

Training Index

Essentials of the JavaTMProgramming
Language: A Hands-On Guide, Part 1

by Monica Pawlan

[CONTENTS] [NEXT>>

If you are new to programming in the JavaTM language, have some
experience with other languages, and are familiar with things like displaying
text or graphics or performing simple calculations, this tutorial could be for
you. It walks through how to use the Java® 2 Platform software to create
and run three common types of programs written for the Java
platform—applications, applets, and servlets.

You will learn how applications, applets, and servlets are similar and
different, how to build a basic user interface that handles simple end user
input, how to read data from and write data to files and databases, and how
to send and receive data over the network. This tutorial is not
comprehensive, but instead takes you on a straight and uncomplicated path
through the more common programming features available in the Java
platform.

If you have no programming experience at all, you might still find this tutorial
useful; but you also might want to take an introductory programming course
or read Teach Yourself Java 2 Online in Web Time before you proceed.

Contents

Lesson 1: Compiling and Running a Simple Program

A Word About the Java Platform
Setting Up Your Computer
Writing a Program
Compiling the Program
Interpreting and Running the Program
Common Compiler and Interpreter Problems
Code Comments
API Documentation
More Information

Lesson 2: Building Applications

Application Structure and Elements
Fields and Methods
Constructors

1 of 3 21-04-2000 17:30

Essentials of the Java(TM) Programming Language, Part 1 http://developer.java.sun.com/developer...ining/Programming/BasicJava1/index.html

To Summarize
More Information

Lesson 3: Building Applets

Application to Applet
Run the Applet
Applet Structure and Elements
Packages
More Information

Lesson 4: Building a User Interface

Swing APIs
Import Statements
Class Declaration
Global Variables
Constructor
Action Listening
Event Handling
Main Method
Applets Revisited
More Information

Lesson 5: Writing Servlets

About the Example
HTML Form
Servlet Backend
More Information

Lesson 6: File Access and Permissions

File Access by Applications
Exception Handling
File Access by Applets
Granting Applets Permission
Restricting Applications
File Access by Servlets
Appending
More Information

Lesson 7: Database Access and Permissions

Database Setup
Create Database Table
Database Access by Applications

Establishing a Database Connection
Final and Private Variables
Writing and Reading Data

Database Access by Applets
JDBC Driver
JDBC-ODBC Bridge with ODBC Driver

2 of 3 21-04-2000 17:30

Essentials of the Java(TM) Programming Language, Part 1 http://developer.java.sun.com/developer...ining/Programming/BasicJava1/index.html

Database Access by Servlets
More Information

Lesson 8: Remote Method Invocation

About the Example
Program Behavior
File Summary
Compile the Example
Start the RMI Registry
Run the RemoteServer Server Object
Run the RMIClient1 Program
Run the RMIClient2 Program

RemoteSend Class
Send Interface
RMIClient1 Class
RMIClient2 Class
More Information

In Closing

Reader Feedback

Tell us what you think of this training book.

 Very worth reading Worth reading Not worth reading

If you have other comments or ideas for future training books, please
type them here:

[TOP

[This page was updated: 6-Apr-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Submit Reset

3 of 3 21-04-2000 17:30

Essentials of the Java(TM) Programming Language, Part 1 http://developer.java.sun.com/developer...ining/Programming/BasicJava1/index.html

Training Index

JavaTM Programming Language Basics, Part 1
Lesson 1: Compiling and Running

A Simple Program

[<<BACK] [CONTENTS] [NEXT>>]

The computer age is here to stay. Households and businesses all over
the world use computers in one way or another because computers help
individuals and businesses perform a wide range of tasks with speed,
accuracy, and efficiency. Computers can perform all kinds of tasks
ranging from running an animated 3D graphics application with
background sound to calculating the number of vacation days you have
coming to handling the payroll for a Fortune 500 company.

When you want a computer to perform tasks, you write a program. A
program is a sequence of instructions that define tasks for the computer
to execute. This lesson explains how to write, compile, and run a simple
program written in the JavaTM language (Java program) that tells your
computer to print a one-line string of text on the console.

But before you can write and compile programs, you need to understand
what the Java platform is, and set your computer up to run the programs.

A Word About the Java Platform
Setting Up Your Computer
Writing a Program
Compiling the Program
Interpreting and Running the Program
Common Compiler and Interpreter Problems
Code Comments
API Documentation
More Information

A Word About the Java Platform

The Java platform consists of the Java application programming
interfaces (APIs) and the Java1 virtual machine (JVM).

1 of 6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Programhttp://developer.java.sun.com/developer...ing/Programming/BasicJava1/compile.html

Java APIs are libraries of compiled code that you can
use in your programs. They let you add ready-made
and customizable functionality to save you programming
time.

The simple program in this lesson uses a Java API to
print a line of text to the console. The console printing

capability is provided in the API ready for you to use; you supply the text
to be printed.

Java programs are run (or interpreted) by another program called the
Java VM. If you are familiar with Visual Basic or another interpreted
language, this concept is probably familiar to you. Rather than running
directly on the native operating system, the program is interpreted by the
Java VM for the native operating system. This means that any computer
system with the Java VM installed can run Java programs regardless of
the computer system on which the applications were originally developed.

For example, a Java program developed on a Personal Computer (PC)
with the Windows NT operating system should run equally well without
modification on a Sun Ultra workstation with the Solaris operating system,
and vice versa.

Setting Up Your Computer

Before you can write and run the simple Java program in this lesson, you
need to install the Java platform on your computer system.

The Java platform is available free of charge from the java.sun.com web
site. You can choose between the Java® 2 Platform software for
Windows 95/98/NT or for Solaris. The download page contains the
information you need to install and configure the Java platform for writing
and running Java programs.

Note: Make sure you have the Java platform installed and
configured for your system before you try to write and run the
simple program presented next.

Writing a Program

The easiest way to write a simple program is with a text editor. So, using
the text editor of your choice, create a text file with the following text, and
be sure to name the text file ExampleProgram.java. Java programs
are case sensitive, so if you type the code in yourself, pay particular
attention to the capitalization.

//A Very Simple Example
class ExampleProgram {
 public static void main(String[] args){
 System.out.println("I'm a Simple Program");
 }

2 of 6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Programhttp://developer.java.sun.com/developer...ing/Programming/BasicJava1/compile.html

}

Here is the ExampleProgram.java source code file if you do not want to
type the program text in yourself.

Compiling the Program

A program has to be converted to a form the Java VM can understand so
any computer with a Java VM can interpret and run the program.
Compiling a Java program means taking the programmer-readable text in
your program file (also called source code) and converting it to
bytecodes, which are platform-independent instructions for the Java VM.

The Java compiler is invoked at the command line on Unix and DOS shell
operating systems as follows:

 javac ExampleProgram.java

Note: Part of the configuration process for setting up the Java
platform is setting the class path. The class path can be set
using either the -classpath option with the javac compiler
command and java interpreter command, or by setting the
CLASSPATH environment variable. You need to set the class
path to point to the directory where the ExampleProgram
class is so the compiler and interpreter commands can find it.
See Java 2 SDK Tools for more information.

Interpreting and Running the Program

Once your program successfully compiles into Java bytecodes, you can
interpret and run applications on any Java VM, or interpret and run
applets in any Web browser with a Java VM built in such as Netscape or
Internet Explorer. Interpreting and running a Java program means
invoking the Java VM byte code interpreter, which converts the Java byte
codes to platform-dependent machine codes so your computer can
understand and run the program.

The Java interpreter is invoked at the command line on Unix and DOS
shell operating systems as follows:

 java ExampleProgram

At the command line, you should see:

 I'm a Simple Program

Here is how the entire sequence looks in a terminal window:

3 of 6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Programhttp://developer.java.sun.com/developer...ing/Programming/BasicJava1/compile.html

Common Compiler and Interpreter Problems

If you have trouble compiling or running the simple example in this lesson,
refer to the Common Compiler and Interpreter Problems lesson in The
Java Tutorial for troubleshooting help.

Code Comments

Code comments are placed in source files to describe what is happening
in the code to someone who might be reading the file, to comment-out
lines of code to isolate the source of a problem for debugging purposes,
or to generate API documentation. To these ends, the Java language
supports three kinds of comments: double slashes, C-style, and doc
comments.

Double Slashes

Double slashes (//) are used in the C++ programming language, and tell
the compiler to treat everything from the slashes to the end of the line as
text.

//A Very Simple Example
class ExampleProgram {
 public static void main(String[] args){
 System.out.println("I'm a Simple Program");
 }
}

C-Style Comments

Instead of double slashes, you can use C-style comments (/* */) to
enclose one or more lines of code to be treated as text.

/* These are
C-style comments
*/
class ExampleProgram {
 public static void main(String[] args){
 System.out.println("I'm a Simple Program");
 }
}

Doc Comments

To generate documentation for your program, use the doc comments
(/** */) to enclose lines of text for the javadoc tool to find. The
javadoc tool locates the doc comments embedded in source files and
uses those comments to generate API documentation.

4 of 6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Programhttp://developer.java.sun.com/developer...ing/Programming/BasicJava1/compile.html

/** This class displays a text string at
* the console.
*/
class ExampleProgram {
 public static void main(String[] args){
 System.out.println("I'm a Simple Program");
 }
}

With one simple class, there is no reason to generate API documentation.
API documentation makes sense when you have an application made up
of a number of complex classes that need documentation. The tool
generates HTML files (Web pages) that describe the class structures and
contain the text enclosed by doc comments. The javadoc Home Page has
more information on the javadoc command and its output.

API Documentation

The Java platform installation includes API Documentation, which
describes the APIs available for you to use in your programs. The files
are stored in a doc directory beneath the directory where you installed
the platform. For example, if the platform is installed in
/usr/local/java/jdk1.2, the API Documentation is in
/usr/local/java/jdk1.2/doc/api.

More Information

See Java 2 SDK Tools for more information on setting the class path and
using the javac, and java commands.

See Common Compiler and Interpreter Problems lesson in The Java
Tutorial for troubleshooting help.

The javadoc Home Page has more information on the javadoc command
and its output.

You can also view the API Documentation for the Java 2 Platform on the
java.sun.com site.

1 As used on this web site, the terms "Java virtual machine" or "JVM"
mean a virtual machine for the Java platform.

[TOP]

[This page was updated: 30-Mar-2000]

5 of 6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Programhttp://developer.java.sun.com/developer...ing/Programming/BasicJava1/compile.html

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

6 of 6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Programhttp://developer.java.sun.com/developer...ing/Programming/BasicJava1/compile.html

Training Index

JavaTM Programming Language Basics, Part 1
Lesson 2: Building Applications

[<<BACK] [CONTENTS] [NEXT>>]

All programs written in the JavaTM language (Java programs) are built from
classes. Because all classes have the same structure and share common
elements, all Java programs are very similar.

This lesson describes the structure and elements of a simple application
created from one class. The next lesson covers the same material for
applets.

Application Structure and Elements
Fields and Methods
Constructors
More Information

Application Structure and Elements

An application is created from classes. A class is
similar to a RECORD in the Pascal language or a
struct in the C language in that it stores related
data in fields, where the fields can be different
types. So you could, for example, store a text
string in one field, an integer in another field, and a
floating point in a third field. The difference

between a class and a RECORD or struct is that a class also defines the
methods to work on the data.

For example, a very simple class might store a string of text and define
one method to set the string and another method to get the string and print
it to the console. Methods that work on the data are called accessor
methods.

1 of 6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications http://developer.java.sun.com/developer...aining/Programming/BasicJava1/prog.html

Every application needs one class with a main
method. This class is the entry point for the
program, and is the class name passed to the
java interpreter command to run the application.

The code in the main method executes first when
the program starts, and is the control point from
which the controller class accessor methods are
called to work on the data.

Here, again, is the example program from Lesson 1. It has no fields or
accessor methods, but because it is the only class in the program, it has a
main method.

 class ExampleProgram {
 public static void main(String[] args){
 System.out.println("I'm a Simple Program");
 }
 }

The public static void keywords mean the Java1 virtual machine
(JVM) interpreter can call the program's main method to start the
program (public) without creating an instance of the class (static), and the
program does not return data to the Java VM interpreter (void) when it
ends.

An instance of a class is an executable copy of
the class While the class describes the data and
behavior, you need a class instance to acquire
and work on data. The diagram at the left
shows three instances of the
ExampleProgram class by the names:
FirstInstance, SecondInstance and
ThirdInstance.

The main method is static to give the Java VM interpreter a way to start
the class without creating an instance of the control class first. Instances
of the control class are created in the main method after the program
starts.

The main method for the simple example does not create an instance of
the ExampleProgram class because none is needed. The
ExampleProgram class has no other methods or fields, so no class
instance is needed to access them from the main method. The Java
platform lets you execute a class without creating an instance of that class
as long as its static methods do not call any non-static methods or fields.

The ExampleProgram class just calls System.out.println. The
java.lang.System class, among other things, provides functionality to
send text to the terminal window where the program was started. It has all
static fields and methods. The static out field in the System class is type
PrintStream, which is a class that provides various forms of print
methods, including the println method.

2 of 6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications http://developer.java.sun.com/developer...aining/Programming/BasicJava1/prog.html

The static fields and methods of a class can be called by another program
without creating an instance of the class. So, just as the Java VM
interpreter command could call the static main method in the
ExampleProgram class without creating an instance of the
ExampleProgram class, the ExampleProgram class can call the
static println method in the System class, without creating an
instance of the System class.

However, a program must create an instance of a class to access its
non-static fields and methods. Accessing static and non-static fields and
methods is discussed further with several examples in the next section.

Fields and Methods

The LessonTwoA.java program alters the simple example to store the text
string in a static field called text. The text field is static so its data can
be accessed directly by the static call to out.println without creating
an instance of the LessonTwoA class.

class LessonTwoA {
 static String text = "I'm a Simple Program";
 public static void main(String[] args){
 System.out.println(text);
 }
}

The LessonTwoB.java and LessonTwoC.java programs add a getText
method to the program to retrieve and print the text.

The LessonTwoB.java program accesses the non-static text field with
the non-static getText method. Non-static methods and fields are called
instance methods and fields. This approach requires that an instance of the
LessonTwoB class be created in the main method. To keep things
interesting, this example includes a static text field and a non-static
instance method (getStaticText) to retrieve it.

Note: The field and method return values are all type String.

class LessonTwoB {

 String text = "I'm a Simple Program";
 static String text2 = "I'm static text";

 String getText(){
 return text;
 }

 String getStaticText(){
 return text2;
 }

 public static void main(String[] args){

3 of 6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications http://developer.java.sun.com/developer...aining/Programming/BasicJava1/prog.html

 LessonTwoB progInstance = new LessonTwoB();
 String retrievedText = progInstance.getText();
 String retrievedStaticText =
 progInstance.getStaticText();
 System.out.println(retrievedText);
 System.out.println(retrievedStaticText);
 }
}

The LessonTwoC.java program accesses the static text field with the
static getText method. Static methods and fields are called class
methods and fields. This approach allows the program to call the static
getText method directly without creating an instance of the LessonTwoC
class.

class LessonTwoC {

 static String text = "I'm a Simple Program";

//Accessor method
 static String getText(){
 return text;
 }

 public static void main(String[] args){
 String retrievedText = getText();
 System.out.println(retrievedText);
 }
}

So, class methods can operate only on class fields, and instance methods
can operate on class and instance fields.

You might wonder what the difference means. In short, there is only one
copy of the data stored or set in a class field but each instance has its own
copy of the data stored or set in an instance field.

The figure above shows three class instances with one static field and one
instance field. At runtime, there is one copy of the value for static Field A
and each instance points to the one copy. When setFieldA(50) is called on
the first instance, the value of the one copy changes from 36 to 50 and all
three instances point to the new value. But, when setFieldB(25) is called
on the first instance, the value for Field B changes from 0 to 25 for the first
instance only because each instance has its own copy of Field B.

See Understanding Instance and Class Members lesson in The Java
tutorial for a thorough discussion of this topic.

4 of 6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications http://developer.java.sun.com/developer...aining/Programming/BasicJava1/prog.html

Constructors

Classes have a special method called a constructor that is called when a
class instance is created. The class constructor always has the same
name as the class and no return type. The LessonTwoD program converts
the LessonTwoB program to use a constructor to initialize the text string.

Note: If you do not write your own constructor, the compiler adds
an empty constructor, which calls the no-arguments constructor
of its parent class. The empty constructor is called the default
constructor. The default constructor initializes all non-initialized
fields and variables to zero.

class LessonTwoD {

 String text;

//Constructor
 LessonTwoD(){
 text = "I'm a Simple Program";
 }

//Accessor method
 String getText(){
 return text;
 }

 public static void main(String[] args){
 LessonTwoD progInst = new LessonTwoD();
 String retrievedText = progInst.getText();
 System.out.println(retrievedText);
 }
}

To Summarize

A simple program that prints a short text string to the console would
probably do everything in the main method and do away with the
constructor, text field, and getText method. But, this lesson used a
very simple program to show you the structure and elements in a basic
Java program.

More Information

See Understanding Instance and Class Members lesson in The Java
tutorial for a thorough discussion of this topic.

1 As used on this web site, the terms "Java virtual machine" or "JVM"
mean a virtual machine for the Java platform.

[TOP]

5 of 6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications http://developer.java.sun.com/developer...aining/Programming/BasicJava1/prog.html

[This page was updated: 11-Apr-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

6 of 6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications http://developer.java.sun.com/developer...aining/Programming/BasicJava1/prog.html

Training Index

JavaTM Programming Language Basics, Part 1
Lesson 3: Building Applets

[<<BACK] [CONTENTS] [NEXT>>]

Like applications, applets are created from classes. However, applets do
not have a main method as an entry point, but instead, have several
methods to control specific aspects of applet execution.

This lesson converts an application from Lesson 2 to an applet and
describes the structure and elements of an applet.

Application to Applet
Run the Applet
Applet Structure and Elements
Packages
More Information

Application to Applet

The following code is the applet equivalent to the LessonTwoB application
from Lesson 2. The figure below shows how the running applet looks. The
structure and elements of the applet code are discussed after the section
on how to run the applet just below.

import java.applet.Applet;
import java.awt.Graphics;
import java.awt.Color;

public class SimpleApplet extends Applet{

 String text = "I'm a simple applet";

 public void init() {
 text = "I'm a simple applet";
 setBackground(Color.cyan);

1 of 5 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 3: Building Applets http://developer.java.sun.com/developer...ning/Programming/BasicJava1/applet.html

 }
 public void start() {
 System.out.println("starting...");
 }
 public void stop() {
 System.out.println("stopping...");
 }
 public void destroy() {
 System.out.println("preparing to unload...");
 }
 public void paint(Graphics g){
 System.out.println("Paint");
 g.setColor(Color.blue);
 g.drawRect(0, 0,
 getSize().width -1,
 getSize().height -1);
 g.setColor(Color.red);
 g.drawString(text, 15, 25);
 }
}

The SimpleApplet class is declared public so the program that runs
the applet (a browser or appletviewer), which is not local to the
program can access it.

Run the Applet

To see the applet in action, you need an HTML file with the Applet tag as
follows:

<HTML>
<BODY>
<APPLET CODE=SimpleApplet.class WIDTH=200 HEIGHT=100>
</APPLET>
</BODY>
</HTML>

The easiest way to run the applet is with appletviewer shown below where
simpleApplet.html is a file that contains the above HTML code:

 appletviewer simpleApplet.html

Note: To run an applet written with JavaTM 2 APIs in a browser,
the browser must be enabled for the Java 2 Platform. If your
browser is not enabled for the Java 2 Platform, you have to use
appletviewer to run the applet or install Java Plug-in. Java Plug-in
lets you run applets on web pages under the 1.2 version of the
Java VM instead of the web browser's default Java VM.

Applet Structure and Elements

The Java API Applet class provides what you need to design the
appearance and manage the behavior of an applet. This class provides a
graphical user interface (GUI) component called a Panel and a number of

2 of 5 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 3: Building Applets http://developer.java.sun.com/developer...ning/Programming/BasicJava1/applet.html

methods. To create an applet, you extend (or subclass) the Applet class
and implement the appearance and behavior you want.

The applet's appearance is created by drawing onto the Panel or by
attaching other GUI components such as push buttons, scrollbars, or text
areas to the Panel. The applet's behavior is defined by implementing the
methods.

Extending a Class

Most classes of any complexity extend other classes. To
extend another class means to write a new class that can use
the fields and methods defined in the class being extended. The
class being extended is the parent class, and the class doing
the extending is the child class. Another way to say this is the
child class inherits the fields and methods of its parent or chain
of parents. Child classes either call or override inherited
methods. This is called single inheritance.

The SimpleApplet class extends Applet class, which
extends the Panel class, which extends the Container
class. The Container class extends Object, which is the

parent of all Java API classes.

The Applet class provides the init, start, stop, destroy, and
paint methods you saw in the example applet. The SimpleApplet
class overrides these methods to do what the SimpleApplet class
needs them to do. The Applet class provides no functionality for these
methods.

However, the Applet class does provide functionality for the
setBackground method,which is called in the init method. The call to
setBackground is an example of calling a method inherited from a
parent class in contrast to overriding a method inherited from a parent
class.

You might wonder why the Java language provides methods without
implementations. It is to provide conventions for everyone to use for
consistency across Java APIs. If everyone wrote their own method to start
an applet, for example, but gave it a different name such as begin or go,
the applet code would not be interoperable with other programs and
browsers, or portable across multiple platforms. For example, Netscape
and Internet Explorer know how to look for the init and start methods.

Behavior

An applet is controlled by the software that runs it. Usually, the underlying
software is a browser, but it can also be appletviewer as you saw in
the example. The underlying software controls the applet by calling the
methods the applet inherits from the Applet class.

The init Method: The init method is called when the applet is first

3 of 5 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 3: Building Applets http://developer.java.sun.com/developer...ning/Programming/BasicJava1/applet.html

created and loaded by the underlying software. This method performs
one-time operations the applet needs for its operation such as creating the
user interface or setting the font. In the example, the init method
initializes the text string and sets the background color.

The start Method: The start method is called when the applet is
visited such as when the end user goes to a web page with an applet on it.
The example prints a string to the console to tell you the applet is starting.
In a more complex applet, the start method would do things required at
the start of the applet such as begin animation or play sounds.

After the start method executes, the event thread calls the paint
method to draw to the applet's Panel. A thread is a single sequential flow
of control within the applet, and every applet can run in multiple threads.
Applet drawing methods are always called from a dedicated drawing and
event-handling thread.

The stop and destroy Methods: The stop method stops the applet
when the applet is no longer on the screen such as when the end user
goes to another web page. The example prints a string to the console to
tell you the applet is stopping. In a more complex applet, this method
should do things like stop animation or sounds.

The destroy method is called when the browser exits. Your applet should
implement this method to do final cleanup such as stop live threads.

Appearance

The Panel provided in the Applet class inherits a paint method from its
parent Container class. To draw something onto the Applet's Panel,
you implement the paint method to do the drawing.

The Graphics object passed to the paint method defines a graphics
context for drawing on the Panel. The Graphics object has methods for
graphical operations such as setting drawing colors, and drawing graphics,
images, and text.

The paint method for the SimpleApplet draws the I'm a simple applet
string in red inside a blue rectangle.

 public void paint(Graphics g){
 System.out.println("Paint");
//Set drawing color to blue
 g.setColor(Color.blue);
//Specify the x, y, width and height for a rectangle
 g.drawRect(0, 0,
 getSize().width -1,
 getSize().height -1);
//Set drawing color to red
 g.setColor(Color.red);
//Draw the text string at the (15, 25) x-y location
 g.drawString(text, 15, 25);
 }

4 of 5 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 3: Building Applets http://developer.java.sun.com/developer...ning/Programming/BasicJava1/applet.html

Packages

The applet code also has three import statements at the top.
Applications of any size and all applets use import statements to access
ready-made Java API classes in packages. This is true whether the Java
API classes come in the Java platform download, from a third-party, or are
classes you write yourself and store in a directory separate from the
program. At compile time, a program uses import statements to locate
and reference compiled Java API classes stored in packages elsewhere
on the local or networked system. A compiled class in one package can
have the same name as a compiled class in another package. The
package name differentiates the two classes.

The examples in Lessons 1 and 2 did not need a package declaration to
call the System.out.println Java API class because the System
class is in the java.lang package that is included by default. You never
need an import java.lang.* statement to use the compiled classes in
that package.

More Information

You can find more information on applets in the Writing Applets trail in The
Java Tutorial.

[TOP]

[This page was updated: 30-Mar-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

5 of 5 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 3: Building Applets http://developer.java.sun.com/developer...ning/Programming/BasicJava1/applet.html

Training Index

JavaTM Programming Language Basics, Part 1
Lesson 4: Building A User Interface

[<<BACK] [CONTENTS] [NEXT>>]

In the last lesson you saw how the Applet class provides a Panel
component so you can design the applet's user interface. This lesson
expands the basic application from Lessons 1 and 2 to give it a user
interface using the JavaTM Foundation Classes (JFC) Project Swing APIs
that handle user events.

Project Swing APIs
Import Statements
Class Declaration
Instance Variables
Constructor
Action Listening
Event Handling
Main Method
Applets Revisited
More Information

Project Swing APIs

In contrast to the applet in Lesson 3 where the user
interface is attached to a panel object nested in a
top-level browser, the Project Swing application in
this lesson attaches its user interface to a panel
object nested in a top-level frame object. A frame
object is a top-level window that provides a title,

banner, and methods to manage the appearance and behavior of the
window.

The Project Swing code that follows builds this simple application. The
window on the left appears when you start the application, and the window
on the right appears when you click the button. Click again and you are
back to the original window on the left.

1 of 7 21-04-2000 17:31

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface http://developer.java.sun.com/developer...ining/Programming/BasicJava1/front.html

When Application
Starts When Button Clicked

Import Statements

Here is the SwingUI.java code. At the top, you have four lines of import
statements. The lines indicate exactly which JavaTM API classes the
program uses. You could replace four of these lines with this one line:
import java.awt.*;, to import the entire awt package, but doing that
increases compilation overhead than importing exactly the classes you
need and no others.

import java.awt.Color;
import java.awt.BorderLayout;
import java.awt.event.*;
import javax.swing.*;

Class Declaration

The class declaration comes next and indicates the top-level frame for the
application's user interface is a JFrame that implements the
ActionListener interface.

class SwingUI extends JFrame
 implements ActionListener{

The JFrame class extends the Frame class that is part of the Abstract
Window Toolkit (AWT) APIs. Project Swing extends the AWT with a full
set of GUI components and services, pluggable look and feel capabilities,
and assistive technology support. For a more detailed introduction to
Project Swing, see the Swing Connection, and Fundamentals of Swing,
Part 1.

The Java APIs provide classes and interfaces for you to use. An interface
defines a set of methods, but does not implement them. The rest of the
SwingUI class declaration indicates that this class will implement the
ActionListener interface. This means the SwingUI class must
implement all methods defined in the ActionListener interface.
Fortunately, there is only one, actionPerformed, which is discussed
below.

Instance Variables

These next lines declare the Project Swing component classes the
SwingUI class uses. These are instance variables that can be accessed
by any method in the instantiated class. In this example, they are built in
the SwingUI constructor and accessed in the actionPerformed
method implementation. The private boolean instance variable is

2 of 7 21-04-2000 17:31

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface http://developer.java.sun.com/developer...ining/Programming/BasicJava1/front.html

visible only to the SwingUI class and is used in the
actionPerformedmethod to find out whether or not the button has been
clicked.

 JLabel text, clicked;
 JButton button, clickButton;
 JPanel panel;
 private boolean _clickMeMode = true;

Constructor

The constructor (shown below) creates the user interface components and
JPanel object, adds the components to the JPanel object, adds the
panel to the frame, and makes the JButton components event listeners.
The JFrame object is created in the main method when the program
starts.

 SwingUI(){
 text = new JLabel("I'm a Simple Program");
 clicked = new JLabel("Button Clicked");

 button = new JButton("Click Me");
//Add button as an event listener
 button.addActionListener(this);

 clickButton = new JButton("Click Again");
//Add button as an event listener
 clickButton.addActionListener(this);

//Create panel
 panel = new JPanel();
//Specify layout manager and background color
 panel.setLayout(new BorderLayout(1,1));
 panel.setBackground(Color.white);
//Add label and button to panel
 getContentPane().add(panel);
 panel.add(BorderLayout.CENTER, text);
 panel.add(BorderLayout.SOUTH, button);
 }

When the JPanel object is created, the layout
manager and background color are specified.
The layout manager in use determines how
user interface components are arranged on the
display area.

The code uses the BorderLayout layout
manager, which arranges user interface

components in the five areas shown at left. To add a component, specify
the area (north, south, east, west, or center).

//Create panel
 panel = new JPanel();
//Specify layout manager and background color
 panel.setLayout(new BorderLayout(1,1));
 panel.setBackground(Color.white);

3 of 7 21-04-2000 17:31

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface http://developer.java.sun.com/developer...ining/Programming/BasicJava1/front.html

//Add label and button to panel
 getContentPane().add(panel);
 panel.add(BorderLayout.CENTER, text);
 panel.add(BorderLayout.SOUTH, button);
 }

To find out about some of the other available layout managers and how to
use them, see the JDC article Exploring the AWT Layout Managers.

The call to the getContentPane method of the JFrame class is for
adding the Panel to the JFrame. Components are not added directly to a
JFrame, but to its content pane. Because the layout manager controls the
layout of components, it is set on the content pane where the components
reside. A content pane provides functionality that allows different types of
components to work together in Project Swing.

Action Listening

In addition to implementing the ActionListener interface, you have to
add the event listener to the JButton components. An action listener is the
SwingUI object because it implements the ActionListener interface. In this
example, when the end user clicks the button, the underlying Java platform
services pass the action (or event) to the actionPerformed method. In your
code, you implement the actionPerformed method to take the appropriate
action based on which button is clicked..

The component classes have the appropriate add methods to add action
listeners to them. In the code the JButton class has an addActionListener
method. The parameter passed to addActionListener is this, which means
the SwingUI action listener is added to the button so button-generated
actions are passed to the actionPerformed method in the SwingUI object.

 button = new JButton("Click Me");
//Add button as an event listener
 button.addActionListener(this);

Event Handling

The actionPerformed method is passed an event object that represents the
action event that occurred. Next, it uses an if statement to find out which
component had the event, and takes action according to its findings.

 public void actionPerformed(ActionEvent event){
 Object source = event.getSource();
 if (_clickMeMode) {
 text.setText("Button Clicked");
 button.setText("Click Again");
 _clickMeMode = false;
 } else {
 text.setText("I'm a Simple Program");
 button.setText("Click Me");
 _clickMeMode = true;
 }
 }

You can find information on event handling for the different components in

4 of 7 21-04-2000 17:31

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface http://developer.java.sun.com/developer...ining/Programming/BasicJava1/front.html

The Java Tutorial section on Event Handling.

Main Method

The main method creates the top-level frame, sets the title, and includes
code that lets the end user close the window using the frame menu.

public static void main(String[] args){
//Create top-level frame
 SwingUI frame = new SwingUI();
 frame.setTitle("Example");
//This code lets you close the window
 WindowListener l = new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 };
 frame.addWindowListener(l);
//This code lets you see the frame
 frame.pack();
 frame.setVisible(true);
 }
}

The code for closing the window shows an easy way to add event handling
functionality to a program. If the event listener interface you need provides
more functionality than the program actually uses, use an adapter class.
The Java APIs provide adapter classes for all listener interfaces with more
than one method. This way, you can use the adapter class instead of the
listener interface and implement only the methods you need. In the
example, the WindowListener interface has 7 methods and this program
needs only the windowClosing method so it makes sense to use the
WindowAdapter class instead.

This code extends the WindowAdapter class and overrides the
windowClosing method. The new keyword creates an anonymous instance
of the extended inner class. It is anonymous because you are not assigning
a name to the class and you cannot create another instance of the class
without executing the code again. It is an inner class because the extended
class definition is nested within the SwingUI class.

This approach takes only a few lines of code, while implementing the
WindowListener interface would require 6 empty method implementations.
Be sure to add the WindowAdapter object to the frame object so the
frame object will listen for window events.

 WindowListener l = new WindowAdapter() {
 //The instantiation of object l is extended to
 //include this code:
 public void windowClosing(WindowEvent e){
 System.exit(0);
 }
 };
 frame.addWindowListener(l);

Applets Revisited

5 of 7 21-04-2000 17:31

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface http://developer.java.sun.com/developer...ining/Programming/BasicJava1/front.html

Using what you learned in Lesson 3: Building Applets and this lesson,
convert the example for this lesson into an applet. Give it a try before
looking at the solution.

In short, the differences between the applet and application versions are
the following:

The applet class is declared public so appletviewer can access
it.

The applet class descends from Applet and the application class
descends from JFrame.

The applet version has no main method.

The application constructor is replaced in the applet by start and
init methods.

GUI components are added directly to the Applet; whereas, in the
case of an application, GUI components are added to the content
pane of its JFrame object.

More Information

For more information on Project Swing, see the Swing Connection, and
Fundamentals of Swing, Part 1.

Also see The JFC Project Swing Tutorial: A Guide to Constructing GUIs.

To find out about some of the other available layout managers and how to
use them, see the JDC article Exploring the AWT Layout Managers.

[TOP]

[This page was updated: 30-Mar-2000]

6 of 7 21-04-2000 17:31

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface http://developer.java.sun.com/developer...ining/Programming/BasicJava1/front.html

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

7 of 7 21-04-2000 17:31

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface http://developer.java.sun.com/developer...ining/Programming/BasicJava1/front.html

Training Index

JavaTM Programming Language Basics, Part 1
Lesson 5: Writing Servlets

[<<BACK] [CONTENTS] [NEXT>>]

A servlet is an extension to a server that enhances the server's
functionality. The most common use for a servlet is to extend a web server
by providing dynamic web content. Web servers display documents written
in HyperText Markup Language (HTML) and respond to user requests
using the HyperText Transfer Protocol (HTTP). HTTP is the protocol for
moving hypertext files across the internet. HTML documents contain text
that has been marked up for interpretation by an HTML browser such as
Netscape.

Servlets are easy to write. All you need is the Java® 2 Platform software,
and JavaServerTM Web Development Kit (JWSDK). You can download a
free copy of the JWSDK.

This lesson shows you how to create a very simple form that invokes a
basic servlet to process end user data entered on the form.

About the Example
HTML Form
Servlet Backend
More Information

About the Example

A browser accepts end user input through an HTML form. The simple form
used in this lesson has one text input field for the end user to enter text
and a Submit button. When the end user clicks the Submit button, the
simple servlet is invoked to process the end user input.

In this example, the simple servlet returns an HTML page that displays the
text entered by the end user.

HTML Form

1 of 5 21-04-2000 17:31

Java(TM) Language Basics, Part1, Lesson 5: Writing Servlets http://developer.java.sun.com/developer...ing/Programming/BasicJava1/servlet.html

The HTML form is embedded in this HTML file. The diagram shows how
the HTML page looks when it is opened in a browser.

The HTML file and form are similar to
the simple application and applet
examples in Lesson 4 so you can
compare the code and learn how
servlets, applets, and applications
handle end user inputs.

When the user clicks the Click Me
button, the servlet gets the entered text,

and returns an HTML page with the text.

The HTML page returned to the browser by the ExampServlet.java servlet
is shown below. The servlet code to retrieve the user's input and generate
the HTML page follows with a discussion.

Note: To run the example, you have to put the servlet and HTML
files in the correct directories for the Web server you are using.
For example, with Java WebServer 1.1.1, you place the servlet in
the ~/JavaWebServer1.1.1/servlets and the HTML file in
the ~/JavaWebServer1.1.1/public_html directory.

Servlet Backend

ExampServlet.java builds an HTML page to return to the end user. This
means the servlet code does not use any Project Swing or Abstract
Window Toolkit (AWT) components or have event handling code. For this
simple servlet, you only need to import these packages:

java.io for system input and output. The HttpServlet class uses
the IOException class in this package to signal that an input or
output exception of some kind has occurred.

javax.servlet, which contains generic (protocol-independent)
servlet classes. The HttpServlet class uses the
ServletException class in this package to indicate a servlet
problem.

javax.servlet.http, which contains HTTP servlet classes. The
HttpServlet class is in this package.

import java.io.*;
import javax.servlet.*;

2 of 5 21-04-2000 17:31

Java(TM) Language Basics, Part1, Lesson 5: Writing Servlets http://developer.java.sun.com/developer...ing/Programming/BasicJava1/servlet.html

import javax.servlet.http.*;

public class ExampServlet extends HttpServlet {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println("<title>Example</title>" +
 "<body bgcolor=FFFFFF>");

 out.println("<h2>Button Clicked</h2>");

 String DATA = request.getParameter("DATA");

 if(DATA != null){
 out.println(DATA);
 } else {
 out.println("No text entered.");
 }

 out.println("<P>Return to
 Form");
 out.close();
 }
}

Class and Method Declarations

All servlet classes extend the HttpServlet abstract class.
HttpServlet simplifies writing HTTP servlets by providing a framework
for handling the HTTP protocol. Because HttpServlet is abstract,
your servlet class must extend it and override at least one of its methods.
An abstract class is a class that contains unimplemented methods and
cannot be instantiated itself.

public class ExampServlet extends HttpServlet {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {

The ExampServlet class is declared public so the web server that
runs the servlet, which is not local to the servlet, can access it.

The ExampServlet class defines a doPost method with the same
name, return type, and parameter list as the doPost method in the
HttpServlet class. By doing this, the ExampServlet class overrides
and implements the doPost method in the HttpServlet class.

The doPost method performs the HTTP POST operation, which is the
type of operation specified in the HTML form used for this example. The
other possibility is the HTTP GET operation, in which case you would
implement the doGet method instead.

3 of 5 21-04-2000 17:31

Java(TM) Language Basics, Part1, Lesson 5: Writing Servlets http://developer.java.sun.com/developer...ing/Programming/BasicJava1/servlet.html

In short, POST requests are for sending any amount of data directly over
the connection without changing the URL, and GET requests are for getting
limited amounts of information appended to the URL. POST requests
cannot be bookmarked or emailed and do not change the Uniform
Resource Locators (URL) of the response. GET requests can be
bookmarked and emailed and add information to the URL of the response.

The parameter list for the doPost method takes a request and a
response object. The browser sends a request to the servlet and the
servlet sends a response back to the browser.

The doPost method implementation accesses information in the request
object to find out who made the request, what form the request data is in,
and which HTTP headers were sent, and uses the response object to
create an HTML page in response to the browser's request. The doPost
method throws an IOException if there is an input or output problem
when it handles the request, and a ServletException if the request
could not be handled. These exceptions are handled in the HttpServlet
class.

Method Implementation

The first part of the doPost method uses the response object to create
an HTML page. It first sets the response content type to be text/html,
then gets a PrintWriter object for formatted text output.

response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println("<title>Example</title>" +
 "<body bgcolor=#FFFFFF>");

 out.println("<h2>Button Clicked</h2>");

The next line uses the request object to get the data from the text field
on the form and store it in the DATA variable. The getparameter method
gets the named parameter, returns null if the parameter was not set,
and an empty string if the parameter was sent without a value.

 String DATA = request.getParameter("DATA");

The next part of the doPost method gets the data out of the DATA
parameter and passes it to the response object to add to the HTML
response page.

 if(DATA != null){
 out.println(DATA);
 } else {
 out.println("No text entered.");
 }

The last part of the doPost method creates a link to take the end user
from the HTML response page back to the original form, and closes the
response.

4 of 5 21-04-2000 17:31

Java(TM) Language Basics, Part1, Lesson 5: Writing Servlets http://developer.java.sun.com/developer...ing/Programming/BasicJava1/servlet.html

 out.println("<P>Return to
 Form");
 out.close();
 }

Note: To learn how to use the other methods available in the
HttpServlet, HttpServletRequest, and
HttpServletResponse classes, see The Java Tutorial trail on
Servlets.

More Information

You can find more information on servlets in the Servlets trail in The Java
Tutorial.

[TOP]

[This page was updated: 30-Mar-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

5 of 5 21-04-2000 17:31

Java(TM) Language Basics, Part1, Lesson 5: Writing Servlets http://developer.java.sun.com/developer...ing/Programming/BasicJava1/servlet.html

Training Index

JavaTM Programming Language Basics, Part 1
Lesson 6: File Access and Permissions

[<<BACK] [CONTENTS] [NEXT>>]

So far, you have learned how to retrieve and handle a short text string
entered from the keyboard into a simple graphical user interface (GUI).
But programs also retrieve, handle, and store data in files and databases.

This lesson expands the examples from previous lessons to perform basic
file access using the application programming interfaces (APIs) in the
java.io package. It also shows you how to grant applets permission to
access specific files, and how to restrict an application so it has access to
specific files only.

File Access by Applications
System Properties
File.separatorChar
Exception Handling
File Access by Applets
Granting Applets Permission
Restricting Applications
File Access by Servlets
Appending
More Informattion

File Access by Applications

The Java® 2 Platform software provides a rich range of classes for
reading character or byte data into a program, and writing character or
byte data out to an external file, storage device, or program. The source
or destination might be on the local computer system where the program is
running or anywhere on the network.

This section shows you how to read data from and write data to a file on
the local computer system. See The JavaTM Tutorial trail on Reading and
Writing for information on transferring data between programs, between a
program and memory, and performing operations such as buffering or
character encoding on data as it is read or written.

Reading: A program opens an input stream on the file and reads the
data in serially (in the order it was written to the file).

Writing: A program opens an output stream on the file and writes the

1 of 12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJava1/data.html

data out serially.

This first example converts the SwingUI.java example from Lesson 4 to
accept user input through a text field. The window on the left appears
when you start the FileIO application, and the window on the right appears
when you click the button. When you click the button, whatever is entered
into the text field is saved to a file. After that, another file is opened and
read and its text is displayed in the window on the right. Click again and
you are back to the original window with a blank text field ready for more
input.

When Application Starts When Button Clicked

The conversion from the SwingUI.java program for Lesson 4 to the
FileIO.java program for this lesson primarily involves the constructor
and the actionPerformed method as described here.

Constructor and Instance Variable Changes

A JTextfield instance variable is added to the class so the
constructor can instantiate the object and the actionPerformed
method can access the text the end user types into it.

The constructor instantiates the JTextField with a value of 20. This
value tells the Java platform the number of columns to use to calculate the
preferred width of the field. Lower values result in a narrower display, and
likewise, higher values result in a wider display.

The text label is added to the North section of the BorderLayout so
the JTextField can be added to the Center section.

Note: You can learn more about component sizing in The Java
Tutorial sections on Solving Common Layout Problems and
Layout Management.

//Instance variable for text field
JTextField textField;

FileIO(){
 text = new JLabel("Text to save to file:");
 clicked = new
 JLabel("Text retrieved from file:");

 button = new JButton("Click Me");
 button.addActionListener(this);

2 of 12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJava1/data.html

 clickButton = new JButton("Click Again");
 clickButton.addActionListener(this);

//Text field instantiation
 textField = new JTextField(20);

 panel = new JPanel();
 panel.setLayout(new BorderLayout());
 panel.setBackground(Color.white);
 getContentPane().add(panel);

//Adjustments to layout to add text field
 panel.add("North", text);
 panel.add("Center", textField);
 panel.add("South", button);
}

Method Changes

The actionPerformed method uses the FileInputStream and
FileOutputStream classes to read data from and write data to a file.
These classes handle data in byte streams, as opposed to character
streams, which are shown in the applet example. A more detailed
explanation of the changes to the method implementation follows the code.

public void actionPerformed(
 ActionEvent event){
 Object source = event.getSource();
 if(source == button){
//Variable to display text read from file
 String s = null;
 if(_clickMeMode){
 try{
//Code to write to file
 String text = textField.getText();
 byte b[] = text.getBytes();

 String outputFileName =
 System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 File outputFile = new File(outputFileName);
 FileOutputStream out = new
 FileOutputStream(outputFile);
 out.write(b);
 out.close();

//Code to read from file
 String inputFileName =
 System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 File inputFile = new File(inputFileName);
 FileInputStream in = new
 FileInputStream(inputFile);

 byte bt[] = new
 byte[(int)inputFile.length()];

3 of 12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJava1/data.html

 in.read(bt);
 s = new String(bt);
 in.close();
 }catch(java.io.IOException e){
 System.out.println("Cannot access text.txt");
 }
//Clear text field
 textField.setText("");
//Display text read from file
 text.setText("Text retrieved from file:");
 textField.setText(s);
 button.setText("Click Again");
 _clickMeMode = false;
 } else {
//Save text to file
 text.setText("Text to save to file:");
 textField.setText("");
 button.setText("Click Me");
 _clickMeMode = true;
 }
 }
}

To write the end user text to a file, the text is retrieved from the
textField and converted to a byte array.

 String text = textField.getText();
 byte b[] = text.getBytes();

Next, a File object is created for the file to be written to and used to
create a FileOutputStream object.

 String outputFileName =
 System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 File outputFile = new File(outputFileName);
 FileOutputStream out = new
 FileOutputStream(outputFile);

Finally, the FileOutputStream object writes the byte array to the File
object and closes the output stream when the operation completes.

 out.write(b);
 out.close();

The code to open a file for reading is similar. To read text from a file, a
File object is created and used to create a FileInputStream object.

 String inputFileName =
 System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 File inputFile = new File(inputFileName);
 FileInputStream out = new
 FileInputStream(inputFile);

4 of 12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJava1/data.html

Next, a byte array is created the same size as the file into which the file
contents are read.

 byte bt[] = new byte[(int)inputFile.length()];
 in.read(bt);

Finally, the byte array is used to construct a String object, which is used
to create the text for the label component. The FileInputStream is
closed when the operation completes.

 String s = new String(bt);
 label.setText(s);
 in.close();

System Properties

The above code used a call to System.getProperty to create the
pathname to the file in the user's home directory. The System class
maintains a set of properties that define attributes of the current working
environment. When the Java platform starts, system properties are
initialized with information about the runtime environment including the
current user, Java platform version, and the character used to separate
components of a file name (File.separatorChar).

The call to System.getProperty uses the keyword user.home to get
the user's home directory and supplies the default value
File.separatorChar + "home" + File.separatorChar +
"monicap") in case no value is found for this key.

File.separatorChar

The above code used the java.io.File.separatorChar variable to
construct the directory pathname. This variable is initialized to contain the
file separator value stored in the file.separator system property and
gives you a way to construct platform-independent pathnames.

For example, the pathname /home/monicap/text.txt for Unix and
\home\monicap\text.txt for Windows are both represented as
File.separatorChar + "home" + File.separatorChar +
"monicap" + File.separatorChar + "text.txt" in a
platform-independent construction.

Exception Handling

An exception is a class that descends from either
java.lang.Exception or java.lang.RuntimeException that
defines mild error conditions your program might encounter. Rather than
letting the program terminate, you can write code to handle exceptions and
continue program execution.

5 of 12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJava1/data.html

The file input and output code in the
actionPerformed method is enclosed in a try
and catch block to handle the
java.lang.IOException that might be thrown
by code within the block.

java.lang.IOException is what is called a
checked exception. The Java platform requires that
a method catch or specify all checked exceptions
that can be thrown within the scope of a method.

Checked exceptions descend from java.lang.Throwable. If a checked
exception is not either caught or specified, the compiler throws an error.

In the example, the try and catch block catches and handles the
java.io.IOException checked exception. If a method does not catch
a checked exception, the method must specify that it can throw the
exception because an exception that can be thrown by a method is really
part of the method's public interface. Callers of the method must know
about the exceptions that a method can throw so they can take
appropriate actions.

However, the actionPerformed method already has a public interface
definition that cannot be changed to specify the java.io.IOException,
so in this case, the only thing to do is catch and handle the checked
exception. Methods you define yourself can either specify exceptions or
catch and handle them, while methods you override must catch and handle
checked exceptions. Here is an example of a user-defined method that
specifies an exception so callers of this method can catch and handle it:

 public int aComputationMethod(int number1,
 int number2)
 throws IllegalValueException{
 //Body of method
 }

Note: You can find more information on this topic in The Java
Tutorial trail on Handling Errors with Exceptions.

When you catch exceptions in your code, you should handle them in a way
that is friendly to your end users. The exception and error classes have a
toString method to print system error text and a printStackTrace
method to print a stack trace, which can be very useful for debugging your
application during development. But, it is probably better to deploy the
program with a more user-friendly approach to handling errors.

You can provide your own application-specific error text to print to the
command line, or display a dialog box with application-specific error text.
Using application-specific error text that you provide will also make it much
easier to internationalize the application later on because you will have
access to the text.

6 of 12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJava1/data.html

For the example programs in this lesson, the error message for the file
input and output is handled with application-specific error text that prints at
the command line as follows:

//Do this during development
 }catch(java.io.IOException e){
 System.out.println(e.toString());
 System.out.println(e.printStackTrace());
 }

//But deploy it like this
 }catch(java.io.IOException e){
 System.out.println("Cannot access text.txt");
 }

If you want to make your code even more user friendly, you could
separate the write and read operations and provide two try and catch
blocks. The error text for the read operation could be Cannot read text.txt,
and the error text for the write operation could be Cannot write text.txt.

As an exercise, change the code to handle the read and write operations
separately. Give it a try before peeking at the solution.

File Access by Applets

The file access code for the FileIOAppl.java code is equivalent to the
FileIO.java application, but shows how to use the APIs for handling data in
character streams instead of byte streams. You can use either approach
in applets or applications. In this lesson, the choice to handle data in bytes
streams in the application and in character streams in the applet is purely
random. In real-life programs, you would base the decision on your
specific application requirements.

The changes to instance variables and the constructor are identical to
the application code, and the changes to the actionPerformed method
are nearly identical with these two exceptions:

Writing: When the textField text is retrieved, it is passed directly
to the out.write call.

Reading: A character array is created to store the data read in from
the input stream.

public void actionPerformed(ActionEvent event){
 Object source = event.getSource();
 if(source == button){
//Variable to display text read from file
 String s = null;
 if(_clickMeMode){
 try{
//Code to write to file
 String text = textField.getText();
 String outputFileName =
 System.getProperty("user.home",
 File.separatorChar + "home" +

7 of 12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJava1/data.html

 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 File outputFile = new File(outputFileName);
 FileWriter out = new
 FileWriter(outputFile);
 out.write(text);
 out.close();
//Code to read from file
 String inputFileName =
 System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 File inputFile = new File(inputFileName);
 FileReader in = new FileReader(inputFile);
 char c[] = new
 char[(char)inputFile.length()];
 in.read(c);
 s = new String(c);
 in.close();
 }catch(java.io.IOException e){
 System.out.println("Cannot access text.txt");
 }
//Clear text field
 textField.setText("");
//Display text read from file
 text.setText("Text retrieved from file:");
 textField.setText(s);
 button.setText("Click Again");
 _clickMeMode = false;
 } else {
//Save text to file
 text.setText("Text to save to file:");
 textField.setText("");
 button.setText("Click Me");
 _clickMeMode = true;
 }
 }
}

Granting Applets Permission

If you tried to run the applet example, you undoubtedly saw errors when
you clicked the Click Me button. This is because the Java 2 Platform
security does not permit an applet to write to and read from files without
explicit permission.

An applet has no access to local system resources unless it is specifically
granted the access. So for the FileUIAppl program to read from
text.txt and write to text.txt, the applet has to be given the
appropriate read or write access permission for each file.

Access permission is granted with a policy file, and appletviewer is
launched with the policy file to be used for the applet being viewed.

Creating a Policy File

Policy tool is a Java 2 Platform security tool for creating policy files. The

8 of 12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJava1/data.html

Java Tutorial trail on Controlling Applets explains how to use Policy Tool in
good detail. Here is the policy file you need to run the applet. You can use
Policy tool to create it or copy the text below into an ASCII file.

grant {
 permission java.util.PropertyPermission
 "user.home", "read";
 permission java.io.FilePermission
 "${user.home}/text.txt", "read,write";
};

Running an Applet with a Policy File

Assuming the policy file is named polfile and is in the same directory
with an HTML file named fileIO.html that contains the HTML to run the
FileIOAppl applet, you would run the application in appletviewer like
this:

appletviewer -J-Djava.security.policy=polfile fileIO.html

Note: If your browser is enabled for the Java 2 Platform or if you
have Java Plug-in installed, you can run the applet from the
browser if you put the policy file in your local home directory.

Here is the fileIO.html file for running the FileIOAppl applet:

<HTML>
<BODY>

<APPLET CODE=FileIOAppl.class WIDTH=200 HEIGHT=100>
</APPLET>

</BODY>
</HTML>

Restricting Applications

You can use the default security manager and a policy file to restrict the
application's access as follows.

java -Djava.security.manager
 -Djava.security.policy=apppolfile FileIO

Because the application runs within the security manager, which disallows
all access, the policy file needs two additional permissions. One so the
security manager can access the event queue and load the user interface
components, and another so the application does not display the banner
warning that its window was created by another program (the security
manager).

grant {
 permission java.awt.AWTPermission
 "accessEventQueue";
 permission java.awt.AWTPermission

9 of 12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJava1/data.html

 "showWindowWithoutWarningBanner";

 permission java.util.PropertyPermission
 "user.home", "read";
 permission java.io.FilePermission
 "${user.home}/text.txt", "read,write";
};

File Access by Servlets

Although servlets are invoked from a browser, they are under the security
policy in force for the web server under which they run. When file input and
output code is added to ExampServlet.java from Lesson 5,
FileIOServlet for this lesson executes without restriction under Java
WebServerTM 1.1.1.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FileIOServlet extends HttpServlet {

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<title>Example<title>" +
 "<body bgcolor=FFFFFF>");

 out.println("<h2>Button Clicked</h2>");

 String DATA = request.getParameter("DATA");

 if(DATA != null){
 out.println("Text from
 form:");
 out.println(DATA);
 } else {
 out.println("No text entered.");

10 of 12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJava1/data.html

 }

 try{
//Code to write to file
 String outputFileName=
 System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 File outputFile = new File(outputFileName);
 FileWriter fout = new FileWriter(outputFile);
 fout.write(DATA);
 fout.close();

//Code to read from file
 String inputFileName =
 System.getProperty("user.home",
 File.separatorChar + "home" +
 File.separatorChar + "monicap") +
 File.separatorChar + "text.txt";
 File inputFile = new File(inputFileName);
 FileReader fin = new
 FileReader(inputFile);
 char c[] = new
 char[(char)inputFile.length()];
 int i;
 i = fin.read(c);
 String s = new String(c);
 out.println("<P>
 Text from file:");
 out.println(s);
 fin.close();
 }catch(java.io.IOException e){
 System.out.println("Cannot access text.txt");
 }

 out.println("<P>Return to
 Form");
 out.close();
 }
}

Appending

So far the examples have shown you how to read in and write out streams
of data in their entirety. But often, you want to append data to an existing
file or read in only certain amounts. Using the RandomAccessFile class,
alter the FileIO.java class to append to the file.

Give it a try before taking a peek at the Solution.

More Information

For more infomation on file input and output, see the Reading and Writing
trail in The Java Tutorial.

You can learn more about component sizing in The Java Tutorial sections
on Solving Common Layout Problems and Layout Management.

11 of 12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJava1/data.html

[TOP]

[This page was updated: 11-Apr-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

12 of 12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJava1/data.html

Training Index

JavaTM Programming Language Basics, Part 1
Lesson 7: Database Access and Permissions

[<<BACK] [CONTENTS] [NEXT>>]

This lesson converts the application, applet, and servlet examples from
Lesson 6 to write to and read from a database using JDBCTM. JDBC is the
JavaTM database connectivity application programming interface (API)
available in the Java® 2 Platform software.

The code for this lesson is very similar to the code you saw in Lesson 6,
but additional steps (beyond converting the file access code to database
access code) include setting up the environment, creating a database
table, and connecting to the database. Creating a database table is a
database administration task that is not part of your program code.
However, establishing a database connection and the resulting database
access are.

As in Lesson 6, the applet needs appropriate permissions to connect to
the database. Which permissions it needs varies with the type of driver
used to make the database connection.

Database Setup
Create Database Table
Database Access by Applications

Establishing a Connection
Final and Private Variables
Writing and Reading Data

Database Access by Applets
JDBC Driver
JDBC-ODBC Bridge with ODBC Driver

Database Access by Servlets
More Information

Database Setup

You need access to a database if you want to run the examples in this
lesson. You can install a database on your machine or perhaps you have
access to a database at work. Either way, you need a database driver
and any relevant environment settings so your program can load the driver
and locate the database. The program will also need database login
information in the form of a user name and password.

A database driver is software that lets a program establish a connection

1 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissionshttp://developer.java.sun.com/developer...raining/Programming/BasicJava1/dba.html

with a database. If you do not have the right driver for the database to
which you want to connect, your program will be unable to establish the
connection.

Drivers either come with the database or are available from the Web. If
you install your own database, consult the documentation for the driver for
information on installation and any other environment settings you need for
your platform. If you are using a database at work, consult your database
administrator for this information.

To show you two ways to do it, the application example uses the jdbc
driver, the applet examples use the jdbc and jdbc.odbc drivers, and the
servlet example uses the jdbc.odbc driver. All examples connect to an
OracleOCI7.3.4 database.

Connections to other databases will involve similar steps and code. Be
sure to consult your documentation or system administrator if you need
help connecting to the database.

Create Database Table

Once you have access to a database, create a table in it for the examples
in this lesson. You need a table with one text field for storing character
data.

TABLE DBA (
 TEXT varchar2(100),
 primary key (TEXT)
)

Database Access by Applications

This example converts the FileIO program from Lesson 6 to write data to
and read data from a database. The top window below appears when you
start the Dba application, and the window beneath it appears when you
click the Click Me button.

When you click the Click Me button, whatever is entered into the text
field is saved to the database. After that, the data is retrieved from the
database and displayed in the window shown on the bottom. If you write
data to the table more than once, everything written is read and displayed
in the window shown on the bottom, so you might have to enlarge the
window to see the entire list of table items.

When Application Starts

2 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissionshttp://developer.java.sun.com/developer...raining/Programming/BasicJava1/dba.html

After Writing Orange and Apple to Database

The database access application needs code to establish the database
connection and do the database read and write operations.

Establishing a Database Connection

The JDBC DriverManager class can handle multiple database drivers,
and initiates all database communication. To load the driver and connect to
the database, the application needs a Connection object and Strings
that represent the _driver and _url.

The _url string is in the form of a Uniform Resource Locator (URL). It
consists of the URL, Oracle subprotcol, and Oracle data source in the
form jdbc:oracle:thin, the database login username, the
password, plus machine, port, and protocol information.

private Connection c;

final static private String _driver =
 "oracle.jdbc.driver.OracleDriver";

final static private String _url =
 "jdbc:oracle:thin:username/password@(description=(
 address_list=(address=(protocol=tcp)
 (host=developer)(port=1521)))
 (source_route=yes)(connect_data=(sid=jdcsid)))";

The actionPerformed method calls the Class.forName(_driver)
method to load the driver, and the DriverManager.getConnection
method to establish the connection. The Exception Handling section in
Lesson 6 describes try and catch blocks. The only thing different here is
that this block uses two catch statements because two different errors
are possible.

The call to Class.forName(_driver); throws
java.lang.ClassNotFoundException, and the call to c =
DriverManager.getConnection(_url); throws
java.sql.SQLException. In the case of either error, the application
tells the user what is wrong and exits because the program cannot operate
in any meaningful way without a database driver or connection.

public void actionPerformed(ActionEvent event){
 try{
//Load the driver
 Class.forName(_driver);

3 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissionshttp://developer.java.sun.com/developer...raining/Programming/BasicJava1/dba.html

//Establish database connection
 c = DriverManager.getConnection(_url);
 }catch (java.lang.ClassNotFoundException e){
 System.out.println("Cannot find driver class");
 System.exit(1);
 }catch (java.sql.SQLException e){
 System.out.println("Cannot get connection");
 System.exit(1);
 }

Final and Private Variables

The member variables used to establish the database connection above
are declared private, and two of those variables are also declared
final.

final: A final variable contains a constant value that can never change
once it is initialized. In the example, the user name, and password are
final variables because you would not want to allow an instance of this
or any other class to change this information.

private: A private variable can only be used (accessed) by the class in
which it is declared. No other class can read or change private
variables. In the example, the database driver, user name, and password
variables are private to prevent an outside class from accessing them
and jeopardizing the database connection, or compromising the secret
user name and password information. You can find more information on
this in the Objects and Classs lesson in The Java Tutorial

Writing and Reading Data

In the write operation, a Statement object is created from the
Connection. The Statement object has methods for executing SQL
queries and updates. Next, a String object that contains the SQL update
for the write operation is constructed and passed to the executeUpdate
method of the Statement object.

Object source = event.getSource();
if(source == button){
 JTextArea displayText = new JTextArea();

 try{
//Code to write to database
 String theText = textField.getText();
 Statement stmt = c.createStatement();
 String updateString = "INSERT INTO dba VALUES
 ('" + theText + "')";
 int count = stmt.executeUpdate(updateString);

SQL commands are String objects, and therefore, follow the rules of
String construction where the string is enclosed in double quotes (" ")
and variable data is appended with a plus (+). The variable theText is a
text variable. Single quotes are prepended and appended to comply with
SQL syntax.

4 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissionshttp://developer.java.sun.com/developer...raining/Programming/BasicJava1/dba.html

In the read operation, a ResultSet object is created from the
executeQuery method of the Statement object. The ResultSet
contains the data returned by the query. To retrieve the data returned, the
code iterates through the ResultSet, retrieves the data, and appends
the data to the text area, displayText.

//Code to read from database
 ResultSet results = stmt.executeQuery(
 "SELECT TEXT FROM dba ");
 while(results.next()){
 String s = results.getString("TEXT");
 displayText.append(s + "\n");
 }
 stmt.close();
 } catch(java.sql.SQLException e){
 System.out.println(e.toString());
 }
//Display text read from database
 panel.removeAll();
 panel.add("North", clicked);
 panel.add("Center", displayText);
 panel.add("South", clickButton);
 panel.validate();
 panel.repaint();
}

Database Access by Applets

The applet version of the example is like the application code described
above except for the standard differences between applications and
applets described in the Structure and Elements section of Lesson 3.

However, if you run the applet without a policy file, you get a stack trace
indicating permission errors. The Granting Applets Permission section in
Lesson 6 introduced you to policy files and how to launch an applet with
the permission it needs. The Lesson 6 applet example provided the policy
file and told you how to launch the applet with it. This lesson shows you
how to read the stack trace to determine the permissions you need in a
policy file.

To keep things interesting, this lesson has two versions of the database
access applet: one uses the JDBC driver, and the other uses the the
JDBC-ODBC bridge with an Open DataBase Connectivity (ODBC) driver.

Both applets do the same operations to the same database table using
different drivers. Each applet has its own policy file with different
permission lists and has different requirements for locating the database
driver

JDBC Driver

The JDBC driver is used from a program written exclusively in the Java
language (Java program). It converts JDBC calls directly into the protocol
used by the DBMS. This type of driver is available from the DBMS vendor
and is usually packaged with the DBMS software.

5 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissionshttp://developer.java.sun.com/developer...raining/Programming/BasicJava1/dba.html

Starting the Applet: To successfully run, the DbaAppl.java applet needs
an available database driver and a policy file. This section walks through
the steps to get everything set up. Here is the DbaAppl.html file for
running the DbaAppl applet:

<HTML>
<BODY>

<APPLET CODE=DbaAppl.class
 WIDTH=200
 HEIGHT=100>
</APPLET>

</BODY>
</HTML>

And here is how to start the applet with appletviewer:

 appletviewer DbaAppl.html

Locating the Database Driver: Assuming the driver is not available to the
DriverManager for some reason, the following error generates when
you click the Click Me button.

 cannot find driver

This error means the DriverManager looked for the JDBC driver in the
directory where the applet HTML and class files are and could not find it.
To correct this error, copy the driver to the directory where the applet files
are, and if the driver is bundled in a zip file, unzip the zip file so the applet
can access the driver.

Once you have the driver in place, launch the applet again.

 appletviewer DbaAppl.html

Reading a Stack Trace: Assuming the driver is locally available to the
applet, if the DbaAppl.java applet is launched without a policy file, the
following stack trace is generated when the end user clicks the Click Me
button.

java.security.AccessControlException: access denied
(java.net.SocketPermission developer resolve)

The first line in the above stack trace tells you access is denied. This
means this stack trace was generated because the applet tried to access
a system resource without the proper permission. The second line means
to correct this condition you need a SocketPermission that gives the
applet access to the machine (developer) where the database is
located.

You can use Policy tool to create the policy file you need, or you can
create it with an ASCII editor. Here is the policy file with the permission
indicated by the stack trace:

6 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissionshttp://developer.java.sun.com/developer...raining/Programming/BasicJava1/dba.html

grant {
 permission java.net.SocketPermission "developer",
 "resolve";
 "accessClassInPackage.sun.jdbc.odbc";
};

Run the applet again, this time with a policy file named DbaApplPol that
has the above permission in it:

appletviewer -J-Djava.security.policy=DbaApplPol
 DbaAppl.html

You get a stack trace again, but this time it is a different error condition.

 java.security.AccessControlException: access denied
 (java.net.SocketPermission
 129.144.176.176:1521 connect,resolve)

Now you need a SocketPermission that allows access to the Internet
Protocol (IP) address and port on the developer machine where the
database is located.

Here is the DbaApplPol policy file with the permission indicated by the
stack trace added to it:

grant {
 permission java.net.SocketPermission "developer",
 "resolve";
 permission java.net.SocketPermission
 "129.144.176.176:1521", "connect,resolve";
};

Run the applet again. If you use the above policy file with the Socket
permissions indicated, it works just fine.

 appletviewer -J-Djava.security.policy=DbaApplPol
 DbaAppl.html

JDBC-ODBC Bridge with ODBC Driver

Open DataBase Connectivity (ODBC) is Microsoft's programming interface
for accessing a large number of relational databases on numerous
platforms. The JDBC-ODBC bridge is built into the Solaris and Windows
versions of the Java platform so you can do two things:

1. Use ODBC from a Java program

2. Load ODBC drivers as JDBC drivers. This example uses the
JDBC-ODBC bridge to load an ODBC driver to connect to the
database. The applet has no ODBC code, however.

The DriverManager uses environment settings to locate and load the
database driver. For this example, the driver file does not need to be
locally accessible.

7 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissionshttp://developer.java.sun.com/developer...raining/Programming/BasicJava1/dba.html

Start the Applet: Here is the DbaOdb.html file for running the
DbaOdbAppl applet:

<HTML>
<BODY>

<APPLET CODE=DbaOdbAppl.class
 WIDTH=200
 HEIGHT=100>
</APPLET>

</BODY>
</HTML>

And here is how to start the applet:

 appletviewer DbaOdb.html

Reading a Stack Trace: If the DbaOdbAppl.java applet is launched
without a policy file, the following stack trace is generated when the end
user clicks the Click Me button.

 java.security.AccessControlException: access denied
 (java.lang.RuntimePermission
 accessClassInPackage.sun.jdbc.odbc)

The first line in the above stack trace tells you access is denied. This
means this stack trace was generated because the applet tried to access
a system resource without the proper permission. The second line means
you need a RuntimePermission that gives the applet access to the
sun.jdbc.odbc package. This package provides the JDBC-ODBC
bridge functionality to the Java1 virtual machine (VM).

You can use Policy tool to create the policy file you need, or you can
create it with an ASCII editor. Here is the policy file with the permission
indicated by the stack trace:

grant {
 permission java.lang.RuntimePermission
 "accessClassInPackage.sun.jdbc.odbc";
};

Run the applet again, this time with a policy file named DbaOdbPol that
has the above permission in it:

 appletviewer -J-Djava.security.policy=DbaOdbPol
 DbaOdb.html

You get a stack trace again, but this time it is a different error condition.

 java.security.AccessControlException:
 access denied (java.lang.RuntimePermission
 file.encoding read)

The stack trace means the applet needs read permission to the encoded

8 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissionshttp://developer.java.sun.com/developer...raining/Programming/BasicJava1/dba.html

(binary) file. Here is the DbaOdbPol policy file with the permission
indicated by the stack trace added to it:

 grant {
 permission java.lang.RuntimePermission
 "accessClassInPackage.sun.jdbc.odbc";
 permission java.util.PropertyPermission
 "file.encoding", "read";
 };

Run the applet again. If you use the above policy file with the Runtime and
Property permissions indicated, it works just fine.

 appletviewer -J-Djava.security.policy=DbaOdbPol
 DbaOdb.html

Database Access by Servlets

As you learned in Lesson 6, servlets are under the security policy in force
for the web server under which they run. When the database read and
write code is added to the FileIOServlet from Lesson 6, the
DbaServlet.java servlet for this lesson executes without restriction under
Java WebServerTM 1.1.1.

The web server has to be configured to locate the database. Consult your
web server documentation or database administrator for help. With Java
WebServer 1.1.1, the configuration setup involves editing the startup
scripts with such things as environment settings for loading the ODBC
driver, and locating and connecting to the database.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

import java.sql.*;
import java.net.*;
import java.io.*;

public class DbaServlet extends HttpServlet {

 private Connection c;

9 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissionshttp://developer.java.sun.com/developer...raining/Programming/BasicJava1/dba.html

 final static private String _driver =
 "sun.jdbc.odbc.JdbcOdbcDriver";
 final static private String _user = "username";
 final static private String _pass = "password";
 final static private String
 _url = "jdbc:odbc:jdc";

public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException{
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<title>Example<title>" +
 "<body bgcolor=FFFFFF>");

 out.println("<h2>Button Clicked</h2>");

 String DATA = request.getParameter("DATA");

 if(DATA != null){
 out.println("Text from
 form:");
 out.println(DATA);
 } else {
 out.println("No text entered.");
 }

//Establish database connection
 try{
 Class.forName (_driver);
 c = DriverManager.getConnection(_url,
 _user,
 _pass);
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(1);
 }

 try{
//Code to write to database
 Statement stmt = c.createStatement();
 String updateString = "INSERT INTO dba " +
 "VALUES ('" + DATA + "')";
 int count = stmt.executeUpdate(updateString);

//Code to read from database
 ResultSet results = stmt.executeQuery(
 "SELECT TEXT FROM dba ");
 while(results.next()){
 String s = results.getString("TEXT");
 out.println("

 Text from database:");
 out.println(s);
 }
 stmt.close();
 }catch(java.sql.SQLException e){
 System.out.println(e.toString());
 }

 out.println("<P>Return to
 Form");

10 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissionshttp://developer.java.sun.com/developer...raining/Programming/BasicJava1/dba.html

 out.close();
 }
}

More Information

You can find more information on variable access settings in the Objects
and Classes trail in The Java Tutorial

1 As used on this web site, the terms "Java virtual machine" or "JVM"
mean a virtual machine for the Java platform.

[TOP]

[This page was updated: 11-Apr-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

11 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissionshttp://developer.java.sun.com/developer...raining/Programming/BasicJava1/dba.html

Training Index

JavaTM Programming Language Basics, Part 1
Lesson 8: Remote Method Invocation

[<<BACK] [CONTENTS] [NEXT>>]

The JavaTM Remote Method Invocation (RMI) application programming
interface (API) enables client and server communications over the net.
Typically, client programs send requests to a server program, and the
server program responds to those requests.

A common example is sharing a word processing program over a network.
The word processor is installed on a server, and anyone who wants to use
it starts it from his or her machine by double clicking an icon on the
desktop or typing at the command line. The invocation sends a request to
a server program for acess to the software, and the server program
responds by making the software available to the requestor.

The RMI API lets you create a publicly
accessible remote server object that enables
client and server communications through
simple method calls on the server object.
Clients can easily communicate directly with
the server object and indirectly with each

other through the server object using Uniform Resource Locators (URLs)
and HyperText Transfer Protocol (HTTP).

This lesson explains how to use the RMI API to establish client and server
communications.

About the Example
Program Behavior
File Summary
Compile the Example
Start the RMI Registry
Run the RemoteServer Server Object
Run the RMIClient1 Program
Run the RMIClient2 Program

RemoteServer Class
Send Interface
RMIClient1 Class
RMIClient2 Class
More Information

About the Example

1 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJava1/rmi.html

This lesson converts the File Input and Output application from Lesson 6:
File Access and Permissions to the RMI API.

Program Behavior

The RMIClient1 program presents a simple user interface and prompts for
text input. When you click the Click Me button, the text is sent to the
RMIClient2 program by way of the remote server object. When you click
the Click Me button on the RMIClient2 program, the text sent from
RMIClient1 appears.

First Instance of Client 1

If you start a second instance of RMIClient1 and type in some text, that
text is sent to RMIClient2 when you click the Click Me button. To see
the text received by RMIClient2, click its Click Me button.

Second Instance of Client 1

File Summary

The example program consists of the RMIClient1 program, remote object
and interface, and the RMIClient2 program as illustrated in the diagram.
The corresponding source code files for these executables are described
in the bullet list below.

RMIClient1.java: Client program that calls the sendData method on
the RemoteServer server object.

RMIClient2.java: Client program that calls the getData method on

2 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJava1/rmi.html

the RemoteServer server object.

RemoteServer.java: Remote server object that implements
Send.java and the sendData and getData remote methods.

Send.java: Remote interface that declares the sendData and
getData remote server methods.

In addition, the following java.policy security policy file grants the
permissions needed to run the example.

grant {
 permission java.net.SocketPermission
 "*:1024-65535",
 "connect,accept,resolve";
 permission java.net.SocketPermission
 "*:80", "connect";
 permission java.awt.AWTPermission
 "accessEventQueue";
 permission java.awt.AWTPermission
 "showWindowWithoutWarningBanner";
};

Compile the Example

These instructions assume development is in the zelda home directory.
The server program is compiled in the home directory for user zelda, but
copied to the public_html directory for user zelda where it runs.

Here is the command sequence for the Unix and Win32 platforms; an
explanation follows.

Unix:
cd /home/zelda/classes
javac Send.java
javac RemoteServer.java
javac RMIClient2.java
javac RMIClient1.java
rmic -d . RemoteServer
cp RemoteServer*.class /home/zelda/public_html/classes
cp Send.class /home/zelda/public_html/classes

Win32:
cd \home\zelda\classes
javac Send.java
javac RemoteServer.java
javac RMIClient2.java
javac RMIClient1.java
rmic -d . RemoteServer
copy RemoteServer*.class \home\zelda\public_html\classes
copy Send.class \home\zelda\public_html\classes

The first two javac commands compile the RemoteServer and Send
class and interface. The third javac command compiles the RMIClient2
class. The last javac command compiles the RMIClient1 class.

The next line runs the rmic command on the RemoteServer server

3 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJava1/rmi.html

class. This command produces output class files of the form
ClassName_Stub.class and ClassName_Skel.class. These output
classes let clients invoke methods on the RemoteServer server object.

The first copy command moves the RemoteServer class file with its
associated skel and stub class files to a publicly accessible location in
the /home/zelda/public_html/classes directory, which is on the
server machine, so they can be publicly accessed and downloaded. They
are placed in the public_html directory to be under the web server
running on the server machine because these files are accessed by client
programs using URLs.

The second copy command moves the Send class file to the same location
for the same reason. The RMIClient1 and RMIClient2 class files are
not made publicly accessible; they communicate from their client machines
using URLs to access and download the remote object files in the
public_html directory.

RMIClient1 is invoked from a client-side directory and uses the
server-side web server and client-side Java VM to download the
publicly accessible files.

RMIClient2 is invoked from a client-side directory and uses the
server-side web server and client-side Java VM to download the
publicly accessible files.

Start the RMI Registry

Before you start the client programs, you must start the RMI Registry,
which is a server-side naming repository that allows remote clients to get a
reference to the remote server object.

Before you start the RMI Registry, make sure the shell or window in which
you run the rmiregistry command does not have a CLASSPATH
environment variable that points to the remote object classes, including the
stub and skel classes, anywhere on your system. If the RMI Registry
finds these classes when it starts, it will not load them from the server-side

4 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJava1/rmi.html

Java VM, which will create problems when clients try to download the
remote server classes.

The following commands unset the CLASSPATH and start the RMI Registry
on the default 1099 port. You can specify a different port by adding the
port number as follows: rmiregistry 4444 &. If you specify a different
port number, you must specify the same port number in your server-side
code as well.

Unix:
cd /home/zelda/public_html/classes
unsetenv CLASSPATH
rmiregistry &

Win32:
cd \home\zelda\public_html\classes
set CLASSPATH=
start rmiregistry

Note: You might want to set the CLASSPATH back to its original
setting at this point.

Run the RemoteServer Server Object

To run the example programs, start RemoteServer first. If you start
either RMIClient1 or RMIClient2 first, they will not be able to establish
a connection because the remote server object is not running.

In this example, RemoteServer is started from the
/home/zelda/public_html/classes directory.

The lines beginning at java should be all on one line with spaces where
the lines break. The properties specified with the -D option to the java
interpreter command are program attributes that manage the behavior of
the program for this invocation.

Unix:
cd /home/zelda/public_html/classes
java
-Djava.rmi.server.codebase=http://kq6py/~zelda/classes
-Djava.rmi.server.hostname=kq6py.eng.sun.com
-Djava.security.policy=java.policy RemoteServer

Win32:
cd \home\zelda\public_html\classes
java -Djava.rmi.server.codebase=file:
 c:\home\zelda\public_html\classes
-Djava.rmi.server.hostname=kq6py.eng.sun.com
-Djava.security.policy=java.policy RemoteServer

The java.rmi.server.codebase property specifies where the
publicly accessible classes are located.

The java.rmi.server.hostname property is the complete host

5 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJava1/rmi.html

name of the server where the publicly accessible classes reside.

The java.rmi.security.policy property specifies the policy file
with the permissions needed to run the remote server object and
access the remote server classes for download.

The class to execute (RemoteServer).

Run the RMIClient1 Program

Here is the command sequence for the Unix and Win32 platforms; an
explanation follows.

In this example, RMIClient1 is started from the
/home/zelda/classes directory.

The lines beginning at java should be all on one line with spaces where
the lines break. Properties specified with the -D option to the java
interpreter command are program attributes that manage the behavior of
the program for this invocation.

Unix:
cd /home/zelda/classes

java -Djava.rmi.server.codebase=
 http://kq6py/~zelda/classes/
-Djava.security.policy=java.policy
 RMIClient1 kq6py.eng.sun.com

Win32:
cd \home\zelda\classes

java -Djava.rmi.server.codebase=
 file:c:\home\zelda\classes\
-Djava.security.policy=java.policy
 RMIClient1 kq6py.eng.sun.com

The java.rmi.server.codebase property specifies where the
publicly accessible classes for downloading are located.

The java.security.policy property specifies the policy file with
the permissions needed to run the client program and access the
remote server classes.

The client program class to execute (RMIClient1), and the host
name of the server (Kq6py) where the remote server classes are.

Run RMIClient2

Here is the command sequence for the Unix and Win32 platforms; an
explanation follows.

In this example, RMIClient2 is started from the
/home/zelda/classes directory.

6 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJava1/rmi.html

The lines beginning at java should be all on one line with spaces where
the lines break. The properties specified with the -D option to the java
interpreter command are program attributes that manage the behavior of
the program for this invocation.

Unix:
cd /home/zelda/classes
java -Djava.rmi.server.codebase=
 http://kq6py/~zelda/classes
-Djava.security.policy=java.policy
 RMIClient2 kq6py.eng.sun.com

Win32:
cd \home\zelda\classes
java -Djava.rmi.server.codebase=
 file:c:\home\zelda\public_html\classes
-Djava.security.policy=java.policy
 RMIClient2 kq6py.eng.sun.com

The java.rmi.server.codebase property specifies where the
publicly accessible classes are located.

The java.rmi.server.hostname property is the complete host
name of the server where the publicly accessible classes reside.

The java.rmi.security.policy property specifies the policy file
with the permissions needed to run the remote server object and
access the remote server classes for download.

The class to execute (RMIClient2).

RemoteServer Class

The RemoteServer class extends UnicastRemoteObject and
implements the sendData and getData methods declared in the Send
interface. These are the remotely accessible methods.

UnicastRemoteObject implements a number of java.lang.Object
methods for remote objects and includes constructors and static methods
to make a remote object available to receive method calls from client
programs.

class RemoteServer extends UnicastRemoteObject
 implements Send {

 String text;

 public RemoteServer() throws RemoteException {
 super();
 }

 public void sendData(String gotText){
 text = gotText;
 }

 public String getData(){

7 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJava1/rmi.html

 return text;
 }

The main method installs the RMISecurityManager and opens a
connection with a port on the machine where the server program runs. The
security manager determines whether there is a policy file that lets
downloaded code perform tasks that require permissions. The main
method creates a name for the the RemoteServer object that includes
the server name (kq6py) where the RMI Registry and remote object run,
and the name, Send.

By default the server name uses port 1099. If you want to use a different
port number, you can add it with a colon as follows: kq6py:4444. If you
change the port here, you must start the RMI Registry with the same port
number.

The try block creates an instance of the RemoteServer class and binds
the name to the remote object to the RMI Registry with the
Naming.rebind(name, remoteServer); statement.

 public static void main(String[] args){
 if(System.getSecurityManager() == null) {
 System.setSecurityManager(new
 RMISecurityManager());
 }
 String name = "//kq6py.eng.sun.com/Send";
 try {
 Send remoteServer = new RemoteServer();
 Naming.rebind(name, remoteServer);
 System.out.println("RemoteServer bound");
 } catch (java.rmi.RemoteException e) {
 System.out.println("Cannot create
 remote server object");
 } catch (java.net.MalformedURLException e) {
 System.out.println("Cannot look up
 server object");
 }
 }
}

Note: The remoteServer object is type Send (see instance
declaration at top of class) because the interface available to
clients is the Send interface and its methods; not the
RemoteServer class and its methods.

Send Interface

The Send interface declares the methods implemented in the
RemoteServer class. These are the remotely accessible methods.

public interface Send extends Remote {

 public void sendData(String text)
 throws RemoteException;

8 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJava1/rmi.html

 public String getData() throws RemoteException;
}

RMIClient1 Class

The RMIClient1 class establishes a connection to the remote server
program and sends data to the remote server object. The code to do
these things is in the actionPerformed and main methods.

actionPerformed Method

The actionPerformed method calls the RemoteServer.sendData
method to send text to the remote server object.

public void actionPerformed(ActionEvent event){
 Object source = event.getSource();

 if(source == button){
//Send data over socket
 String text = textField.getText();
 try{
 send.sendData(text);
 } catch (java.rmi.RemoteException e) {
 System.out.println("Cannot send data to server");
 }
 textField.setText(new String(""));
 }
}

main Method

The main method installs the RMISecurityManager and creates a
name to use to look up the RemoteServer server object. The client uses
the Naming.lookup method to look up the RemoteServer object in the
RMI Registry running on the server.

The security manager determines whether there is a policy file that lets
downloaded code perform tasks that require permissions.

 RMIClient1 frame = new RMIClient1();

 if(System.getSecurityManager() == null) {
 System.setSecurityManager(new RMISecurityManager());
 }

 try {
//args[0] contains name of server where Send runs
 String name = "//" + args[0] + "/Send";
 send = ((Send) Naming.lookup(name));
 } catch (java.rmi.NotBoundException e) {
 System.out.println("Cannot look up
 remote server object");
 } catch(java.rmi.RemoteException e){
 System.out.println("Cannot look up
 remote server object");
 } catch(java.net.MalformedURLException e) {
 System.out.println("Cannot look up

9 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJava1/rmi.html

 remote server object");
 }

RMIClient2 Class

The RMIClient2 class establishes a connection with the remote server
program and gets the data from the remote server object and displays it.
The code to do this is in the actionPerformed and main methods.

actionPerformed Method

The actionPerformed method calls the RemoteServer.getData
method to retrieve the data sent by the client program. This data is
appended to the TextArea object for display to the end user on the
server side.

public void actionPerformed(ActionEvent event) {
 Object source = event.getSource();

 if(source == button){
 try{
 String text = send.getData();
 textArea.append(text);
 } catch (java.rmi.RemoteException e) {
 System.out.println("Cannot send data
 to server");
 }
 }
 }
}

main Method

The main method installs the RMISecurityManager and creates a
name to use to look up the RemoteServer server object. The args[0]
parameter provides the name of the server host. The client uses the
Naming.lookup method to look up the RemoteServer object in the
RMI Registry running on the server.

The security manager determines whether there is a policy file that lets
downloaded code perform tasks that require permissions.

 RMIClient2 frame = new RMIClient2();

 if(System.getSecurityManager() == null) {
 System.setSecurityManager(new RMISecurityManager());
 }

 try {
 String name = "//" + args[0] + "/Send";
 send = ((Send) Naming.lookup(name));
 } catch (java.rmi.NotBoundException e) {
 System.out.println("Cannot look up remote
 server object");
 } catch(java.rmi.RemoteException e){
 System.out.println("Cannot look up remote
 server object");

10 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJava1/rmi.html

 } catch(java.net.MalformedURLException e) {
 System.out.println("Cannot look up remote
 server object");
 }

More Information

You can find more information on the RMI API in the RMI trail of The Java
Tutorial.

[TOP]

[This page was updated: 30-Mar-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

11 of 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJava1/rmi.html

Essentials of the JavaTM Programming
Language: A Hands-On Guide, Part 2

by Monica Pawlan

[CONTENTS] [NEXT>>

This series of lessons builds on the material presented in JavaTM

Programming Language Basics, Part 1, which introduced applications,
applets, and servlets; simple file and database access operations; and
remote method invocation (RMI).

The lessons and code examples for Part 2 are somewhat more complex.
They walk you through network communications, building a user interface
using more components, data encryption and decryption (pseudo code only),
grouping multiple data elements into one object (collections), and
internationalizing a program. Part 2 concludes with some object-oriented
programming concepts.

Contents

Lesson 1: Socket Communications

What are Sockets and Threads?
About the Examples
Example 1: Server-Side Program
Example 1: Client-Side Program
Example 2: Multithreaded Server Example
More Information

Lesson 2: User Interfaces Revisited

About the Example
Fruit Order Client Code

Global Variables
Constructor
Event Handling
Cursor Focus
Converting Strings to Numbers and Back

Server Program Code
View Order Client Code
Program Improvements
More Information

Lesson 3: Cryptography

About the Example

1 of 3 21-04-2000 17:33

Essentials of the Java(TM) Programming Language, Part 2 http://developer.java.sun.com/developer...ining/Programming/BasicJava2/index.html

Running the Example
Pseudo Code
More Information

Lesson 4: Serialization

About the Example
Wrapping the Data
Sending Data
Server Program
Receiving Data
More Information

Lesson 5: Collections

About Collections
Creating a Set
Printing
More Information

Lesson 6: Internationalization

Identify Culturally Dependent Data
Create Keyword and Value Pair Files
Internationalize Application Text
Localize Numbers
Compile and Run the Application
Program Improvements
More Information

Lesson 7: Packages and Java Archive File Format

Setting up Class Packages
Create the Directories
Declare the Packages
Make Classes and Fields Accessible
Change Client Code to Find the Properties File
Compile and Run the Example

Using JAR Files to Deploy
Server Set of Files
Fruit Order Client Set of Files
View Order Client Set of Files
More Information

Lesson 8: Object-Oriented Programming

Object-Oriented Programming Defined
Classes
Objects
Well-Defined Boundaries and Cooperation
Inheritance
Polymorphism
Data Access Levels

2 of 3 21-04-2000 17:33

Essentials of the Java(TM) Programming Language, Part 2 http://developer.java.sun.com/developer...ining/Programming/BasicJava2/index.html

Your Own Classes
Program Improvements
More Information

In Closing

Reader Feedback

Tell us what you think of this training book and earn two DukeDollars.

 Very worth reading Worth reading Not worth reading

If you have other comments or ideas for future training books, please
type them here:

[TOP

[This page was updated: 6-Apr-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Submit Reset

3 of 3 21-04-2000 17:33

Essentials of the Java(TM) Programming Language, Part 2 http://developer.java.sun.com/developer...ining/Programming/BasicJava2/index.html

JavaTM Programming Language Basics, Part 2
Lesson 1: Socket Communications

[<<BACK] [CONTENTS] [NEXT>>]

JavaTM Programming Language Basics, Part 1, finished with a simple
network communications example using the Remote Method Invocation
(RMI) application programming interface (API). The RMI example allows
multiple client programs to communicate with the same server program
without any explicit code to do this because the RMI API is built on sockets
and threads.

This lesson presents a simple sockets-based program to introduce the
concepts of sockets and multi-threaded programming. A multi-threaded
program performs multiple tasks at one time such as fielding simultaneous
requests from many client programs.

What are Sockets and Threads?
About the Examples
Example 1: Server-Side Program
Example 1: Client-Side Program
Example 2: Multithreaded Server Example
More Information

What are Sockets and Threads?

A socket is a software endpoint that establishes bidirectional
communication between a server program and one or more client
programs. The socket associates the server program with a specific
hardware port on the machine where it runs so any client program
anywhere in the network with a socket associated with that same port can
communicate with the server program.

A server program typically provides resources to
a network of client programs. Client programs
send requests to the server program, and the
server program responds to the request.

One way to handle requests from more than one
client is to make the server program

multi-threaded. A multi-threaded server creates a thread for each
communication it accepts from a client. A thread is a sequence of
instructions that run independently of the program and of any other
threads.

Using threads, a multi-threaded server program can accept a connection

1 of 8 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 1: Socket Communications http://developer.java.sun.com/developer...ning/Programming/BasicJava2/socket.html

from a client, start a thread for that communication, and continue listening
for requests from other clients.

About the Examples

The examples for this lesson consist of two versions of the client and
server program pair adapted from the FileIO.java application presented in
Part 1, Lesson 6: File Access and Permissions.

Example 1 sets up a client and server communication between one server
program and one client program. The server program is not multi-threaded
and cannot handle requests from more than one client.

Example 2 converts the server program to a multi-threaded version so it
can handle requests from more than one client.

Example 1: Client-Side Behavior

The client program presents a simple user interface and prompts for text
input. When you click the Click Me button, the text is sent to the server
program. The client program expects an echo from the server and prints
the echo it receives on its standard output.

Example 1: Server-Side Behavior

The server program presents a simple user interface, and when you click
the Click Me button, the text received from the client is displayed. The
server echoes the text it receives whether or not you click the Click Me
button.

Example 1: Compile and Run

To run the example programs, start the server program first. If you do not,
the client program cannot establish the socket connection. Here are the
compiler and interpreter commands to compile and run the example.

 javac SocketServer.java
 javac SocketClient.java

 java SocketServer

2 of 8 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 1: Socket Communications http://developer.java.sun.com/developer...ning/Programming/BasicJava2/socket.html

 java SocketClient

Example 1: Server-Side Program

The server program establishes a socket connection on Port 4321 in its
listenSocket method. It reads data sent to it and sends that same data
back to the server in its actionPerformed method.

listenSocket Method

The listenSocket method creates a ServerSocket object with the
port number on which the server program is going to listen for client
communications. The port number must be an available port, which means
the number cannot be reserved or already in use. For example, Unix
systems reserve ports 1 through 1023 for administrative functions leaving
port numbers greater than 1024 available for use.

public void listenSocket(){
 try{
 server = new ServerSocket(4321);
 } catch (IOException e) {
 System.out.println("Could not listen on port 4321");
 System.exit(-1);
 }

Next, the listenSocket method creates a Socket connection for the
requesting client. This code executes when a client starts up and requests
the connection on the host and port where this server program is running.
When the connection is successfully established, the server.accept
method returns a new Socket object.

 try{
 client = server.accept();
 } catch (IOException e) {
 System.out.println("Accept failed: 4321");
 System.exit(-1);
 }

Then, the listenSocket method creates a BufferedReader object to
read the data sent over the socket connection from the client program.
It also creates a PrintWriter object to send the data received from the
client back to the server.

 try{
 in = new BufferedReader(new InputStreamReader(
 client.getInputStream()));
 out = new PrintWriter(client.getOutputStream(),
 true);
 } catch (IOException e) {
 System.out.println("Read failed");
 System.exit(-1);
 }
}

Lastly, the listenSocket method loops on the input stream to read data
as it comes in from the client and writes to the output stream to send the

3 of 8 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 1: Socket Communications http://developer.java.sun.com/developer...ning/Programming/BasicJava2/socket.html

data back.

 while(true){
 try{
 line = in.readLine();
//Send data back to client
 out.println(line);
 } catch (IOException e) {
 System.out.println("Read failed");
 System.exit(-1);
 }
 }

actionPerformed Method

The actionPerformed method is called by the Java platform for action
events such as button clicks. This actionPerformed method uses the
text stored in the line object to initialize the textArea object so the
retrieved text can be displayed to the end user.

public void actionPerformed(ActionEvent event) {
 Object source = event.getSource();

 if(source == button){
 textArea.setText(line);
 }
}

Example 1: Client-Side Program

The client program establishes a connection to the server program on a
particular host and port number in its listenSocket method, and sends
the data entered by the end user to the server program in its
actionPerformed method. The actionPerformed method also
receives the data back from the server and prints it to the command line.

listenSocket Method

The listenSocket method first creates a Socket object with the
computer name (kq6py) and port number (4321) where the server
program is listening for client connection requests. Next, it creates a
PrintWriter object to send data over the socket connection to the
server program. It also creates a BufferedReader object to read the
text sent by the server back to the client.

public void listenSocket(){
//Create socket connection
 try{
 socket = new Socket("kq6py", 4321);
 out = new PrintWriter(socket.getOutputStream(),
 true);
 in = new BufferedReader(new InputStreamReader(
 socket.getInputStream()));
 } catch (UnknownHostException e) {
 System.out.println("Unknown host: kq6py");
 System.exit(1);
 } catch (IOException e) {

4 of 8 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 1: Socket Communications http://developer.java.sun.com/developer...ning/Programming/BasicJava2/socket.html

 System.out.println("No I/O");
 System.exit(1);
 }
}

actionPerformed Method

The actionPerformed method is called by the Java platform for action
events such as button clicks. This actionPerformed method code gets
the text in the Textfield object and passes it to the PrintWriter
object, which then sends it over the socket connection to the server
program.

The actionPerformed method then makes the Textfield object blank
so it is ready for more end user input. Lastly, it receives the text sent back
to it by the server and prints the text out.

public void actionPerformed(ActionEvent event){
 Object source = event.getSource();

 if(source == button){
//Send data over socket
 String text = textField.getText();
 out.println(text);
 textField.setText(new String(""));
 out.println(text);
 }
//Receive text from server
 try{
 String line = in.readLine();
 System.out.println("Text received: " + line);
 } catch (IOException e){
 System.out.println("Read failed");
 System.exit(1);
 }
}

Example 2: Multithreaded Server Example

The example in its current state works between the server program and
one client program only. To allow multiple client connections, the server
program has to be converted to a multithreaded server program.

5 of 8 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 1: Socket Communications http://developer.java.sun.com/developer...ning/Programming/BasicJava2/socket.html

First Client

Second Client

Third Client

The multithreaded server program creates a new thread for every client
request. This way each client has its own connection to the server for
passing data back and forth. When running multiple threads, you have to
be sure that one thread cannot interfere with the data in another thread.

In this example the listenSocket method loops on the
server.accept call waiting for client connections and creates an
instance of the ClientWorker class for each client connection it accepts.
The textArea component that displays the text received from the client
connection is passed to the ClientWorker instance with the accepted
client connection.

public void listenSocket(){
 try{
 server = new ServerSocket(4444);
 } catch (IOException e) {
 System.out.println("Could not listen on port 4444");
 System.exit(-1);
 }
 while(true){
 ClientWorker w;
 try{
//server.accept returns a client connection
 w = new ClientWorker(server.accept(), textArea);
 Thread t = new Thread(w);
 t.start();
 } catch (IOException e) {
 System.out.println("Accept failed: 4444");
 System.exit(-1);
 }
 }
}

The important changes in this version of the server program over the
non-threaded server program are the line and client variables are no
longer instance variables of the server class, but are handled inside the
ClientWorker class.

6 of 8 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 1: Socket Communications http://developer.java.sun.com/developer...ning/Programming/BasicJava2/socket.html

The ClientWorker class implements the Runnable interface, which has
one method, run. The run method executes independently in each thread.
If three clients request connections, three ClientWorker instances are
created, a thread is started for each ClientWorker instance, and the
run method executes for each thread.

In this example, the run method creates the input buffer and output writer,
loops on the input stream waiting for input from the client, sends the data it
receives back to the client, and sets the text in the text area.

class ClientWorker implements Runnable {
 private Socket client;
 private JTextArea textArea;

//Constructor
 ClientWorker(Socket client, JTextArea textArea) {
 this.client = client;
 this.textArea = textArea;
 }

 public void run(){
 String line;
 BufferedReader in = null;
 PrintWriter out = null;
 try{
 in = new BufferedReader(new
 InputStreamReader(client.getInputStream()));
 out = new
 PrintWriter(client.getOutputStream(), true);
 } catch (IOException e) {
 System.out.println("in or out failed");
 System.exit(-1);
 }

 while(true){
 try{
 line = in.readLine();
//Send data back to client
 out.println(line);
//Append data to text area
 textArea.append(line);
 }catch (IOException e) {
 System.out.println("Read failed");
 System.exit(-1);
 }
 }
 }
}

The JTextArea.append method is thread safe, which means its
implementation includes code that allows one thread to finish its append
operation before another thread can start an append operation. This
prevents one thread from overwriting all or part of a string of appended
text and corrupting the output. If the JTextArea.append method were
not thread safe, you would need to wrap the call to
textArea.append(line) in a synchronized method and replace the
run method call to textArea.append(line) with a call to
appendText(line):

7 of 8 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 1: Socket Communications http://developer.java.sun.com/developer...ning/Programming/BasicJava2/socket.html

 public synchronized void appendText(line){
 textArea.append(line);
 }

The synchronized keyword means this thread has a lock on the
textArea and no other thread can change the textArea until this thread
finishes its append operation.

The finalize() method is called by the Java virtual machine (JVM)*
before the program exits to give the program a chance to clean up and
release resources. Multi-threaded programs should close all Files and
Sockets they use before exiting so they do not face resource starvation.
The call to server.close() in the finalize() method closes the
Socket connection used by each thread in this program.

 protected void finalize(){
//Objects created in run method are finalized when
//program terminates and thread exits
 try{
 server.close();
 } catch (IOException e) {
 System.out.println("Could not close socket");
 System.exit(-1);
 }
 }

More Information

You can find more information on sockets in the All About Sockets section
in The Java Tutorial.

[TOP]

[This page was updated: 11-Apr-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

8 of 8 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 1: Socket Communications http://developer.java.sun.com/developer...ning/Programming/BasicJava2/socket.html

JavaTM Programming Language Basics, Part 2
Lesson 2: User Interfaces Revisited

[<<BACK] [CONTENTS] [NEXT>>]

In JavaTM Programming Language Basics, Part 1, you learned how to use
Java Foundation Classes (JFC) Project Swing (Project Swing) components
to build a simple user interface with very basic backend functionality. You
also learned how to use the Remote Method Invocation (RMI) application
programming interface (API) to send data from a client program to a
server program on the net where the data can be accessed by other client
programs.

This lesson takes the RMI application from Part 1, Lesson 8: Remote
Method Invocation, creates a more involved user interface, and uses a
different layout manager. These changes give you the beginnings of a very
simple electronic-commerce application that consists of two types of client
programs: one lets end users place purchase orders and the other lets
order processors view the orders.

About the Example
Fruit Order Client Code

Instance Variables
Constructor
Event Handling
Cursor Focus
Converting Strings to Numbers and Back

Server Program Code
View Order Client Code
Program Improvements
More Information

About the Example

This is a very simple electronic commerce example for instructional
purposes only. It consists of three programs: two client programs, one for
ordering fruit and another for viewing the order, and one server program
that makes order information available to clients that view the orders.

Fruit Order Client

The FruitClient program presents a user interface and prompts the end
user to order apples, peaches, and pears at $1.25 each.

1 of 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer...Training/Programming/BasicJava2/ui.html

After the end user enters the number of each
item to order, he or she presses the Return
key to commit the order and update the
running total.

The Tab key or mouse moves the cursor to
the next field. At the bottom, the end user
provides a credit card number and customer
ID.

When the end user clicks Purchase, all
values entered into the form are sent to the
server program.

The end user must press the Return key for the total to update. If the
Return key is not pressed, an incorrect total is sent across the net with the
order. The end of this lesson asks you to change the code so there is no
danger incorrect totals are sent across the net because the end user did
not press the Return key.

Server Program

The RemoteServer program provides remotely accessible send and get
methods. Fruit order clients call send methods to send data to the server,
and view order clients call the get methods to retrieve the data. In this
example, the server program has no user interface.

View Order Client

The OrderClient program presents a user interface, and when the end user
clicks View Order, the program gets the order data from the server
program and puts it on the screen.

Compile and Run the Example

See Part 1, Lesson 8: Remote Method Invocation, for information on how
to run the example. Use the Part 1, Lesson 8 instructions, but use the
source code provided in this lesson. Here is a summarized version of those
steps:

2 of 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer...Training/Programming/BasicJava2/ui.html

Compile: These instructions assume development is in the zelda home
directory.

Unix:
cd /home/zelda/classes
javac Send.java
javac RemoteServer.java
javac RMIClient2.java
javac RMIClient1.java
rmic -d . RemoteServer
cp RemoteServer*.class /home/zelda/public_html/classes
cp Send.class /home/zelda/public_html/classes

Win32:
cd \home\zelda\classes
javac Send.java
javac RemoteServer.java
javac RMIClient2.java
javac RMIClient1.java
rmic -d . RemoteServer
copy RemoteServer*.class \home\zelda\public_html\classes
copy Send.class \home\zelda\public_html\classes

Start rmi Registry:

Unix:
cd /home/zelda/public_html/classes
unsetenv CLASSPATH
rmiregistry &

Win32:
cd \home\zelda\public_html\classes
set CLASSPATH=
start rmiregistry

Start Remote Server:

Unix:
cd /home/zelda/public_html/classes
java
-Djava.rmi.server.codebase=http://kq6py/~zelda/classes
-Djava.rmi.server.hostname=kq6py.eng.sun.com
-Djava.security.policy=java.policy RemoteServer

Win32:
cd \home\zelda\public_html\classes
java -Djava.rmi.server.codebase=
 file:c:\home\zelda\public_html\classes
-Djava.rmi.server.hostname=kq6py.eng.sun.com
-Djava.security.policy=java.policy RemoteServer

Start RMIClient1:

Unix:
cd /home/zelda/classes

java -Djava.rmi.server.codebase=
 http://kq6py/~zelda/classes/
-Djava.security.policy=java.policy RMIClient1

3 of 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer...Training/Programming/BasicJava2/ui.html

 kq6py.eng.sun.com/~zelda

Win32:
cd \home\zeldzeldaa\classes

java -Djava.rmi.server.codebase=
 file:c:\home\zelda\classes\
-Djava.security.policy=java.policy RMIClient1
kq6py.eng.sun.com\home\zelda\public\html

Start RMIClient2:

Unix:
cd /home/zelda/classes
java -Djava.rmi.server.codebase=
 http://kq6py/~zelda/classes
-Djava.rmi.server.hostname=kq6py.eng.sun.com
-Djava.security.policy=java.policy RMIClient2
 kq6py.eng.sun.com

Win32:
cd \home\zelda\classes
java -Djava.rmi.server.codebase=
 file:c:\home\zelda\public_html\classes
-Djava.rmi.server.hostname=kq6py.eng.sun.com
-Djava.security.policy=java.policy RMIClient2
 kq6py.eng.sun.com

Fruit Order Client Code

The RMIClient1.java code uses label, text field, text area, and button
components to create the user interface for ordering fruit.

On the display, user interface components
are arranged in a 2-column grid with labels in
the left column, and the input and output data
fields (text fields and text areas) aligned in
the right column.

The end user enters his or her apples,
peaches, and pears order into the text fields
and presses the Return key after each fruit
entry. When the Return key is pressed, the
text field behavior updates the item and cost
totals displayed in the text areas.

The Reset button behavior clears the
display, and the underlying total cost and items variables. The Purchase
button behavior sends the order data to the server program. If the Reset
button is clicked before the Purchase button, null values are sent over
the network.

Instance Variables

These next lines declare the Project Swing component classes the
SwingUI class uses. These are instance variables that can be accessed

4 of 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer...Training/Programming/BasicJava2/ui.html

by any method in the instantiated class. In this example, they are built in
the SwingUI constructor and accessed in the actionPerformed
method implementation.

 JLabel col1, col2;
 JLabel totalItems, totalCost;
 JLabel cardNum, custID;
 JLabel applechk, pearchk, peachchk;

 JButton purchase, reset;
 JPanel panel;

 JTextField appleqnt, pearqnt, peachqnt;
 JTextField creditCard, customer;
 JTextArea items, cost;

 static Send send;
 int itotal=0;
 double icost=0;

Constructor

The constructor is fairly long because it creates all the components, sets
the layout to a 2-column grid, and places the components in the grid on a
panel. A panel is a container component that holds other components.

The Reset and Purchase buttons and the appleQnt, pearQnt, and
peachQnt text fields are added as action listeners. This means when the
end user clicks one of the buttons or presses Return in one of the text
fields, an action event occurs that causes the platform to call the
FruitClient.actionPerformed method where the behaviors for
these components are defined.

As explained in Part1, Lesson 4: Building a User Interface, a class
declares the ActionListener interface and implements the
actionPerformed method if it needs to handle action events such as
button clicks and text field Returns. Other user interface components
generate some different action events, and as a result, require you to
implement different interfaces and methods.

//Create left and right column labels
col1 = new JLabel("Select Items");
col2 = new JLabel("Specify Quantity");

//Create labels and text field components
applechk = new JLabel(" Apples");
appleqnt = new JTextField();
appleqnt.addActionListener(this);

pearchk = new JLabel(" Pears");
pearqnt = new JTextField();
pearqnt.addActionListener(this);

peachchk = new JLabel(" Peaches");
peachqnt = new JTextField();
peachqnt.addActionListener(this);

5 of 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer...Training/Programming/BasicJava2/ui.html

cardNum = new JLabel(" Credit Card:");
creditCard = new JTextField();

customer = new JTextField();
custID = new JLabel(" Customer ID:");

//Create labels and text area components
totalItems = new JLabel("Total Items:");
totalCost = new JLabel("Total Cost:");
items = new JTextArea();
cost = new JTextArea();

//Create buttons and make action listeners
purchase = new JButton("Purchase");
purchase.addActionListener(this);

reset = new JButton("Reset");
reset.addActionListener(this);

In the next lines, a JPanel component is created and added to the
top-level frame, and the layout manager and background color for the
panel are specified. The layout manager determines how user interface
components are arranged on the panel.

The example in Part 1, Lesson 4: Building a User Interface, used the
BorderLayout layout manager. This example uses the GridLayout
layout manager, which arranges components in a grid or the number of
rows and columns you specify. The example uses a 2-column grid with an
unlimited number of rows as indicated by the zero (unlimited rows) and two
(two columns) in the statement panel.setLayout(new
GridLayout(0,2));.

The layout manager and color are set on the panel, and the panel is added
to the content pane with a call to the getContentPane method of the
JFrame class. A content pane lets different types of components work
together in Project Swing.

//Create a panel for the components
 panel = new JPanel();

//Set panel layout to 2-column grid
//on a white background
 panel.setLayout(new GridLayout(0,2));
 panel.setBackground(Color.white);

//Add components to panel columns
//going left to right and top to bottom
 getContentPane().add(panel);
 panel.add(col1);
 panel.add(col2);

 panel.add(applechk);
 panel.add(appleqnt);

 panel.add(peachchk);
 panel.add(peachqnt);

 panel.add(pearchk);

6 of 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer...Training/Programming/BasicJava2/ui.html

 panel.add(pearqnt);

 panel.add(totalItems);
 panel.add(items);

 panel.add(totalCost);
 panel.add(cost);

 panel.add(cardNum);
 panel.add(creditCard);

 panel.add(custID);
 panel.add(customer);

 panel.add(reset);
 panel.add(purchase);

Event Handling

The actionPerformed method provides behavior for each of the
following possible application events:

The mouse is clicked on the Purchase or Reset button.

The Return key is pressed inside the appleQnt, peachQnt, or
pearQnt field.

Rather than show the entire actionPerformed method here, this section
describes the purchase button and pearQnt text field behaviors only.
The Reset button is similar to the purchase button, and the other text
fields are similar to pearQnt.

Purchase Button: The Purchase button behavior involves retrieving data
from the text fields and text areas, and sending that data to the server
program. The server program is available to the FruitClient program
through its Send interface, which declares the remote server methods for
sending and getting data.

The send variable is an instance of the Send interface. This instance is
created in the FruitClient program's main method. The send variable
is declared static and global in the FruitClient program so the
static main method can instantiate it, and to make it accessible to the
actionPerformed method.

if(source == purchase){
 cardnum = creditCard.getText();
 custID = customer.getText();
 apples = appleqnt.getText();
 peaches = peachqnt.getText();
 pears = pearqnt.getText();
 try{
 send.sendCreditCard(cardnum);
 send.sendCustID(custID);
 send.sendAppleQnt(apples);
 send.sendPeachQnt(peaches);
 send.sendPearQnt(pears);

7 of 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer...Training/Programming/BasicJava2/ui.html

 send.sendTotalCost(icost);
 send.sendTotalItems(itotal);
 } catch (Exception e) {
 System.out.println("Cannot send data to server");
 }
}

pearQnt Text Field: The pearQnt text field behavior involves retrieving
the number of pears the end user wants to order, adding the number to the
items total, using the number to calculate the cost, and adding the cost for
pears to the total cost. Two interesting things in this code involve managing
the cursor focus and converting strings to numbers for the calculations.
Both topics are covered below.

if(source == pearqnt){
 number = pearqnt.getText();
 if(number.length() > 0){
 pearsNo = Integer.valueOf(number);
 itotal += pearsNo.intValue();
 pearqnt.setNextFocusableComponent(creditCard);
 } else {
 itotal += 0;
 pearqnt.setNextFocusableComponent(creditCard);
 }
}

Cursor Focus

End users can use the Tab key to move the cursor from one component to
another within the user interface. The default Tab key movement steps
through all user interface components including the text areas.

Because the end user does not interact with the text areas, there is no
reason for the cursor to go there. The example program includes a call in
its constructor to pearqnt.setNextFocusableComponent to make
the cursor move from the pearqnt text field to the creditcard text field
bypassing the total cost and total items text areas when the Tab key is
pressed.

 applechk = new JLabel(" Apples");
 appleqnt = new JTextField();
 appleqnt.addActionListener(this);

 pearchk = new JLabel(" Pears");
 pearqnt = new JTextField();
 pearqnt.addActionListener(this);

 peachchk = new JLabel(" Peaches");
 peachqnt = new JTextField();
 peachqnt.addActionListener(this);

 cardNum = new JLabel(" Credit Card:");
 creditCard = new JTextField();
//Make cursor go to creditCard component
 pearqnt.setNextFocusableComponent(creditCard);

 customer = new JTextField();
 custID = new JLabel(" Customer ID:");

8 of 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer...Training/Programming/BasicJava2/ui.html

Converting Strings to Numbers and Back

To calculate the items ordered and their cost, the string values retrieved
from the appleQnt, peachQnt, and pearQnt text fields have to be
converted to their number equivalents.

The string value is returned in the number variable. To be sure the user
actually entered a value, the string length is checked. If the length is not
greater than zero, the end user pressed Return without entering a value. In
this case, the else statement adds zero to the running total and the
cursor focus is set for the creditCard text field. Adding zero is not really
necessary, but does make the code more understandable for someone
reading it.

If the length is greater than zero, an instance of the
java.lang.Integer class is created from the string. Next, the
Integer.intValue() method is called to produce the integer (int)
equivalent of the string value so it can be added to the items total kept in
the itotal integer variable.

if(number.length() > 0){
 pearsNo = Integer.valueOf(number);
 itotal += pearsNo.intValue();
} else {
 itotal += 0;
}

To display the running item and cost totals in their respective text areas,
the totals have to be converted back to strings. The code at the end of the
actionPerformed method shown below does this.

To display the total items, a java.lang.Integer object is created from
the itotal integer variable. The Integer.toString method is called
to produce the String equivalent of the integer (int). This string is
passed to the call to this.cost.setText(text2) to update the Total
Cost field in the display.

Note: The cost text area variable is referenced as this.cost
because the actionPerformed method also has a cost
variable of type Double. To reference the global text area and
not the local Double by the same name, you have to reference it
as this.cost.

 num = new Integer(itotal);
 text = num.toString();
 this.items.setText(text);

 icost = (itotal * 1.25);
 cost = new Double(icost);
 text2 = cost.toString();
 this.cost.setText(text2);

9 of 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer...Training/Programming/BasicJava2/ui.html

Until now, all data types used in the examples have been classes. But, the
int and double data types are not classes. They are primitive data
types.

The int data type contains a single whole 32-bit integer value that can be
positive or negative. You can use the standard arithmetic operators (+, -,
*, and /) to perform arithmetic operations on the integer.

The Integer class, not only contains a whole 32-bit integer value that can
be positive or negative, but provides methods for working on the value. For
example, the Integer.intValue method lets you convert an Integer
to an int to perform arithmetic operations.

The double data type contains a 64-bit double-precision floating point
value. The Double class not only contains a 64-bit double-precision
floating point value, but provides methods for working on the value. for
example, the Double.doubleValue method lets you convert a Double
to a double to perform arithmetic operations.

Server Program Code

The server program consists of the RemoteServer.java class that
implements the methods declared in the Send.java interface. These
classes are described in Part 1, Lesson 8: Remote Method Invocation with
the only difference being in this lesson there are many more sendXXX and
getXXX methods to declare and implement. Here is the list:

public void sendCreditCard(String creditcard){cardnum = creditcard;}
public String getCreditCard(){return cardnum;}
public void sendCustID(String cust){custID = cust;}
public String getCustID(){return custID;}
public void sendAppleQnt(String apps){apples = apps;}
public String getAppleQnt(){return apples;}
public void sendPeachQnt(String pchs){ peaches = pchs;}
public String getPeachQnt(){return peaches;}
public void sendPearQnt(String prs){pears = prs;}
public String getPearQnt(){return pears;}
public void sendTotalCost(double cst){cost = cst;}
public double getTotalCost(){return cost; }
public void sendTotalItems(int itm){items = itm;}
public int getTotalItems(){return items;}

The important thing to note is data of any type and size can be easily
passed from one client through the server to another client using the RMI
API. No special handling is needed for large amounts of data or special
considerations for different data types, which can sometimes be issues
when using socket communications.

View Order Client Code

The OrderClient.java class uses text areas and buttons to display the
order information.

10 of 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer...Training/Programming/BasicJava2/ui.html

The code is very similar to the
FruitOrder.java class so rather than
repeat much of what you have read above,
this section highlights two parts of the
actionPerformed method behavior for
viewing an order.

The first part retrieves the credit card
number, and the number of apples, peaches,
and pears ordered from the server and sets
those values in the corresponding text areas.

The second part retrieves the cost and item
totals, which are double and integer, respectively. It then converts the
total cost to a java.lang.Double object, and the total items to a
java.lang.Integer object, and calls the toString method on each to
get the string equivalents. Finally, the strings can be used to set the values
for the corresponding text areas.

if(source == view){
 try{
//Retrieve and display text
 text = send.getCreditCard();
 creditNo.setText(text);

 text = send.getCustID();
 customerNo.setText(text);

 text = send.getAppleQnt();
 applesNo.setText(text);

 text = send.getPeachQnt();
 peachesNo.setText(text);

 text = send.getPearQnt();
 pearsNo.setText(text);

//Convert Numbers to Strings
 cost = send.getTotalCost();
 price = new Double(cost);
 unit = price.toString();
 icost.setText(unit);

 items = send.getTotalItems();
 itms = new Integer(items);
 i = itms.toString();
 itotal.setText(i);

 } catch (Exception e) {
 System.out.println("Cannot send data to server");
 }
}

Program Improvements

The example program as it is currently written has two major design flaws

11 of 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer...Training/Programming/BasicJava2/ui.html

in the fruit order client. The first one involves the need to press the Return
key for calculations to happen, and the second involves handling the error
condition if the end user enters a character that is not a number when
ordering apples, peaches, and pears.

Calculations and Pressing Return: If the end user enters a value for
apples, peaches, or pears and moves to the next field without pressing the
Return key, no calculation is made. This means when the end user clicks
the Purchase key, the order is sent, but the item and cost totals will be
incorrect. So, in this particular application relying on the Return key action
event is not good design.

Modify the actionPerformed method so this does not happen. Here is
one possible solution. Give it a try before taking a look.

Non-Number Errors: If the end user enters a non-number value for
apples, peaches, or pears the program will present a stack trace indicating
an illegal number format. A good program will catch and handle the error,
rather than produce a stack trace.

Hint: You need to figure out which part of the code throws the error and
enclose it in a try and catch block. try and catch blocks were first
introduced in Part 1, Lesson 6: File Access and Permissions. The error
you need to catch is java.lang.NumberFormatException.

Give it a try before taking a look at the solution.

More Information

You can find more information on event listening in the Writing Event
Listeners lesson in The Java Tutorial.

The Variables and Data Types trail in The Java Tutorial provides more
information on primitive data types.

See The JFC Swing Tutorial: A Guide to Constructing GUIs for more
information on Project Swing.

*As used on this web site, the terms "Java virtual machine" or "JVM"
mean a virtual machine for the Java platform.

[TOP]

[This page was updated: 30-Mar-2000]

12 of 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer...Training/Programming/BasicJava2/ui.html

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

13 of 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer...Training/Programming/BasicJava2/ui.html

JavaTM Programming Language Basics, Part 2
Lesson 3: Cryptography

[<<BACK] [CONTENTS] [NEXT>>]

Many people are protective of their credit card numbers, and for good
reason. A stolen credit card number with other personal information can
give a thief all he or she needs to create serious mayhem in someone's
life. One way to keep credit card and other proprietary information secure
when sending it over the net is to encrypt it.

Encryption is the process of applying a key to plain text that transforms
that plain text into unintelligible (cipher) text. Only programs with the key to
turn the cipher text back to original text can decrypt the protected
information.

This lesson adapts the Part 2, Lesson 2: User Interfaces Revisited
example to encrypt the credit card number before sending it over the net,
and decrypt it on the other side.

Note: Because cryptography software is not exportable outside
the United States and Canada, the example in this lesson is in
pseudo code rather than source code.

About the Example
Running the Example
Pseudo Code

Server
Generating the Public and Private Key
Sealing the Symmetric Key
Encrypting the Symmetric Key with the RSA Algorithm

More Information

About the Example

To safely send the credit card number over the net, the example program
gets the plain text credit card number entered by the end user and passes
the credit card number to its encrypt method.

1 of 7 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 3: Cryptography http://developer.java.sun.com/developer...ning/Programming/BasicJava2/crypto.html

The encrypt method creates a cipher and
session key, and uses the session key with
the cipher to encrypt the credit card number.

A session key is a secret key that is
generated new each time the Purchase
button is clicked. Changing the session key
protects against an unauthorized program
getting the key and decrypting hundreds and
thousands of credit card numbers with it.

The credit card number is encrypted and
decrypted with the same session key. This
type of cryptography is called symmetric key

encryption, and in our example, requires the session key and encrypted
credit card number be sent over the ret to the receiving program. Because
the session key is sent over the net, it too should be protected against
unauthorized access.

To protect the session key, it is encrypted with or wrapped under the
public key of the recipient. Even if an unauthorized program gets the
wrapped session key and credit card number, he or she would have to
recover the session key with the intended recipient's private key to be able
to decrypt the credit card number with the session key.

Anything encrypted with a public key, can only be decrypted with the
private key corresponding to the public key that originally encrypted it. This
type of cryptography is called asymmetric key encryption. In the example,
the public key is made readily available to any client program that requests
it, and the private key is kept secret and made available to specific,
trusted clients only.

As shown in the diagram, this example uses a separate program to
generate the public and private key pair. The public key is stored in one
file, and the private key is stored in another. The file with the private key
must be kept in a very secure place. Many companies keep the private key
file on an external storage medium such as tape or disk to prevent an
unauthorized person or program from breaking into the system and getting
the private key.

The server program loads the public key from the public key file, and
makes it available to order clients for encrypting the session key. Order
processing clients get the encrypted session key and credit card number,
load the private key, use the private key to decrypt the session key, and
use the session key to decrypt the credit card number.

2 of 7 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 3: Cryptography http://developer.java.sun.com/developer...ning/Programming/BasicJava2/crypto.html

Running the Example

If you are within the United States or Canada, you can download the
javax.crypto package from the Products & APIs page. It contains
documentation and a JavaTM Archive (JAR) file with the cryptographic APIs
and a cryptographic service provider. A cryptographic service provider is a
package or set of packages that supplies a concrete implementation of a
cryptographic algorithm.

Copy the JAR file to the jdk1.2/jre/lib/ext directory of your Java 2
SDK, Standard Edition, installation or to the jre1.2/lib/security
directory of your Java Runtime Environment (JRE) 1.2 installation.

Make sure you have the following entries in the
jdk1.2/jre/lib/security/java.security or
jre1.2/lib/security/java.security file:

security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.crypto.provider.SunJCE

You also need to install a package with an asymmetric algorithm such as
the Rivest, Shamir, and Adleman (RSA) Asymmetric-Cipher algorithm.

The asymmetric algorithm is needed to create the asymmetric cipher for
the public and private key encryption. Add the asymmetric algorithm
package to jdk1.2/jre/lib/security/java.security or
jre1.2/lib/security/java.security as
security.provider.3= and put it in the jdk1.2/jre/lib/ext or
jre1.2/lib/ext directory with the other JAR files.

Using the documentation in the download, convert the pseudo code to
source code.

Compile and run the example as usual.

Pseudo Code

A cipher object is used in the encryption and decryption process. The
cipher object is created with a specific cryptographic algorithm depending
on the type of encryption in use. In this example, two types of encryption

3 of 7 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 3: Cryptography http://developer.java.sun.com/developer...ning/Programming/BasicJava2/crypto.html

are used: symmetric and asymmetric.

Symmetric key encryption uses a symmetric algorithm such as Data
Encryption Standard (DES). The asymmetric key encryption uses an
asymmetric algorithm such as Rives, Shamir, and Adleman (RSA)
Asymmetric-Cipher algorithm.

The javax.crypto package defines the framework for both symmetric
and asymmetric encryption into which concrete cipher implementations can
be plugged. The SunJCE provider that comes standard with JCE 1.2
supplies only implementations of symmetric encryption algorithms such as
DES. For an implementation of an asymmetric encryption algorithm such
as RSA, you need to install a different provider.

The pseudo code shows two ways to do the asymmetric encryption of the
session key. One way uses an RSA key to encrypt the symmetric key. The
other way uses another asymmetric algorithm to seal (encrypt) the
symmetric key. Sealing is the preferred way, but presents a problem when
you use the RSA key because the RSA algorithm imposes a size
restriction (discussed below) on the object being encrypted and sealing
makes the object too large for RSA encryption.

After the cipher is created with the correct symmetric or asymmetric
algorithm, it is initialized for encryption or decryption with a key. In the
case of symmetric encryption, the key is a secret key, and in the case of
asymmetric encryption, the key is either the public or private key.

Server

The Send interface declares and the RemoteServer class implements
methods to handle the encrypted credit card number and the encrypted
secret key. It also defines a method to return the public key when a client
requests it. In pseudo code, this is what the server interface and class
need to declare and implement:

 A method to get the public key
 A method to send the encryped credit card number
 A method to get the encrypted credit card number
 A method to send the encrypted symmetric key
 A method to get the encrypted symmetric key

Generating the Public and Private Key Pair

You need a program to generate a public and private key pair and store
them to separate files. The public key is read from its file when a client
calls the method to get the public key. The private key is read from its file
when RMIClient2 needs it to decrypt the secret key.

 Generate public and private key pair
 using asymmetric algorithm
 Store private Key in very safe place
 Store public key in accessible place

Sealing the Symmetric Key

4 of 7 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 3: Cryptography http://developer.java.sun.com/developer...ning/Programming/BasicJava2/crypto.html

Sealing the symmetric key involves creating a sealed object that uses an
asymmetric cipher to seal (encrypt) the session key. The RSA asymmetric
algorithm cannot be used because it has the size restrictions described in
the next section, and the sealing process makes the session key too large
to use with the RSA algorithm.

RMIClient1Sealed.java: The RMIClient1.java code has an encrypt
method to encrypt the credit card number, seal the symmetric key, and
send the encrypted credit card number and sealed key to the server. Here
is the pseudo code to do it:

 private void encrypt(credit card number){
 Create cipher for symmetric key encryption (DES)
 Create a key generator
 Create a secret (session) key with key generator
 Initialize cipher for encryption with session key
 Encrypt credit card number with cipher
 Get public key from server
 Create cipher for asymmetric encryption
 (do not use RSA)
 Initialize cipher for encryption with public key
 Seal session key using asymmetric Cipher
 Send encrypted credit card number and sealed
 session key to server
 }

RMIClient2Sealed.java: The RMIClient2.java code has a decrypt
method to unseal the symmetric key and decrypt the credit card number.
Here is the pseudo code to do it:

public byte[] decrypt(encrypted key,
 encrypted credit card number){
 Get private key from file
 Create asymmetric cipher (do not use RSA)
 Initialize cipher for decryption with private key
 Unseal wrapped session key using asymmetric cipher
 Create symmetric cipher
 Initialize cipher for decryption with session key
 Decrypt credit card number with symmetric cipher
}

Encrypting the Symmetric Key with the RSA Algorithm

The RSA algorithm imposes size restrictions on the object being
encrypted. RSA encryption uses the PKCS#1 standard with PKCS#1 block
type 2 padding. The PKCS RSA encryption padding scheme needs 11
spare bytes to work. So, if you generate an RSA key pair with a key size
of 512 bits, you cannot use the keys to encrypt more than 53 bytes (53 =
64 - 11).

So, if you have a session key that is only 8 bytes long, sealing expands it
to 3644 bytes, which is way over the size restriction imposed by the RSA
algorithm. In the process of sealing, the object to be sealed (the session
key, in this case) is first serialized, and then the serialized contents are
encrypted. Serialization adds more information to the session key such as

5 of 7 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 3: Cryptography http://developer.java.sun.com/developer...ning/Programming/BasicJava2/crypto.html

the class of the session key, the class signature, and any objects
referenced by the session key. The additional information makes the
session key too large to be encrypted with an RSA key, and the result is a
javax.crypto.IllegalBlockSizeException run time error.

RMIClient1.java: The RMIClient1.java code has an encrypt method to
encrypt the credit card number, seal (encrypt) the session key, and send
the encrypted credit card number and sealed session key to the server.
Here is the pseudo code to do it:

private void encrypt(credit card number){
 Create cipher for symmetric key encryption (DES)
 Create a key generator
 Create a secret (session) key with key generator
 Initialize cipher for encryption with session key
 Encrypt credit card number with cipher
 Get public key from server
 Create cipher for asymmetric encryption (RSA)
 Initialize cipher for encryption with public key
 Encrypt session key
 Send encrypted credit card number and session
 key to server
 }

RMIClient2.java: The RMIClient2.java code has a decrypt method to
unseal (decrypt) the symmetric key and decrypt the credit card number.
Here is the pseudo code to do it:

 public String decrypt(encrypted key,
 encrypted credit card number){
 Decrypt credit card number
 Get private key from file
 Create asymmetric cipher (RSA)
 Initialize cipher for decryption with private key
 Decrypt symmetric key
 Instantiate symmetric key
 Create symmetric cipher
 Initialize Cipher for decryption with session key
 Decrypt credit card number with symmetric Cipher
 }

More Information

You can find more information on key encryption on the Security Dynamics
Web site (for RSA encryption), or by using a search engine and searching
on RSA Cryptography, asymmetric key encryption, or symmetric key
encryption.

[TOP]

[This page was updated: 30-Mar-2000]

6 of 7 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 3: Cryptography http://developer.java.sun.com/developer...ning/Programming/BasicJava2/crypto.html

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

7 of 7 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 3: Cryptography http://developer.java.sun.com/developer...ning/Programming/BasicJava2/crypto.html

JavaTM Programming Language Basics, Part 2
Lesson 4: Serialization

[<<BACK] [CONTENTS] [NEXT>>]

One big problem with the example program in its current form is the fact
that sending clients can overwrite each other's data before receiving clients
have a chance to get and process it. This lesson adapts the server code to
ensure all orders are processed (nothing is overwritten), and all orders are
processed in the order they are received by the server.

About the Example
Wrapping the Data
Sending Data
Server Program
Receiving Data
More Information

About the Example

The example adapts the Part 2, Lesson 2: User Interfaces Revisited
example to wrap the fruit order data into a single data object and send the
data object over the network to the server. This is more efficient than
sending each unit of data separately.

Wrapping the Data

The DataOrder.java class is very simple. It defines the fields that wrap and
store the fruit order data. It has no methods. It implements the
Serializable interface so its data can be serialized, and written to and
read from a file as a single unit.

Object serialization transforms an object's data to a bytestream that
represents the state of the data. The serialized form of the data contains
enough information to recreate the object with its data in a similar state to
what it was when saved.

import java.io.*;

class DataOrder implements Serializable{
 String apples, peaches, pears, cardnum, custID;
 double icost;
 int itotal;
}

Sending Data

1 of 5 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 4: Serialization http://developer.java.sun.com/developer...ning/Programming/BasicJava2/serial.html

The RMIClient1.java program is modified to use the DataOrder class to
send the order data over the net. The RMIClient1.actionPerformed
method creates an instance of the DataOrder class and initializes its
fields with order data retrieved from the user interface text fields and
areas.

 public void actionPerformed(ActionEvent event){
 Object source = event.getSource();
 Integer applesNo, peachesNo, pearsNo, num;
 Double cost;
 String number, text, text2;
 DataOrder order = new DataOrder();

 if(source == purchase){
 order.cardnum = creditCard.getText();
 order.custID = customer.getText();
 order.apples = appleqnt.getText();
 order.peaches = peachqnt.getText();
 order.pears = pearqnt.getText();

The total number of items is calculated using the order.icost field.

 if(order.apples.length() > 0){
 try{
 applesNo = Integer.valueOf(order.apples);
 order.itotal += applesNo.intValue();
 } catch (java.lang.NumberFormatException e) {
 appleqnt.setText("Invalid Value");
 }
 } else {
 order.itotal += 0;
 }

The total number of items is retrieved from the order.itotal field and
displayed in the user interface.

 num = new Integer(order.itotal);
 text = num.toString();
 this.items.setText(text);

Similarly, the total cost is calculated and displayed in the user interface
using the order.icost field.

 order.icost = (order.itotal * 1.25);
 cost = new Double(order.icost);
 text2 = cost.toString();
 this.cost.setText(text2);

 try{
 send.sendOrder(order);
 } catch (Exception e) {
 System.out.println("Cannot send data to server");
 }

After the totals are calculated, the order object is sent over the net to the
server program.

Server Program

2 of 5 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 4: Serialization http://developer.java.sun.com/developer...ning/Programming/BasicJava2/serial.html

The Send.java and RemoteServer.java classes are much simpler in this
lesson. They have one getXXX method that returns an instance of
DataOrder, and one setXXX method that accepts an instance of
DataOrder.

Send.java

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Send extends Remote {
 public void sendOrder(DataOrder order)
 throws RemoteException;
 public DataOrder getOrder() throws RemoteException;
}

RemoteServer.java

The RemoteServer.sendOrder method accepts a DataOrder
instance as input, and stores each order in a separate file where the file
name is a number. The first order received is stored in a file named 1, the
second order is stored in a file named 2, and so forth.

To keep track of the file names, the value variable is incremented by 1
each time the sendOrder method is called, converted to a String, and
used for the file name in the serialization process.

Objects are serialized by creating a serialized output stream and writing
the object to the output stream. In the code, the first line in the try block
creates a FileOutputStream with the file name to which the serialized
object is to be written.

The next line creates an ObjectOutputFileStream from the file output
stream. This is the serialized output stream to which the order object is
written in the last line of the try block.

RemoteServer.java

public void sendOrder(DataOrder order){

 value += 1;
 num = new Integer(value);
 orders = num.toString();
 try{
 FileOutputStream fos =
 new FileOutputStream(orders);
 ObjectOutputStream oos =
 new ObjectOutputStream(fos);
 oos.writeObject(order);
 }catch (java.io.FileNotFoundException e){
 System.out.println(e.toString());
 }catch (java.io.IOException e){
 System.out.println(e.toString());
 }
}

3 of 5 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 4: Serialization http://developer.java.sun.com/developer...ning/Programming/BasicJava2/serial.html

The RemoteServer.getOrder method does what the sendOrder
method does in reverse using the get variable to keep track of which
orders have been viewed.

But first, this method checks the value variable. If it is equal to zero,
there are no orders to get from a file and view, and if it is greater than the
value in the get variable, there is at least one order to get from a file and
view. As each order is viewed, the get variable is incremented by 1.

 public DataOrder getOrder(){

 DataOrder order = null;

 if(value == 0){
 System.out.println("No Orders To Process");
 }

 if(value > get){
 get += 1;
 num = new Integer(get);
 orders = num.toString();
 try{
 FileInputStream fis =
 new FileInputStream(orders);
 ObjectInputStream ois =
 new ObjectInputStream(fis);
 order = (DataOrder)ois.readObject();
 }catch (java.io.FileNotFoundException e){
 System.out.println(e.toString());
 }catch (java.io.IOException e){
 System.out.println(e.toString());
 }catch (java.lang.ClassNotFoundException e){
 System.out.println(e.toString());
 }
 }else{
 System.out.println("No Orders To Process");
 }
 return order;
 }

Receiving Data

The RMIClient2.actionPerformed method gets an order object and
references its fields to display data in the user interface.

if(source == view){
 try{
 order = send.getOrder();
 creditNo.setText(order.cardnum);
 customerNo.setText(order.custID);
 applesNo.setText(order.apples);
 peachesNo.setText(order.peaches);
 pearsNo.setText(order.pears);

 cost = order.icost;
 price = new Double(cost);
 unit = price.toString();
 icost.setText(unit);

4 of 5 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 4: Serialization http://developer.java.sun.com/developer...ning/Programming/BasicJava2/serial.html

 items = order.itotal;
 itms = new Integer(items);
 i = itms.toString();
 itotal.setText(i);
 } catch (Exception e) {
 System.out.println("Cannot send data to server");
 }
}

More Information

You can find more information on serialization in the Reading and Writing
(but no 'rithmetic) lesson in The JavaTM Tutorial.

[TOP]

[This page was updated: 30-Mar-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

5 of 5 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 4: Serialization http://developer.java.sun.com/developer...ning/Programming/BasicJava2/serial.html

JavaTM Programming Language Basics, Part 2
Lesson 5: Collections

[<<BACK] [CONTENTS] [NEXT>>]

A collection is an object that contains other objects and provides methods
for working on the objects it contains. A collection can consist of the same
types of objects, but can contain objects of different types too.

This lesson adapts the RMIClient2 program from Part 2, Lesson 2: User
Interfaces Revisited to use the Collections application programming
interface (API) to maintain and print a list of unique customer IDs. The
customer IDs are all objects of type String and represent the same type
of information, a customer ID. You could, however, have a collection object
that contains objects of type String, Integer, and Double if it makes
sense in your application.

About Collections
Creating a Set
Printing
More Information

About Collections

The Collection classes available to use in programs implement Collection
interfaces. Interfaces are abstract data types that let collections be
manipulated independently of their representation details. There are three
primary types of collection interfaces: List, Set, and Map. This lesson
focuses on the List and Set collections.

Set implementations do not permit duplicate elements, but List
implementations do. Duplicate elements have the same data type and
value. For example, two customer IDs of type String containing the value
Zelda are duplicate; whereas, an element of type String containing the
value 1 and an element of type Integer containing the value 1 are not
duplicate.

The API provides two general-purpose Set implementations. HashSet,
which stores its elements in a hash table, and TreeSet, which stores its
elements in a balanced binary tree called a red-black tree. The example
for this lesson uses the HashSet implementation because it currently has
the best performance.

This diagram shows the Collection interfaces on the right and the class
hierarchy for the java.util.HashSet on the left. You can see that the
HashSet class implements the Set interface.

1 of 3 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 5: Collections http://developer.java.sun.com/developer...ning/Programming/BasicJava2/collec.html

Creating a Set

This example adapts the RMIClient2.java class to collect customer IDs in a
Set and print the list of customer IDs whenever the View button is clicked.

The collection object is a Set so if the same customer enters multiple
orders, there is only one element for that customer in the list of customer
IDs. If the program tries to add an element that is the same as an element
already in the set, the second element is simply not added. No error is
thrown and there is nothing you have to do in your code.

The RMIClient2.actionPerformed method calls the addCustomer method
to add a customer ID to the set when the order processor clicks the View
button.

The addCustomer method shown below adds the customer ID to the set
and prints a notice that the customer ID has been added.

//Create list of customer IDs
 public void addCustomer(String custID){
 s.add(custID);
 System.out.println("Customer ID added");
 }

Printing

The print method is called from the RMIClient2.actionPerformed method
when the order processor clicks the View button. The print method
prints the elements currently in the set to the command line.

Note: A HashSet does not guarantee the order of the elements
in the set. Elements are printed in the order they occur in the set,
but that order is not necessarily the same as the order in which
the elements were placed in the set.

To traverse the set, an object of type Iterator is returned from the set.
The Iterator object has a hasNext method that lets you test if there is
another element in the set, a next that lets you move over the elements in
the set, and a remove method that lets you remove an element.

2 of 3 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 5: Collections http://developer.java.sun.com/developer...ning/Programming/BasicJava2/collec.html

The example print method shows two ways to print the set. The first way
uses an iterator and the second way simply calls System.out.println
on the set. In the iterator approach, the element returned by the next
method is printed to the command line until there are no more elements in
the set.

//Print customer IDs
 public void print(){
 //Iterator approach
 if(s.size()!=0){
 Iterator it = s.iterator();
 while(it.hasNext()){
 System.out.println(it.next());
 }
 //Call System.out.println on the set
 System.out.println(s);
 }else{
 System.out.println("No customer IDs available");
 }
 }

More Information

You can find more information on Collections in the Collections trail in The
JavaTM Tutorial.

[TOP]

[This page was updated: 30-Mar-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

3 of 3 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 5: Collections http://developer.java.sun.com/developer...ning/Programming/BasicJava2/collec.html

JavaTM Programming Language Basics, Part 2
Lesson 6: Internationalization

[<<BACK] [CONTENTS] [NEXT>>]

More and more companies, large and small, are doing business around the
world using many different languages. Effective communication is always
good business, so it follows that adapting an application to a local
language adds to profitability through better communication and increased
satisfaction.

The JavaTM 2 platform provides internationalization features that let you
separate culturally dependent data from the application
(internationalization) and adapt it to as many cultures as needed
(localization).

This lesson takes the two client programs from Part 2, Lesson 5:
Collections, internationalizes them and adapts the text to France,
Germany, and the United States.

Identify Culturally Dependent Data
Create Keyword and Value Pair Files
Internationalize Application Text
Internationalize Numbers
Compile and Run the Application
Program Improvements
More Information

Identify Culturally Dependent Data

The first thing you need to do is identify the culturally dependent data in
your application. Culturally-dependent data is any data that varies from one
culture or country to another. Text is the most obvious and pervasive
example of culturally dependent data, but other things like number formats,
sounds, times, and dates must be considered too.

The RMIClient1.java and RMIClient2.java classes have the following
culturally-dependent data visible to the end user:

1 of 12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

Titles and labels (window titles, column
heads, and left column labels)

Buttons (Purchase, Reset, View)

Numbers (values for item and cost totals)

Error messages

Although the application has a server
program, the server program is not being
internationalized and localized. The only
visible culturally-dependent data in the server
program is the error message text.

The server program runs in one place and the assumption is that it is not
seen by anyone other than the system administrator who understands the
language in which the error messages is hard coded. In this example, it is
English.

All error messages in RMIClient1 and RMIClient2 are handled in try
and catch blocks, as demonstrated by the print method below. This
way you have access to the error text No data available for translation into
another language.

 public void print(){
 if(s!=null){
 Iterator it = s.iterator();
 while(it.hasNext()){
 try{
 String customer = (String)it.next();
 System.out.println(customer);
 }catch (java.util.NoSuchElementException e){
 System.out.println("No data available");
 }
 }
 }else{
 System.out.println("No customer IDs available");
 }
 }

The print method could have been coded to declare the exception in its
throws clause as shown below, but this way you cannot access the error
message text thrown when the method tries to access unavailable data in
the set.

In this case, the system-provided text for this error message is sent to the
command line regardless of the locale in use for the application. The point
here is it is always better to use try and catch blocks wherever possible
if there is any chance the application will be internationalized so you can
localize the error message text.

 public void print()
 throws java.util.NoSuchElementException{
 if(s!=null){

2 of 12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

 Iterator it = s.iterator();
 while(it.hasNext()){
 String customer = (String)it.next();
 System.out.println(customer);
 }
 }else{
 System.out.println("No customer IDs available");
 }
 }

Here is a list of the title, label, button, number, and error text visible to the
user, and therefore, subject to internationalization and localization. This
data was taken from both RMIClient1.java and RMIClient2.java.

Labels: Apples, Peaches, Pears, Total Items, Total Cost, Credit
Card, Customer ID

Titles: Fruit $1.25 Each, Select Items, Specify Quantity

Buttons: Reset, View, Purchase

Number Values: Value for total items, Value for total cost

Errors: Invalid Value, Cannot send data to server, Cannot look up
remote server object, No data available, No customer IDs available,
Cannot access data in server

Create Keyword and Value Pair Files

Because all text visible to the user will be moved out of the application and
translated, your application needs a way to access the translated text
during execution. This is done with keyword and value pair files, where this
is a file for each language. The keywords are referenced from the
application instead of the hard-coded text and used to load the appropriate
text from the file for the language in use.

For example, you can map the keyword purchase to Kaufen in the German
file, Achetez in the French file, and Purchase in the United States English
file. In your application, you reference the keyword purchase and indicate
the language to use.

Keyword and value pairs are stored in files called properties files because
they store information about the programs properties or characteristics.
Property files are plain-text format, and you need one file for each
language you intend to use.

In this example, there are three properties files, one each for the English,
French, and German translations. Because this application currently uses
hard-coded English text, the easiest way to begin the internationalization
process is to use the hard-coded text to set up the key and value pairs for
the English properties file.

The properties files follow a naming convention so the application can
locate and load the correct file at run time. The naming convention uses

3 of 12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

language and country codes which you should make part of the file name.
The language and country are both included because the same language
can vary between countries. For example, United States English and
Australian English are a little different, and Swiss German and Austrian
German both differ from each other and from the German spoken in
Germany.

These are the names of the properties files for the German (de_DE),
French (fr_FR), and American English (en_US) translations where de,
fr, and en indicate the German (Deutsche), French, and English
lanuages; and DE, FR, and US indicate Germany (Deutschland), France,
and the United States:

MessagesBundle_de_DE.properties
MessagesBundle_en_US.properties
MessagesBundle_fr_FR.properties

Here is the English language properties file. Keywords appear to the left of
the equals (=) sign, and text values appear to the right.

MessagesBundle_en_US.properties

apples=Apples:
peaches=Peaches:
pears=Pears:
items=Total Items:
cost=Total Cost:
card=Credit Card:
customer=Customer ID:

title=Fruit 1.25 Each
1col=Select Items
2col=Specify Quantity

reset=Reset
view=View
purchase=Purchase

invalid=Invalid Value
send=Cannot send data to server
nolookup=Cannot look up remote server object

nodata=No data available
noID=No customer IDs available
noserver=Cannot access data in server

With this file complete, you can hand it off to your French and German
translators and ask them to provide the French and German equivalents
for the text to the right of th equals (=) sign. Keep a copy for yourself
because you will need the keywords to internationalize your application
text.

The properites file with the German translations produces this user
interface for the fruit order client:

4 of 12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

The properties file with the French translations produces this user interface
for the fruit order client:

Internationalize Application Text

This section walks through internationalizing the RMIClient1.java program.
The RMIClient2.java code is almost identical so you can apply the same
steps to that program on your own.

Instance Variables

In addition to adding an import statement for the java.util.* package
where the internationalization classes are, this program needs the following
instance variable declarations for the internationalization process:

//Initialized in main method
 static String language, country;
 Locale currentLocale;
 static ResourceBundle messages;

//Initialized in actionPerformed method
 NumberFormat numFormat;

main Method

The program is designed so the user specifies the language to use at the
command line. So, the first change to the main method is to add the code

5 of 12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

to check the command line parameters. Specifying the language at the
command line means once the application is internationalized, you can
easily change the language without any recompilation.

The String[] args parameter to the main method contains arguments
passed to the program from the command line. This code expects 3
command line arguments when the end user wants a language other than
English. The first argument is the name of the machine on which the
program is running. This value is passed to the program when it starts and
is needed because this is a networked program using the Remote Method
Invocation (RMI) API.

The other two arguments specify the language and country codes. If the
program is invoked with 1 command line argument (the machine name
only), the country and language are assumed to be United States English.

As an example, here is how the program is started with command line
arguments to specify the machine name and German language (de DE).
Everything goes on one line.

 java -Djava.rmi.server.codebase=
 http://kq6py/~zelda/classes/
 -Djava.security.policy=java.policy
 RMIClient1 kq6py.eng.sun.com de DE

And here is the main method code. The currentLocale instance
variable is initialized from the language and country information passed
in at the command line, and the messages instance variable is initialized
from the currentLocale.

The messages object provides access to the translated text for the
language in use. It takes two parameters: the first parameter
"MessagesBundle" is the prefix of the family of translation files this
aplication uses, and the second parameter is the Locale object that tells
the ResourceBundle which translation to use.

Note: This style of programming makes it possible for the same
user to run the program in different languages, but in most cases,
the program will use one language and not rely on command-line
arguments to set the country and language.

If the application is invoked with de DE command line parameters, this
code creates a ResourceBundle variable to access the
MessagesBundle_de_DE.properties file.

 public static void main(String[] args){
//Check for language and country codes
 if(args.length != 3) {
 language = new String("en");
 country = new String ("US");
 System.out.println("English");
 }else{

6 of 12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

 language = new String(args[1]);
 country = new String(args[2]);
 System.out.println(language + country);
 }

//Create locale and resource bundle
 currentLocale = new Locale(language, country);
 messages = ResourceBundle.getBundle("MessagesBundle",
 currentLocale);

 WindowListener l = new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 };

//Create the RMIClient1 object
 RMIClient1 frame = new RMIClient1();

 frame.addWindowListener(l);
 frame.pack();
 frame.setVisible(true);

 if(System.getSecurityManager() == null) {
 System.setSecurityManager(
 new RMISecurityManager());
 }

 try {
 String name = "//" + args[0] + "/Send";
 send = ((Send) Naming.lookup(name));
 } catch (java.rmi.NotBoundException e) {
 System.out.println(messages.getString(
 "nolookup"));
 } catch(java.rmi.RemoteException e){
 System.out.println(messages.getString(
 "nolookup"));
 } catch(java.net.MalformedURLException e) {
 System.out.println(messages.getString(
 "nolookup"));
 }
 }

The applicable error text is accessed by calling the getString method on
the ResourceBundle, and passing it the keyword that maps to the
applicable error text.

 try {
 String name = "//" + args[0] + "/Send";
 send = ((Send) Naming.lookup(name));
 } catch (java.rmi.NotBoundException e) {
 System.out.println(messages.getString(
 "nolookup"));
 } catch(java.rmi.RemoteException e){
 System.out.println(messages.getString(
 "nolookup"));
 } catch(java.net.MalformedURLException e) {
 System.out.println(messages.getString(
 "nolookup"));
 }

7 of 12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

Constructor

The window title is set by calling the getString method on the
ResourceBundle, and passing it the keyword that maps to the title text.
You must pass the keyword exactly as it appears in the translation file, or
you will get a runtime error indicating the resource is unavailable.

 RMIClient1(){

//Set window title
 setTitle(messages.getString("title"));

The next thing the constructor does is use the args parameter to look up
the remote server object. If there are any errors in this process, the
catch statements get the applicable error text from the
ResourceBundle and print it to the command line. User interface objects
that display text, such as JLabel and JButton, are created in the same
way:

//Create left and right column labels
 col1 = new JLabel(messages.getString("1col"));
 col2 = new JLabel(messages.getString("2col"));
...
//Create buttons and make action listeners
 purchase = new JButton(messages.getString(
 "purchase"));
 purchase.addActionListener(this);

 reset = new JButton(messages.getString("reset"));
 reset.addActionListener(this);

actionPerformed Method

In the actionPerformed method, the Invalid Value error is caught
and translated:

 if(order.apples.length() > 0){
//Catch invalid number error
 try{
 applesNo = Integer.valueOf(order.apples);
 order.itotal += applesNo.intValue();
 }catch(java.lang.NumberFormatException e){
 appleqnt.setText(messages.getString("invalid"));
 }
 } else {
 order.itotal += 0;
 }

The actionPerformed method calculates item and cost totals,
translates them to the correct format for the language currently in use, and
displays them in the user interface.

Internationalize Numbers

A NumberFormat object is used to translate numbers to the correct
format for the language currently in use. To do this, a NumberFormat

8 of 12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

object is created from the currentLocale. The information in the
currentLocale tells the NumberFormat object what number format to
use.

Once you have a NumberFormat object, all you do is pass in the value
you want translated, and you receive a String that contains the number
in the correct format. The value can be passed in as any data type used
for numbers such as int, Integer, double, or Double. No code such
as to convert an Integer to an int and back again is needed.

//Create number formatter
 numFormat = NumberFormat.getNumberInstance(
 currentLocale);

//Display running total
 text = numFormat.format(order.itotal);
 this.items.setText(text);

//Calculate and display running cost
 order.icost = (order.itotal * 1.25);
 text2 = numFormat.format(order.icost);
 this.cost.setText(text2);

 try{
 send.sendOrder(order);
 } catch (java.rmi.RemoteException e) {
 System.out.println(messages.getString("send"));
 }

Compile and Run the Application

Here are the summarized steps for compiling and running the example
program. The important thing to note is that when you start the client
programs, you need to include language and country codes if you want a
language other than United States English.

Compile

These instructions assume development is in the zelda home directory.

Unix:
cd /home/zelda/classes
javac Send.java
javac RemoteServer.java
javac RMIClient2.java
javac RMIClient1.java
rmic -d . RemoteServer
cp RemoteServer*.class /home/zelda/public_html/classes
cp Send.class /home/zelda/public_html/classes
cp DataOrder.class /home/zelda/public_html/classes

Win32:
cd \home\zelda\classes
javac Send.java
javac RemoteServer.java
javac RMIClient2.java
javac RMIClient1.java

9 of 12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

rmic -d . RemoteServer
copy RemoteServer*.class
 \home\zelda\public_html\classes
copy Send.class \home\zelda\public_html\classes
copy DataOrder.class \home\zelda\public_html\classes

Start rmi Registry

Unix:

cd /home/zelda/public_html/classes
unsetenv CLASSPATH
rmiregistry &

Win32:

cd \home\zelda\public_html\classes
set CLASSPATH=
start rmiregistry

Start the Server

Unix:

 cd /home/zelda/public_html/classes
 java -Djava.rmi.server.codebase=
 http://kq6py/~zelda/classes
 -Dtava.rmi.server.hostname=kq6py.eng.sun.com
 -Djava.security.policy=java.policy RemoteServer

Win32:
 cd \home\zelda\public_html\classes
 java -Djava.rmi.server.codebase=
 file:c:\home\zelda\public_html\classes
 -Djava.rmi.server.hostname=kq6py.eng.sun.com
 -Djava.security.policy=java.policy RemoteServer

Start RMIClient1 in German

Note the addition of de DE for the German language and country at the
end of the line.

Unix:
 cd /home/zelda/classes

 java -Djava.rmi.server.codebase=
 http://kq6py/~zelda/classes/
 -Djava.security.policy=java.policy
 RMIClient1 kq6py.eng.sun.com de DE

Win32:
cd \home\zelda\classes

 java -Djava.rmi.server.codebase=
 file:c:\home\zelda\classes\
 -Djava.security.policy=java.policy RMIClient1
 kq6py.eng.sun.com de DE

10 of 12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

Start RMIClient2 in French

Note the addition of fr FR for the French language and country at the end
of the line.

Unix:
 cd /home/zelda/classes

 java -Djava.rmi.server.codebase=
 http://kq6py/~zelda/classes
 -Djava.rmi.server.hostname=kq6py.eng.sun.com
 -Djava.security.policy=java.policy
 RMIClient2 kq6py.eng.sun.com fr FR

Win32:
 cd \home\zelda\classes

 java -Djava.rmi.server.codebase=
 file:c:\home\zelda\public_html\classes
 -Djava.rmi.server.hostname=kq6py.eng.sun.com
 -Djava.security.policy=java.policy RMIClient2
 kq6py.eng.sun.com/home/zelda/public_html fr FR

Program Improvements

A real-world scenario for an ordering application like this might be that
RMIClient1 is an applet embedded in a web page. When orders are
submitted, order processing staff run RMIClient2 as applications from their
local machines.

So, an interesting exercise is to convert RMIClient1.java to its applet
equivalent. The translation files would be loaded by the applet from the
same directory from which the browser loads the applet class.

One way is to have a separate applet for each language with the language
and country codes hard coded. Your web page can let them choose the
language by clicking a link that launches the appropriate applet. Here are
the source code files for the English, French, and German applets.

Here is the HTML code to load the French applet on a Web page.

<HTML>
<BODY>
<APPLET CODE=RMIFrenchApp.class WIDTH=300 HEIGHT=300>
</APPLET>
</BODY>
</HTML>

Note: To run an applet written with JavaTM 2 APIs in a browser,
the browser must be enabled for the Java 2 Platform. If your
browser is not enabled for the Java 2 Platform, you have to use
appletviewer to run the applet or install Java Plug-in. Java Plug-in
lets you run applets on web pages under the 1.2 version of the
Java1 virtual machine (VM) instead of the web browser's default
Java VM.

11 of 12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

To use applet viewer, type the following where rmiFrench.html is the
HTML file for the French applet.

 appletviewer rmiFrench.html

Another improvement to the program as it currently stands would be
enhancing the error message text. You can locate the errors in the Java
API docs and use the information there to make the error message text
more user friendly by providing more specific information.

You might also want to adapt the client programs to catch and handle the
error thrown when an incorrect keyword is used. Here are the error and
stack trace provided by the system when this type of error occurs:

Exception in thread "main"
 java.util.MissingResourceException:
Can't find resource
 at java.util.ResourceBundle.getObject(Compiled Code)
 at java.util.ResourceBundle.getString(Compiled Code)
 at RMIClient1.<init>(Compiled Code)
 at RMIClient1.main(Compiled Code)

More Information

You can find more information on Internationalization in the
Internationalization trail in The Java Tutorial.

You can find more informationon applets in the Writing Applets trail in The
Java Tutorial.

1 As used on this web site, the terms "Java virtual machine" or "JVM"
mean a virtual machine for the Java platform

[TOP]

[This page was updated: 31-Mar-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

12 of 12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

JavaTM Programming Language Basics, Part 2
Lesson 7: Packages and JavaTM Archive File Format

[<<BACK] [CONTENTS] [NEXT>>

Until now, you have used classes from the Java API library by importing the
package containing the class or classes you need. A package is a convenient
way to organize groups of related classes, and in development, you should
organize your application files into packages too. Packages make it easier to
locate and use the class files and help you control access to class data at run
time.

When your application is fully tested, debugged, and ready for deployment,
use the JavaTM Archive file format to deploy the application. JAR file format is
a compression and file packaging format and tool for bundling executable files
with any other related application files so they can be deployed as one unit.

This lesson shows you how to organize the program files from Part 2, Lesson
6: Internationalization into packages and deploy the executable and other
related files to production using JAR file format. Normally, you would use
packages from the beginning of development.

Setting up Class Packages
Create the Directories
Declare the Packages
Make Classes and Fields Accessible
Change Client Code to Find the Properties File
Compile and Run the Example

Using JAR Files to Deploy
Server Set of Files
Fruit Order Client Set of Files
View Order Client Set of Files
More Information

Setting up Class Packages

It is easy to organize class files into packages. All you do is put related class
files in the same directory, give the directory a name that relates to the
purpose of the classes, and add a line to the top of each class file that
declares the package name, which is the same as the directory name where
they reside.

For example, the class and other related files for the program files from Part
2, Lesson 6: Internationalization can be divided into three groups of files: fruit
order client, view order client, and server files. Although these three sets of
classes are related to each other, they have different functions and are to be

1 of 9 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html

deployed separately.

Create the Directories

To organize the internationalization program into three packages, you could
create the following three directories and move the listed source files into
them:

client1
RMIEnglishApp.java
RMIFrenchApp.java
RMIGermanApp.java
MessagesBundle_de_DE.properties
MessagesBundle_en_US.properties
MessagesBundle_fr_FR.properties
index.html
rmiFapp.html
rmiGapp.html
rmiEapp.html
java.policy

client2
RMIClient2.java
MessagesBundle_de_DE.properties
MessagesBundle_en_US.properties
MessagesBundle_fr_FR.properties
java.policy

server
DataOrder.java
RemoteServer.java
Send.java
java.policy

Declare the Packages

Each *.java file needs a package delcaration at the top that reflects the
name of the directory. Also, the fruit order (client1 and view order
(client2) client class files need an import statement for the server package
because they have to access the remote server object at runtime.

As an example, the package declaration and import statements for the
RMIClient2.java class file look like this:

//package declaration
package client2;

import java.awt.Color;
import java.awt.GridLayout;
import java.awt.event.*;
import javax.swing.*;

import java.io.*;
import java.net.*;

import java.rmi.*;
import java.rmi.server.*;

2 of 9 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html

import java.util.*;
import java.text.*;

//Import server package
import server.*;

Make Classes and Fields Accessible

With class files organized into packages, you have to declare the server
classes in the server directory public so they can be instantiated by client
programs, which are created from classes in the client1 and client2
directories. If you do not specify public, a class can only be instantiated by
an object created from a class in the same package.

So client programs can access the fruit order data, the fields of the
DataOrder class have to be public too. The RemoteServer class and
Send interface need to be public classes, but their fields do not need to be
public because the do not have public data.

Fields and methods without an access specifier such as public can only be
accessed by objects created from classes in the same package.

Here is the new DataOrder class.

package server;

import java.io.*;

//Make class public
public class DataOrder implements Serializable{

//Make fields public
 public String apples, peaches, pears, cardnum, custID;
 public double icost;
 public int itotal;
}

Change Client Code to Find the Properties Files

In the example, the properties files (Messages_*) are stored in the
directories with the client source files. This makes it easier to package and
deploy the files later. So the programs can field the properties files, you have
to make one small change to the client source code.

The code that creates the messages variable needs to include the directory
(package name) as follows:

 messages = ResourceBundle.getBundle(
 "client2" +
 File.separatorChar +
 "MessagesBundle", currentLocale);

Compile and Run the Example

Compiling and running the example organized into packages is a little different

3 of 9 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html

from compiling and running the example in previous lessons. First, you have to
execute the compiler and interpreter commands from one directory above the
package directories, and second, you have to specify the package directories
to the compiler and interpreter commands.

Compile

These instructions assume development occurs in the zelda home directory.

Unix:
cd /home/zelda/classes

javac server/Send.java
javac server/RemoteServer.java
javac client2/RMIClient2.java
javac client1/RMIFrenchApp.java
javac client1/RMIGermanApp.java
javac client1/RMIEnglishApp.java
rmic -d . server.RemoteServer
cp server/RemoteServer*.class
 /home/zelda/public_html/classes
cp server/Send.class
 /home/zelda/public_html/classes
cp server/DataOrder.class
 /home/zelda/public_html/classes

Win32:
cd \home\zelda\classes

javac server\Send.java
javac server\RemoteServer.java
javac client2\RMIClient2.java
javac client1\RMIFrenchApp.java
javac client1\RMIGermanApp.java
javac client1\RMIEnglishApp.java
rmic -d . server.RemoteServer
copy server\RemoteServer*.class
 \home\zelda\public_html\classes
copy server\Send.class
 \home\zelda\public_html\classes
copy server\DataOrder.class
 \home\zelda\public_html\classes

Note: The rmic -d . server.RemoteServer line uses
server.RemoteServer instead of server/RemoteServer so
the _stub and _skel classes are generated properly with the
package.

Start rmi Registry:

Unix:
cd /home/zelda/public_html/classes
unsetenv CLASSPATH
rmiregistry &

Win32:

4 of 9 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html

cd \home\zelda\public_html\classes
set CLASSPATH=
start rmiregistry

Start the Server

Unix:

 cd /home/zelda/public_html/classes

 java -Djava.rmi.server.codebase=
 http://kq6py/~zelda/classes
 -Djava.rmi.server.hostname=kq6py.eng.sun.com
 -Djava.security.policy=
 server/java.policy server/RemoteServer

Win32:
 cd \home\zelda\public_html\classes

 java -Djava.rmi.server.codebase=
 file:c:\home\zelda\public_html\classes
 -Djava.rmi.server.hostname=kq6py.eng.sun.com
 -Djava.security.policy=
 server\java.policy server\RemoteServer

Start RMIGermanApp Here is the HTML code to load the German applet,
Note the directory/package name prefixed to the applet class name
(client1/RMIGermanApp.class).

 <HTML>
 <BODY>
 <APPLET CODE=client1/RMIGermanApp.class WIDTH=300 HEIGHT=300>
 </APPLET>
 </BODY>
 </HTML>

To run the applet with appletviewer, invoke the HTML file from the directory
just above client1 as follows:

 cd /home/zelda/classes

 appletviewer rmiGapp.html

Start RMIClient2 in French

Unix:
 cd /home/zelda/classes

 java -Djava.rmi.server.codebase=
 http://kq6py/~zelda/classes
 -Djava.rmi.server.hostname=kq6py.eng.sun.com
 -Djava.security.policy=client2/java.policy
 client2/RMIClient2 kq6py.eng.sun.com fr FR

Win32:
 cd \home\zelda\classes

 java -Djava.rmi.server.codebase=
 file:c:\home\zelda\public_html\classes

5 of 9 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html

 -Djava.rmi.server.hostname=kq6py.eng.sun.com
 -Djava.security.policy=client2\java.policy
 client2\RMIClient2 kq6py.eng.sun.com fr FR

Using JAR Files to Deploy

After testing and debugging, the best way to deploy the two client and server
files is to bundle the executables and other related application files into three
separate JAR files, one JAR file for each client program, and one JAR file for
the server program.

JAR files use the ZIP file format to compress and pack files into, and
decompress and unpack files from, the JAR file. JAR files make it easy to
deploy programs that consist of many files. Browsers can easily download
applets bundled into JAR files, and the download goes much more quickly
than if the applet and its related files were not bundled into a JAR file.

Server Set of Files

Here are the server files:

RemoteServer.class
RemoteServer_skel.class
RemoteServer_stub.class
Send.class
DataOrder.class
java.policy

Compress and Pack Server Files

To compress and pack the server files into one JAR file, type the following
command on one line. This command is executed in the same directory with
the files. If you execute the command from a directory other than where the
files are, you have to specify the full pathname.

 jar cf server.jar
 RemoteServer.class
 RemoteServer_skel.class
 RemoteServer_stub.class
 Send.class
 DataOrder.class
 java.policy

jar is the jar command. If you type jar with no options, you get the
following help screen. You can see from the help screen that the cf options
to the jar command mean create a new JAR file named server.jar and
put the list of files that follows into it. The new JAR file is placed in the current
directory.

kq6py% jar
Usage: jar {ctxu}[vfm0M] [jar-file] [manifest-file]
 [-C dir] files ...
Options:
 -c create new archive
 -t list table of contents for archive

6 of 9 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html

 -x extract named (or all) files from archive
 -u update existing archive
 -v generate verbose output on standard output
 -f specify archive file name
 -m include manifest information from specified
 manifest file
 -0 store only; use no ZIP compression
 -M Do not create a manifest file for the entries
 -C change to the specified directory and
 include the following file
If any file is a directory then it is processed
 recursively.
The manifest file name and the archive file name
 needs to be specified in the same order the
 'm' and 'f' flags are specified.

Example 1: to archive two class files into an
 archive called classes.jar:
 jar cvf classes.jar Foo.class Bar.class
Example 2: use an existing manifest file 'mymanifest'
 and archive all the files in the foo/ directory
 into 'classes.jar':
 jar cvfm classes.jar mymanifest -C foo/ .

To deploy the server files, all you have to do is move the server.jar file to
a publicly accessible directory on the server where they are to execute.

Decompress and Unpack Server Files

After moving the JAR file to its final location, the compressed and packed files
need to be decompressed and unpacked so you can start the server. The
following command means extract (x) all files from the server.jar file (f).

 jar xf server.jar

Fruit Order Set of Files

The fruit order set of files (below) consists of applet classes, web pages,
translation files, and the policy file. Because they live on the web, they need
to be in a directory accessible by the web server. The easiest way to deploy
these files is to bundle them all into a JAR file and copy them to their location.

RMIEnglishApp.class
RMIFrenchApp.class
RMIGermanApp.class
index.html (top-level web page where user chooses language)
rmiEapp.html (second-level web page for English)
rmiFapp.html (second-level web page for French)
rmiGapp.html (second-level web page for German)
MessagesBundle_de_DE.properties
MessagesBundle_en_US.properties
MessagesBundle_fr_FR.properties
java.policy

Compress and Pack Files

7 of 9 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html

 jar cf applet.jar
 RMIEnglishApp.class
 RMIFrenchApp.class
 RMIGermanApp.class
 index.html
 rmiEapp.html
 rmiFapp.html
 rmiGapp.html
 MessagesBundle_de_DE.properties
 MessagesBundle_en_US.properties
 MessagesBundle_fr_FR.properties
 java.policy

To deploy the fruit order client files, copy the applet.jar file to its final
location.

Decompress and Unpack Files

An applet in a JAR file can be invoked from an HTML file without being
unpacked. All you do is specify the ARCHIVE option to the APPLET tag in
your web page, which tells appletviewer the name of the JAR file containing
the class file. Be sure to include the package directory when you specify the
applet class to the CODE option.

You can leave the translation files and policy file in the JAR file. When using
appletviewer, the applet invoked from the JAR file will find them in the JAR
file.

<HTML>
<BODY>
<APPLET CODE=client1/RMIFrenchApp.class
 ARCHIVE="applet.jar"
 WIDTH=300
 HEIGHT=300>
</APPLET>
</BODY>
</HTML>

However, you do need to unpack the web pages so you can move them to
their final location. The following command does this. Everything goes on one
line.

 jar xv applet.jar index.html
 rmiEapp.html
 rmiFapp.html
 rmiGapp.html

Note: To run the HTML files from a browser, you need to unpack
the JAR file, copy the java.policy file to your home directory and
make sure it has the right name (.java.policy for Unix and
java.policy for Windows), and install Java Plug-In.

View Order Set of Files

8 of 9 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html

The view order set of files (below) consists of the application class file and
the policy file.

RMIClient2.class
java.policy

Compress and Pack Files

 jar cf vieworder.jar RMIClient2.class java.policy

To deploy the view order client files, copy the vieworder.jar file to its final
location.

Decompress and Unpack Files

 jar xf vieworder.jar

More Information

You can find more information on packages in the Creating and Using
Packages lesson in The Java Tutorial.

You can find more information on these and other JAR file format topics in the
JAR File Format trail in The Java Tutorial.

[TOP

[This page was updated: 30-Mar-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

9 of 9 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html

JavaTM Programming Language Basics, Part 2
Lesson 8: Object-Oriented Programming

[<<BACK] [CONTENTS] [NEXT>>]

You have probably heard a lot of talk about object-oriented programming.
And, if the JavaTM programming language is your first experience with an
object-oriented language, you are probably wondering what all the talk is
about.

You already know a little about object-oriented programming because after
working the example programs in Java Programming Language Basics,
Part 1 and Part 2, you are somewhat familiar with the object-oriented
concepts of class, object, instance, and inheritance plus the access levels
public and private. But mostly, you have been doing object-oriented
programming without really thinking about it.

And that is one of the great things about the Java programming language.
It is inherently object oriented.

To help you gain a deeper understanding of object-oriented programming
and its benefits, this lesson presents a very brief overview of
object-oriented concepts and terminology as they relate to some of the
example code presented in this tutorial.

Object-Oriented Programming Defined
Classes
Objects
Well-Defined Boundaries and Cooperation
Inheritance
Polymorphism
Data Access Levels
Your Own Classes
Program Improvements
More Information

Object-Oriented Programming Defined

Object-oriented programming is a method of programming based on a
hierarchy of classes, and well-defined and cooperating objects.

Classes

A class is a structure that defines the data and the methods to work on
that data. When you write programs in the Java language, all program
data is wrapped in a class, whether it is a class you write or a class you

1 of 9 21-04-2000 17:35

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http://developer.java.sun.com/developer...Training/Programming/BasicJava2/oo.html

use from the Java platform API libraries.

The ExampleProgram class from the simple program in the first lesson of
Part 1 is a programmer-written class that uses the java.lang.System
class from the Java platform API libraries to print a character string to the
command line.

class ExampleProgram {
 public static void main(String[] args){
 System.out.println("I'm a simple Program");
 }
}

Classes in the Java platform API libraries define a set of objects that share
a common structure and behavior. The java.lang.System class used in
the example defines such things as standard input, output, and error
streams, and access to system properties. In contrast, the
java.lang.String class defines character strings.

In the example, you do not see an explicit use of the String class, but in
the Java language, a character string can be used anywhere a method
expects to receive a String object. During execution, the Java platform
creates a String object from the character string passed to the
System.out.println call, but your program cannot call any of the
String class methods because it did not instantiate the String object.

If you want access to the String methods, you can rewrite the example
program to create a String object as follows. This way, you can call a
method such as the String.concat method that adds text to the original
string.

class ExampleProgram {
 public static void main(String[] args){
 String text = new String("I'm a simple Program ");
 System.out.println(text);
 String text2 = text.concat(
 "that uses classes and objects");
 System.out.println(text2);
 }
}

The output looks like this:

I'm a simple Program
I'm a simple Program that uses classes and objects

Objects

An instance is an executable copy of a class. Another name for instance is
object. There can be any number of objects of a given class in memory at
any one time.

In the last example, four different String objects are created for the
concatenation operation, text object, text2 object, and a String
object created behind the scenes from the " that uses classes and

2 of 9 21-04-2000 17:35

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http://developer.java.sun.com/developer...Training/Programming/BasicJava2/oo.html

objects" character string passed to the String.concat method.

Also, because String objects cannot be edited, the
java.lang.String.concat method converts the String objects to
StringBuffer (editable) string objects to do the concatenation.

Besides the String object, there is an instance of the
ExampleProgram.java class in memory as well.

The System class is never instantiated by the ExampleProgram class
because it contains only static variables and methods, and therefore,
cannot be instantiated by a program, but it is instantiated behind the
scenes by the JavaTM virtual machine1 (VM).

Well-Defined Boundaries and Cooperation

Class definitions must allow objects to cooperate during execution. In the
previous section, you saw how the System, String, and
StringBuffer objects cooperated to print a concatenated character
string to the command line.

This section changes the example program to display the concatenated
character string in a JLabel component in a user interface to further
illustrate the concepts of well-defined class boundaries and object
cooperation.

The program code to place the text in a label to display it in a user
interface uses a number of cooperating classes. Each class has its own
function and purpose as summarized below, and where appropriate, the
classes are defined to work with objects of another class.

ExampleProgram defines the program data and methods to work on
that data.
JFrame defines the top-level window including the window title and
frame menu.

3 of 9 21-04-2000 17:35

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http://developer.java.sun.com/developer...Training/Programming/BasicJava2/oo.html

WindowEvent defines behavior for (works with) the Close option on
the frame menu.
String defines a character string to create the label.
JLabel defines a user interface component to display static text.
JPanel defines the background color, contains the label, and uses
the default layout manager (java.awt.FlowLayout) to position the
label on the display.

While each class has its own specific purpose, they all work together to
create the simple user interface you see here.

import javax.swing.*;
import java.awt.Color;
import java.awt.event.*;

class ExampleProgram extends JFrame {

 public ExampleProgram(){
 String text = new String("I'm a simple Program ");
 String text2 = text.concat(
 "that uses classes and objects");

 JLabel label = new JLabel(text2);
 JPanel panel = new JPanel();
 panel.setBackground(Color.white);

 getContentPane().add(panel);
 panel.add(label);
 }

 public static void main(String[] args){
 ExampleProgram frame = new ExampleProgram();

 frame.setTitle("Fruit $1.25 Each");
 WindowListener l = new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 };

 frame.addWindowListener(l);
 frame.pack();
 frame.setVisible(true);
 }
}

Inheritance

One object-oriented concept that helps objects work together is
inheritance. Inheritance defines relationships among classes in an
object-oriented language. In the Java programming language, all classes
descend from java.lang.Object and implement its methods.

4 of 9 21-04-2000 17:35

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http://developer.java.sun.com/developer...Training/Programming/BasicJava2/oo.html

The following diagram shows the class hierarchy as it descends from
java.lang.Object for the classes in the user interface example above.
The java.lang.Object methods are also shown because they are
inherited and implemented by all of its subclasses, which is every class in
the Java API libraries. java.lang.Object defines the core set of
behaviors that all classes have in common.

As you move down the hierarchy, each class adds its own set of
class-specific fields and methods to what it inherits from its superclass or
superclasses. The java.awt.swing.JFrame class inherits fields and
methods from java.awt.Frame, which inherits fields and methods from
java.awt.Container, which inherits fields and methods from
java.awt.Component, which finally inherits from java.lang.Object,
and each subclass adds its own fields and methods as needed.

Polymorphism

Another way objects work together is to define methods that take other
objects as parameters. You get even more cooperation and efficiency
when the objects are united by a common superclass. All classes in the
Java programming language have an inheritance relationship.

5 of 9 21-04-2000 17:35

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http://developer.java.sun.com/developer...Training/Programming/BasicJava2/oo.html

For example, if you define a method that takes a java.lang.Object as
a parameter, it can accept any object in the entire Java platform. If you
define a method that takes a java.awt.Component as a parameter, it
can accept any component object. This form of cooperation is called
polymorphism.

You saw an example of polymorphism in Part 2, Lesson 5: Collections
where a collection object can contain any type of object as long as it
descends from java.lang.Object. It is repeated here to show you that
Set collection can add a String object and an Integer object to the
Set because the Set.add method is defined to accept any class instance
that traces back to the java.lang.Object class.

 String custID = "munchkin";
 Integer creditCard = new Integer(25);

 Set s = new HashSet();
 s.add(custID);
 s.add(creditCard);

Data Access Levels

Another way classes work together is through access level controls.
Classes, and their fields and methods have access levels to specify how
they can be used by other objects during execution, While cooperation
among objects is desirable, there are times when you will want to explicitly
control access, and specifying access levels is the way to gain that
control. When you do not specify an access level, the default access level
is in effect.

Classes

By default, a class can be used only by instances of other classes in the
same package. A class can be declared public to make it accessible to
all class instances regardless of what package its class is in. You might
recall that in Part 1, Part 1, Lesson 3: Building Applets, the applet class
had to be declared public so it could be accessed by the appletviewer tool
because the appletviewer program is created from classes in another
package.

Here is an applet class declared to have a public access level:

public class DbaAppl extends Applet
 implements ActionListener {

Without the public access level (shown below), its access level is
package by default. You get an error when you try to interpret a class
with an access level of package with the appletviewer tool. The same is
true if the access level is protected or private.

class DbaAppl extends Applet
 implements ActionListener {

Also, in Part 2, Lesson 6: Internationalization the server classes are made

6 of 9 21-04-2000 17:35

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http://developer.java.sun.com/developer...Training/Programming/BasicJava2/oo.html

public so client classes can access them.

Fields and Methods

Fields and methods can be declared private, protected, public, or
package. If no access level is specified, the field or method access level
is package by default.

private: A private field or method is accessible only to the class in which
it is defined. In Part 1, Lesson 7: Database Access and Permissions the
connection, user name, and password for establishing the database
access are all private. This is to prevent an outside class from accessing
them and jeopardizing the database connection, or compromising the
secret user name and password information.

 private Connection c;

protected: A protected field or method is accessible to the class itself,
its subclasses, and classes in the same package.

public: A public field or method is accessible to any class of any
parentage in any package. In Part 2, Lesson 6: Internationalization server
data accessed by client programs is made public.

package: A package field or method is accessible to other classes in the
same package.

Your Own Classes

When you use the Java API library classes, they have already been
designed with the above concepts in mind. They all descend from
java.lang.Object giving them an inheritance relationship; they have
well-defined boundaries; and they are designed to cooperate with each
other where appropriate.

For example, you will not find a String class that takes an Integer
object as input because that goes beyond the well-defined boundary for a
String. You will, however, find the Integer class has a method for
converting its integer value to a String so its value can be displayed in a
user interface component, which only accepts String objects.

But what about when you write your own classes? How can you be sure
your classes have well-defined boundaries, cooperate, and make use of
inheritance? One way is to look at the functions you need a program to
perform and separate them into distinct modules where each functional
module is defined by its own class or group of classes.

Well-Defined and Cooperating Classes

Looking at the RMIClient2 class from the Part 2, Lesson 5: Collections
lesson, you can see it performs the following functions: Get data, display
data, store customer IDs, print customer IDs, and reset the display.

7 of 9 21-04-2000 17:35

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http://developer.java.sun.com/developer...Training/Programming/BasicJava2/oo.html

Getting data, displaying the data, and resetting the display are closely
related and easily form a functional module. But in a larger program with
more data processing, the storing and printing of customer IDs could be
expanded to store and print a wider range of data. In such a case, it would
make sense to have a separate class for storing data, and another class
for printing it in various forms.

You could, for example, have a class that defines how to store customer
IDs, and tracks the number of apples, peaches, and pears sold during the
year. You could also have another class that defines report printing. It
could access the stored data to print reports on apples, peaches, and
pears sold by the month, per customer, or throughout a given season.

Making application code modular by separating out functional units makes
it easier to update and maintain the source code. When you change a
class, as long as you did not change any part of its public interface, you
only have to recompile that one class.

Inheritance

Deciding what classes your program needs means separating functions
into modules, but making your code more efficient and easier to maintain
means looking for common functions where you can use inheritance. If you
need to write a class that has functionality similar to a class in the Java
API libraries, it makes sense to extend that API library class and use its
methods rather than write everything from scratch.

The RMIClient2 class from the Part 2, Lesson 5: Collections lesson
extends JFrame to leverage the ready-made functionality it provides for a
program's top-level window including, frame menu closing behavior,
background color setting, and a customized title.

Likewise, if you want to add customized behavior to an existing class, you
can extend that class and add the functionality you want. For example, you
might want to create your own JButton class with a different look. To do
this, you can write your own class that extends JButton and implement it
to appear the way you want. Then your program can instantiate your
button class instead of the JButton class whenever you need a button
with the new look you created.

Access Levels

You should always keep access levels in mind when you declare classes,
fields, and methods. Consider which objects really need access to the
data, and use packages and access levels to protect your application data
from all other objects executing in the system.

Most object-oriented applications do not allow other objects to access
their fields directly by declaring them private. Then they make their
methods protected, public, or package as needed and allow other objects
to manipulate their private data by calling the methods only. This way, you
can update your class by changing a field definition and the corresponding
method implementation, but other objects that access that data do not

8 of 9 21-04-2000 17:35

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http://developer.java.sun.com/developer...Training/Programming/BasicJava2/oo.html

need to be changed because their interface to the data (the method
signature) has not changed.

Program Improvements

It is always best to restrict access as much as possible. Going back to
Part 2, Lesson 7: Packages and JAR Files, the server classes had to be
made public and the DataOrder class fields also had to be made
public so the client programs can access them.

At that time, no access level was specified for the other classes and fields
so they are all package by default. All methods have an access level of
public.

A good exercise would be to go back to the client classes and give the
classes, fields, and methods an access level so they are not accessed
inappropriately by other objects.

Here is one possible solution for the RMIClient1.java and RMIClient2.java
client programs. Can you explain why the actionPerformed method
cannot be made private? If not, make it private, run the javac
command to compile, and see what the compiler has to say about it.

More Information

You can find more information on Object-oriented programming concepts
files in the Object-Oriented Programming Concepts trail in The Java
Tutorial.

1 As used on this web site, the terms "Java virtual machine" or "JVM"
mean a virtual machine for the Java platform.

[TOP]

[This page was updated: 30-Mar-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World

FAQ | Feedback | Map | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

9 of 9 21-04-2000 17:35

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http://developer.java.sun.com/developer...Training/Programming/BasicJava2/oo.html

