl or KCl
- The reference must have a "liquid" connection to the sample in order to generate a voltage potential.

Common Questions – Electrode Types

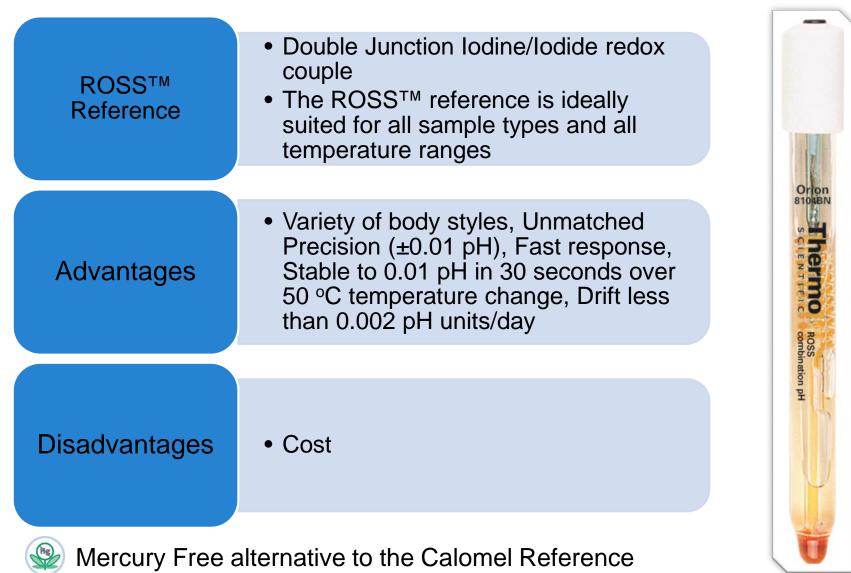
- What is a combination electrode?
 - A combination pH electrode is one that has a sensing half-cell and a reference half-cell built into one electrode body instead of existing as two separate electrodes. (Same size as a reference or sensing electrode.)
- What is a triode?
 - A triode is a combination electrode (sensing and reference together) plus an ATC (automatic temperature compensation thermistor) all built into one electrode body. (Same size as a reference, sensing or combination electrode.)

- Calomel Reference (Hg/Hg₂Cl₂) (Going, going)
- Calomel electrodes is very stable and is ideally suited for use with TRIS buffers and sample solutions containing proteins and other biological media.
 - Also used where samples contain metal ions, sulfides, or other substances that will react with Ag or AgCI.
- Advantages
 - Low Cost, Good Precision (±0.02 pH)
- Disadvantages
 - Limited body styles, Temperature Hysteresis, Contains Mercury!

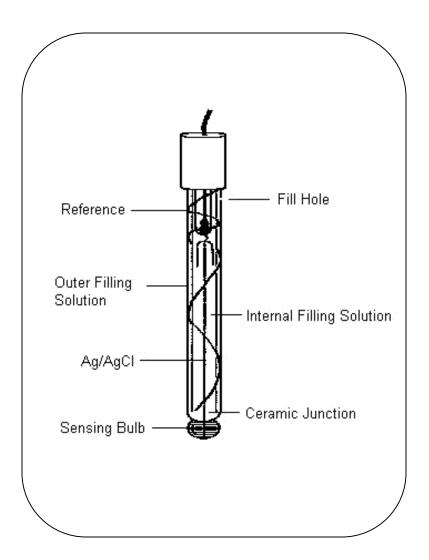
Orio

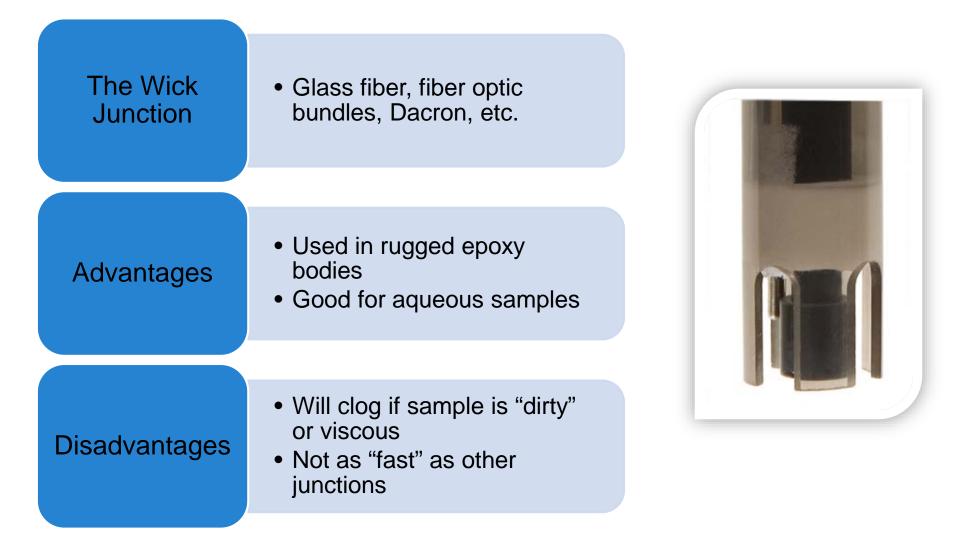
he

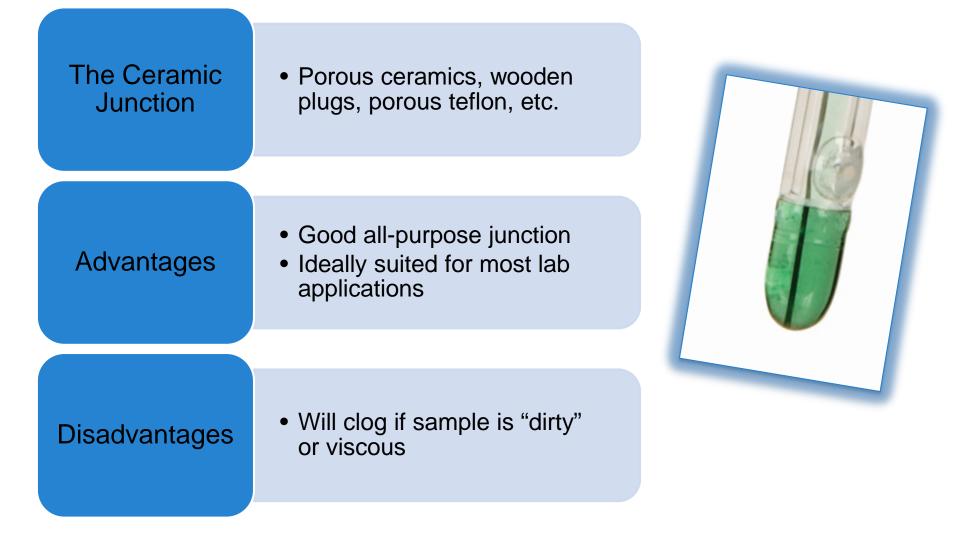
Single Junction Silver/Silver Chloride Reference (Ag/AgCl)	 Recommended for all applications except those involving TRIS buffer, proteins, metal ions, sulfides or other substances that will react with either Ag or AgCI. 			
Advantages	 Mid-range cost, Variety of body styles, Refillable or gel-filled, Good Precision (±0.02 pH) 			
Disadvantages	 Temperature Hysteresis, complexation in samples such as: TRIS, proteins, sulfides 			


0

Double Junction Silver/Silver Chloride Reference (Ag/AgCl)	 The double junction Ag/AgCl reference isolates the reference, making it ideally suited for all types of samples. 	
Advantages	 Mid-range cost, Variety of body styles, Refillable or gel- filled, Good Precision (±0.02 pH) 	S C Thermo
Disadvantages	 Temperature Hysteresis 	
Mercury Free alterr	native to the Calomel Reference	






- The electrode junction is where the Outer fill solution (reference) passes from inside the electrode body to the sample completing the "circuit".
- The type of junction is a good indicator of how the electrode will perform in different samples.
- Three basic types of junctions
 - Wick
 - Ceramic
 - Open

The Open Junction	 Sure-Flow, Laser Drilled Hole, Ground Glass Sleeve, etc. 	AL LE
Advantages	 Junction will never clog Can be used in all sample types Ideal choice for "dirty" or viscous samples Can be used in non-aqueous samples 	
	Gampiee	
Disadvantages	 Sure-Flow Junction has a high flow rate of fill solution (2 ml/day) 	

Common Questions – Electrode Types

Single Junction

- There is one junction in the electrode body. This term applies to Ag/AgCl electrodes that have a silver reference wire and silver ions dispersed in the internal electrolyte fill solution.
- Double Junction
 - There are two junctions in the electrode body. This term applies to any electrode that is a ROSS or calomel electrode and to some Ag/AgCl electrodes.

ROSS sombination pH

pH Measurement System – Electrode Types

Refillable or Low Maintenance Gel?

Low Maintenance Gel Electrodes

- Easy to use
- Rugged epoxy body
- 0.05-0.1 pH precision
- Slower response rate
- 6 month average life
- Gel memory effects at junction

Refillable Electrodes

- Fill/drain electrode
- Wide applicability
- Glass or epoxy body
- 0.02 pH precision
- Faster response rate
- 1 year minimum life
- Replaceable fill solution

pH Measurement System – Electrode Types

Polymer or Low Maintenance Gel?

Low Maintenance Gel Electrodes

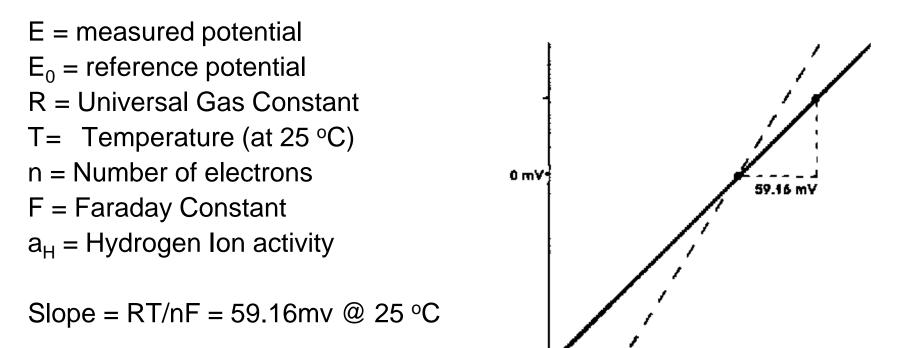
- Easy to use
- Rugged epoxy body
- 0.05-0.1 pH precision
- Slower response rate
- 6 month average life
- Gel memory effects at junction

Polymer Electrodes

- Low maintenance
- Easy to use
- Glass or epoxy body
- 0.02 pH precision
- Faster response rate
- 1 year minimum life
- Double junction design

pH Measurement System - Electrode Selection

- Select proper reference for application
 - ROSS[™], Single or Double Junction Ag/AgCI
 - Remember that Calomel contains Mercury!
- Select proper junction for application
 - Wick, Ceramic, Open, Sure-Flow, etc.

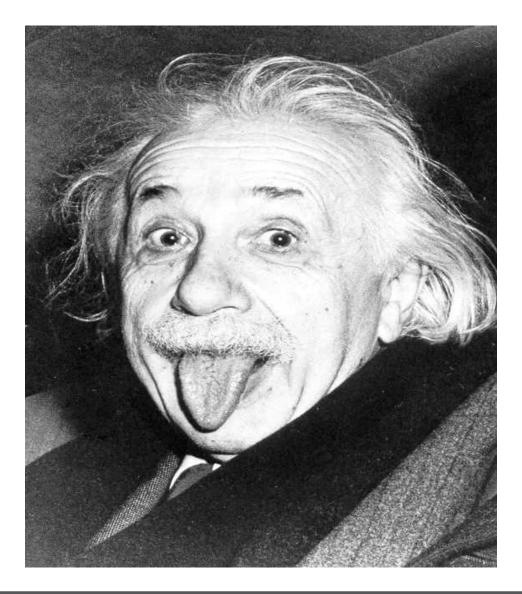


- Select appropriate body style
 - Standard, semi-micro, micro, rugged bulb, spear tip, flat surface, NMR, 384
- Select appropriate body type
 - Glass body, epoxy body
- Other considerations
 - Refillable, Gel, or Polymer?
 - Built in Temperature Probe?

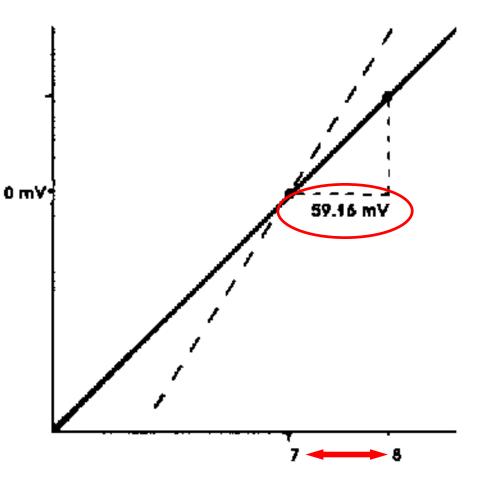
The Nernst Equation

$$E = E_0 - RT/nF \log a_H$$

8


7

- Nobel Prize Winner in Chemistry in 1920
- Worked with other famous chemists, physicists and scientists.



Albert Einstein

% slope is the change in mV value divided by the Nernstian theoretical value of 59.2 mV, the expected change in mV per pH unit at 25 °C

- When you are calibrating, you are determining the electrodes slope as it relates to the theoretical slope defined by the Nernst Equation
- Newer meters automatically calculate slope
- Check slope manually by reading mV in buffers and comparing to Nernstian response (59.2 mV/pH unit)
 - Example:
 - pH 7 = -10 mV
 - pH 4 = +150 mV
 - Slope = 160 mV/177.6 mV = 90.1%
 - Where did this 177.6mV come from?
 - -A change of 3 pH units (7-4)
 - -59.2 mV per pH unit x 3 equals 177.6 mV

My samples range from pH 5 to 8. Can I use a 4 and 10 standard for my 2-point calibration?

- The slope (or efficiency) of any electrode will not be consistent across a range of measurement.
- The greater the range between calibration points, the greater the measurement error.
- Calibration should include at least 2 buffers, but these buffers should be no more than 3 pH units apart from the next sequenced buffer.
- The 4-10 slope created across 6 decades of measurement will provide less accuracy than two point-to-point slopes using 4-7 (3 decades) and 7-10 (3 decades)

I have small containers on my bench that are labeled and filled with fresh buffer each week. We re-use these buffers all week. Will this practice affect my calibration?

Cal 1, using fresh 7 and 10 buffer:

• slope between 7-10 = 96.7%

Cal 2, using fresh 7 and old* 10 buffer:

• *slope between* 7-10 = 93.4%

* set on shelf uncovered for 8 hours

ALWAYS use fresh buffer for each calibration. Don't re-use today's buffer for tomorrow's calibration!

pH Calibration - Guidelines

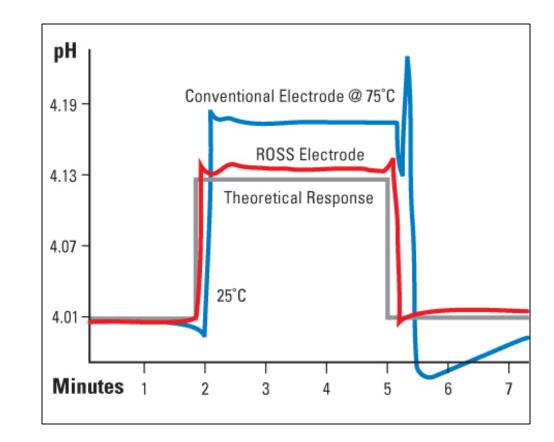
- Always calibrate with at least 2 buffers
- Check calibration drift with 1 buffer
- Always calibrate with buffers that bracket the expected measurement range
- Calibrate with buffers that are no more than 3 pH units apart
- Track calibration slope on a daily basis
- Calibration frequency
 - Electrode type
 - Sample type
 - Number of samples
- Electrode slope guidelines
 - Ideal range: 95% 102%
 - Stable reading in 30 seconds


Effects of Temperature

Temperature can have a significant effect on pH measurements

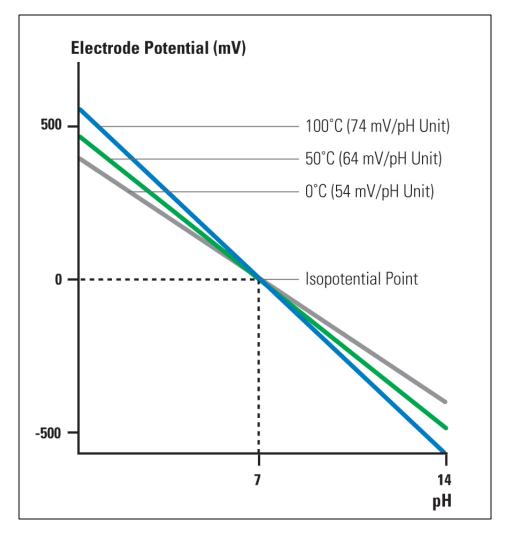
- Electrode
- Calibration
- Buffers
- Samples

Temperature Compensation Techniques


- Calibrate and measure at same temperature
- Manually temperature compensate using temperature control on meter
- Use automatic temperature compensator (ATC) or 3-in-1 Triode electrode
- Use LogR temperature compensation

Effects of Temperature – Electrode Effects

- Temperature Hysteresis
 - AgCl or Hg₂Cl₂ references drift with temperature changes
 - 0.05 pH unit error with 4 °C difference
 - ROSS[™] electrodes stabilize within seconds



Effects of Temperature – Calibration Effects

Calibration Effects

- Theoretical slope of electrode is 59.16mv at 25 °C
- Temperature changes the calibration slope
- Temperature compensation adjusts the calibration slope for temperature effects
- The point at which temperature has no effect on mV is referred to as the isopotential point

Effects of Temperature – Buffer Effects

Buffer Effects

- Buffers have different pH values at different temperatures
- Use the value of the buffer at the calibration temperature
- New meters have NIST calibration tables pre-programmed
- NIST Certified Values only at 25° C

25 C	0 C	5 C	10 C	20 C	30C	40 C	50 C	60 C	70 C	80 C	90 C
1.68	1.67	1.67	1.67	1.67	1.68	1.69	1.71	1.72	1.74	1.77	1.79
3.78	3.86	3.84	3.82	3.79	3.77	3.75	3.75				
4.01	4.00	4.00	4.00	4.00	4.02	4.03	4.06	4.08	4.13	4.16	4.21
6.86	6.98	6.95	6.92	6.87	6.85	6.84	6.83	6.84	6.85	6.86	6.88
7.00*	7.11	7.08	7.06	7.01	6.98	6.97	6.97				
7.41	7.53	7.50	7.47	7.43	7.40	7.38	7.37				
9.18	9.46	9.40	9.33	9.23	9.14	9.07	9.01	8.96	8.92	8.89	8.85
10.01	10.32	10.25	10.18	10.06	9.97	9.89	9.83				
12.46	13.42	13.21	13.01	12.64	12.30	11.99	11.71				
* Non-NIST Phosphate Buffer											

Effects of Temperature – Sample Effects

- Temperature compensation corrects for changes in electrode slope not sample pH
- It is not possible to normalize pH readings to a specific temperature
- pH of samples will change with temperature changes
- Record temperature with pH readings

Common Questions – Stable Readings

- Why does it take so long to get a stable reading?
 - Electrode performance and efficiency
 - Junction and bulb function (non-clogged and non-coated)
 - Electrode Type (gel effects, open junction, etc.)
 - Meter stabilization settings (if available)
 - Resolution settings (0.1 or 0.01 or 0.001)
 - Inner fill solution freshness
 - Low ionic strength samples
 - Use open junction electrode and stir samples when measuring
 - Air bubbles near junction

Electrode Care and Maintenance

- Electrode Storage
 - Short-term storage
 - Use appropriate electrode storage solution. (ROSS or Standard)
 - Alternatively, soak in 100 ml pH 7 buffer with 0.5 g KCl.
 - Long-term storage
 - Fill electrode, close fill hole, store with storage solution in protective cap
- Cleaning Solutions
 - Soak electrode in solvent that will remove deposits
 - Example: 0.1 M HCl for general cleaning
 - Example: 1% pepsin in HCl for proteins
 - Example: Bleach for disinfecting
 - Example: detergent for grease & oil

Electrode Care and Maintenance

- When do you need to clean your electrode?
 - Check slope range
 - Ideal range: 95% 102%
 - Cleaning range: 92% 95%
 - Replacement range: below 92%
 - Check response times in buffers
 - Electrode stability within 30 seconds
 - Check precision of electrode by reading buffers as samples
 - Check for any drift of electrode in pH buffer
 - Gel filled slower to respond can be seen as drift.
 - Size of sample.
 - Glass electrodes better than Epoxy to limit drift.
 - Static charge from stir bar or plastic container.
 - Verify your sample and electrode are at the same temperature.

Electrode Care and Maintenance

- General electrode bulb cleaning
 - Soak in Cleaning Solution for 30 minutes
 - Replace electrode fill solution
 - Soak in storage solution for at least 2 hours
- Electrode junction cleaning
 - Soak in 0.1M KCl for 15 minutes at 70 °C
 - Replace electrode fill solution
 - Soak in electrode storage solution for 2 hours
- Check junction by suspending in air for ten minutes
 - Observe KCI crystal formation

- Is there a cleaning routine I can follow to keep my electrode working?
 - Refresh inner fill solution
 - Use recommended storage solution (premade or make your own)
 - ROSS vs. Standard
 - Close fill hole at end of the day
 - Use cleaning remedies and cleaning solutions if you suspect a coated bulb or coated junction is the cause of poor electrode slope.

Keys to Accuracy

- Always use fresh buffers
 - Check bottle expiration and date opened
 - pH 4 and pH 7 buffers expire within 12 months of being opened.
 - pH 10 buffer expires within 9 month of being opened.
 - Fresh buffer for each calibration
 - Calibrate only once in buffer... don't re-use buffer
- Replace the fill solution in the electrode every week
 - Fill solution concentration is maintained
 - KCI crystallization is prevented
- Make sure to use the correct fill solution
 - Ross electrodes cannot use silver fill solutions

Keys to Accuracy

- Make sure level of fill solution is high
- Gently stir buffers and samples
- Shake any air bubbles out of the electrode
- Use insulation between stir plate and sample container to minimize heat transfer
- Blot electrodes between samples
- Uncover fill hole during measurement

Troubleshooting pH Problems

- Common measurement problems
 - Readings not reproducible
 - Slow response
 - Noisy response
 - Drifty response
 - Inaccurate
- Troubleshooting Sequence
 - Meter
 - Buffers
 - Reference electrode
 - pH electrode
 - Sample
 - Technique

Troubleshooting pH Problems

- Troubleshooting pH Meters
 - Use meter shorting strap
 - Reading should be 0 mV +/- 0.2 mV
 - Use meter self-test procedure

- Troubleshooting Buffers
 - Use Fresh Buffers for calibration
 - Verify expiration date
 - 1 year after opening maximum
 - Stir buffers during calibration

Troubleshooting pH Problems

- Troubleshooting pH Electrodes
 - Clean bulb, junctions
 - Replace Fill solution
 - Uncover fill hole
 - Check for scratches on sensing bulb
- Troubleshooting Samples
 - Proper sample preparation
 - Stir samples
- Troubleshooting Technique
 - Treat samples and buffers the same
 - Clean and blot electrode between samples

Electrode Check

- Check Slope Range (102% 95%)
- Check response time in buffers (stable reading in 30 seconds)
- Verify mV readings are in the correct range for each buffer
 - pH 4.01 is +178 mV +/- 30 mV
 - pH 7.00 is 0 mV +/- 30 mV
 - pH 10.01 is -178 mV +/- 30 mV

IF the Electrode Check FAILS: Check for air bubbles near bulb

- Verify correct filling solution is being used
- Check for salt crystal formation inside electrode
- Check junction is open by suspending in air for 10 minutes and KCI crystal formation should occur
- Use Junction cleaning procedures
- Re-check instruction manual for electrode conditioning procedures

Thermo Scientific – Technical Service

- Contact us for any technical questions
 - Technical Service: (800) 225-1480
 - Web site: thermoscientific.com/water
 - pH system check

Thank You!

ThermoFisher SCIENTIFIC

The world leader in serving science