Essentials of the Java(TM) Programming Language, Part 1 http://developer.java.sun.com/developer...ining/Programming/BasicJaval/index.html

,_n,f’.;’;r A-Z Index » | (Search)
- 78
ge))]

= EEER JavA DEVELOPER CONNECTION™

JAavA TRAINING
Products & APIs Training Inde
Developer Connection
Docs & Training . .
TS Essentials of the Java™Programmin
PR A Language: A Hands-On Guide, Part
Industry News !
Solutions Marketplace .
Case Studies by Monica PanE

Printable Page &
[CONTENTS] [NEXT>

If you are new to programming in the Java™ language, have some
experience with other languages, and are familiar with things like displaying
text or graphics or performing simple calculations, this tutorial could be for
you. It walks through how to use the Java® 2 Platform software to create
and run three common types of programs written for the Java
platform—applications, applets, and servlets.

You will learn how applications, applets, and servlets are similar and
different, how to build a basic user interface that handles simple end user
input, how to read data from and write data to files and databases, and hov
to send and receive data over the network. This tutorial is not
comprehensive, but instead takes you on a straight and uncomplicated patt
through the more common programming features available in the Java
platform.

If you have no programming experience at all, you might still find this tutoria
useful; but you also might want to take an introductory programming course
or read Teach Yourself Java 2 Online in Web Time before you proceed.

Contents

Lesson 1: Compiling and Running a Simple Program

¢ A Word About the Java Platform

¢ Setting Up Your Computer

¢ Writing a Program

¢ Compiling the Program

¢ |nterpreting and Running the Program

¢ Common Compiler and Interpreter Problems
¢ Code Comments

¢ API Documentation

¢ More Information

Lesson 2: Building Applications

¢ Application Structure and Elements
* Fields and Methods
¢ Constructors

lof3 21-04-2000 17:30

Essentials of the Java(TM) Programming Language, Part 1 http://developer.java.sun.com/developer...ining/Programming/BasicJaval/index.html

e To Summarize
e More Information

Lesson 3: Building Applets

* Application to Applet
Run the Applet
Applet Structure and Elements

Packages
More Information

Lesson 4: Building a User Interface

Swing APIs
Import Statements

Class Declaration
Global Variables
Constructor
Action Listening
Event Handling
Main Method

* Applets Revisited
* More Information

Lesson 5: Writing Servlets

* About the Example
e HTML Form

* Servlet Backend

¢ More Information

Lesson 6: File Access and Permissions

File Access by Applications
Exception Handling

File Access by Applets
Granting Applets Permission
Restricting Applications

File Access by Servlets

Appending
More Information

Lesson 7: Database Access and Permissions

e Database Setup
* Create Database Table
¢ Database Access by Applications
o Establishing a Database Connection
° Final and Private Variables
° Writing and Reading Data
¢ Database Access by Applets
o JDBC Driver
o JDBC-ODBC Bridge with ODBC Driver

20f3 21-04-2000 17:30

Essentials of the Java(TM) Programming Language, Part 1 http://developer.java.sun.com/developer...ining/Programming/BasicJaval/index.html

e Database Access by Servlets
e More Information

Lesson 8: Remote Method Invocation

¢ About the Example
° Program Behavior
o File Summary
o Compile the Example
o Start the RMI Reqistry
o Run the RemoteServer Server Object
° Run the RMIClientl Program
° Run the RMIClient2 Program
¢ RemoteSend Class
¢ Send Interface
¢ RMICIlientl Class
¢ RMIClient2 Class
¢ More Information

In Closing

Reader Feedback
Tell us what you think of this training book.
*- O Very worth reading © Worth reading © Not worth reading

) If you have other comments or ideas for future training books, pleast
type them here:

[E

| Submit | Reset

TOF

Printable Page &b

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies
Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
FAQ | Feedback | Map | A-Z Index

For more information on Java technology

and other software from Sun Microsystems, call: Q'Sﬂn

(800) 786-7638 o

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

30f3 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Pilutpafdeveloper.java.sun.com/developer...ing/Programming/BasicJaval/compile.html

Fam A-Z Index = | (Search)
A . ;
= wear JAVA DEVELOPER CONNECTION
JAVA TRAINING

Products & APIs ..
Training Index

Developer Connection

Docs & Training

S Java™ Programming Language Basics, Part 1
Community Discussion Lesson 1: Comp|||ng and Running
Industry News

A Simple Program

Solutions Marketplace

Case Studies

[<<BACK] [CONTENTS] [NEXT>>]

Printable Page &

The computer age is here to stay. Households and businesses all over
the world use computers in one way or another because computers help
individuals and businesses perform a wide range of tasks with speed,
accuracy, and efficiency. Computers can perform all kinds of tasks
ranging from running an animated 3D graphics application with
background sound to calculating the number of vacation days you have
coming to handling the payroll for a Fortune 500 company.

When you want a computer to perform tasks, you write a program. A
program is a sequence of instructions that define tasks for the computer
to execute. This lesson explains how to write, compile, and run a simple
program written in the Java™ language (Java program) that tells your
computer to print a one-line string of text on the console.

But before you can write and compile programs, you need to understand
what the Java platform is, and set your computer up to run the programs.

e A Word About the Java Platform

* Setting Up Your Computer

e Writing a Program

* Compiling the Program

* |nterpreting and Running the Program

* Common Compiler and Interpreter Problems
* Code Comments

¢ API Documentation

¢ More Information

A Word About the Java Platform

The Java platform consists of the Java application programming
interfaces (APIs) and the Javal virtual machine (JVM).

lof6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Pilutpafdeveloper.java.sun.com/developer...ing/Programming/BasicJaval/compile.html

Java Prograf Java APIs are libraries of compiled code that you can

use in your programs. They let you add ready-made
Java APz

\—‘ and customizable functionality to save you programming

Jawa virtual Machine |time.

Your Computer System

The simple program in this lesson uses a Java API to
print a line of text to the console. The console printing
capability is provided in the API ready for you to use; you supply the text
to be printed.

Java programs are run (or interpreted) by another program called the
Java VM. If you are familiar with Visual Basic or another interpreted
language, this concept is probably familiar to you. Rather than running
directly on the native operating system, the program is interpreted by the
Java VM for the native operating system. This means that any computer
system with the Java VM installed can run Java programs regardless of
the computer system on which the applications were originally developed.

For example, a Java program developed on a Personal Computer (PC)
with the Windows NT operating system should run equally well without
modification on a Sun Ultra workstation with the Solaris operating system,
and vice versa.

Setting Up Your Computer

Before you can write and run the simple Java program in this lesson, you
need to install the Java platform on your computer system.

The Java platform is available free of charge from the java.sun.com web
site. You can choose between the Java® 2 Platform software for
Windows 95/98/NT or for Solaris. The download page contains the
information you need to install and configure the Java platform for writing
and running Java programs.

Note: Make sure you have the Java platform installed and
configured for your system before you try to write and run the
simple program presented next.

Writing a Program

The easiest way to write a simple program is with a text editor. So, using
the text editor of your choice, create a text file with the following text, and
be sure to name the text file Exanpl ePr ogr am j ava. Java programs
are case sensitive, so if you type the code in yourself, pay particular
attention to the capitalization.

/1A Very Sinple Exanpl e
cl ass Exanpl eProgram {
public static void main(String[] args){
Systemout.println("l'ma Sinple Progran);
}

20f6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Pilutpafdeveloper.java.sun.com/developer...ing/Programming/BasicJaval/compile.html

}

Here is the ExampleProgram.java source code file if you do not want to
type the program text in yourself.

Compiling the Program

A program has to be converted to a form the Java VM can understand so
any computer with a Java VM can interpret and run the program.
Compiling a Java program means taking the programmer-readable text in
your program file (also called source code) and converting it to
bytecodes, which are platform-independent instructions for the Java VM.

The Java compiler is invoked at the command line on Unix and DOS shell
operating systems as follows:

j avac Exanpl eProgram j ava

Note: Part of the configuration process for setting up the Java
platform is setting the class path. The class path can be set
using either the - cl asspat h option with the j avac compiler
command and j ava interpreter command, or by setting the
CLASSPATH environment variable. You need to set the class
path to point to the directory where the Exanpl ePr ogr am
class is so the compiler and interpreter commands can find it.
See Java 2 SDK Tools for more information.

Interpreting and Running the Program

Once your program successfully compiles into Java bytecodes, you can
interpret and run applications on any Java VM, or interpret and run
applets in any Web browser with a Java VM built in such as Netscape or
Internet Explorer. Interpreting and running a Java program means
invoking the Java VM byte code interpreter, which converts the Java byte
codes to platform-dependent machine codes so your computer can
understand and run the program.

The Java interpreter is invoked at the command line on Unix and DOS
shell operating systems as follows:

j ava Exanpl ePr ogram
At the command line, you should see:
I'"'ma Sinple Program

Here is how the entire sequence looks in a terminal window:

30f6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Pilutpafdeveloper.java.sun.com/developer...ing/Programming/BasicJaval/compile.html

40f6

=javac ExampleProgram.java
=java ExamplePragram
I'm a Simple Program

Common Compiler and Interpreter Problems

If you have trouble compiling or running the simple example in this lesson,
refer to the Common Compiler and Interpreter Problems lesson in The
Java Tutorial for troubleshooting help.

Code Comments

Code comments are placed in source files to describe what is happening
in the code to someone who might be reading the file, to comment-out
lines of code to isolate the source of a problem for debugging purposes,
or to generate APl documentation. To these ends, the Java language
supports three kinds of comments: double slashes, C-style, and doc
comments.

Double Slashes

Double slashes (/ /) are used in the C++ programming language, and tell
the compiler to treat everything from the slashes to the end of the line as
text.

/1A Very Sinple Exanple
cl ass Exanpl eProgram {
public static void main(String[] args){
Systemout.println("l'ma Sinple Progrant);

}
}

C-Style Comments

Instead of double slashes, you can use C-style comments (/ * */) to
enclose one or more lines of code to be treated as text.

/* These are
C-style coments
*/
cl ass Exanpl eProgram {
public static void main(String[] args){
Systemout.println("l'ma Sinple Program');

}
}

Doc Comments

To generate documentation for your program, use the doc comments
(/** */)to enclose lines of text for the j avadoc tool to find. The

j avadoc tool locates the doc comments embedded in source files and
uses those comments to generate APl documentation.

21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Pilutpafdeveloper.java.sun.com/developer...ing/Programming/BasicJaval/compile.html

[** This class displays a text string at
* the console.
*/
cl ass Exanpl eProgram {
public static void main(String[] args){
Systemout.printIn("l'ma Sinple Progrant);

}
}

With one simple class, there is no reason to generate APl documentation.
API documentation makes sense when you have an application made up
of a number of complex classes that need documentation. The tool
generates HTM. files (Web pages) that describe the class structures and
contain the text enclosed by doc comments. The javadoc Home Page has
more information on the j avadoc command and its output.

API Documentation

The Java platform installation includes APl Documentation, which
describes the APIs available for you to use in your programs. The files
are stored in a doc directory beneath the directory where you installed
the platform. For example, if the platform is installed in
/usr/local/javaljdkl. 2, the APl Documentation is in
/usr/local/javaljdkl. 2/ doc/ api.

More Information

See Java 2 SDK Tools for more information on setting the class path and
using the j avac, and j ava commands.

See Common Compiler and Interpreter Problems lesson in The Java
Tutorial for troubleshooting help.

The javadoc Home Page has more information on the j avadoc command
and its output.

You can also view the APl Documentation for the Java 2 Platform on the
java.sun.com site.

1 As used on this web site, the terms "Java virtual machine" or "JVM"
mean a virtual machine for the Java platform.

[TOP]

Printable Page &

50f6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 1: Compiling & Running a Simple Pilutpafdeveloper.java.sun.com/developer...ing/Programming/BasicJaval/compile.html

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
FAQ | Feedback | Map | A-Z Index

For more information on Java technology

and other software from Sun Microsystems, call: qun
ko

(80(.)) 786-7638 . , Copyright © 1995-2000 Sun Microsystems, Inc.

Outside the U.S. and Canada, dial your country's All Rights Reserved. Terms of Use. Privacy Policy.

AT&T Direct Access Number first.

60f6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications http://developer.java.sun.com/developer...aining/Programming/BasicJaval/prog.html

&
%

‘SE{;‘!-
JAVA
Products & APIs
Developer Connection
Docs & Training
Online Support
Community Discussion
Industry News
Solutions Marketplace

Case Studies

Printable Page &

1of6

A-Z Index » | (Search)

EPER JAVA DEVELOPER CONNECTION"
TRAINING

Training Index

Java™ Programming Language Basics, Part 1
Lesson 2: Building Applications

[<<BACK] [CONTENTS] [NEXT>>]

All programs written in the Java™ language (Java programs) are built from
classes. Because all classes have the same structure and share common
elements, all Java programs are very similar.

This lesson describes the structure and elements of a simple application
created from one class. The next lesson covers the same material for
applets.

e Application Structure and Elements
¢ Fields and Methods

e Constructors

e More Information

Application Structure and Elements

An application is created from classes. A cl ass is
similar to a RECORD in the Pascal language or a

|| setuatametod || struct inthe C language in that it stores related
data in fields, where the fields can be different
types. So you could, for example, store a text

Simple Class string in one field, an integer in another field, and a
floating point in a third field. The difference
between a class and a RECORD or st r uct is that a class also defines the
methods to work on the data.

String Field

Get data method ‘

For example, a very simple class might store a string of text and define
one method to set the string and another method to get the string and print
it to the console. Methods that work on the data are called accessor
methods.

21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications http://developer.java.sun.com/developer...aining/Programming/BasicJaval/prog.html

Every application needs one class with a nai n
method. This class is the entry point for the
program, and is the class nhame passed to the

j ava interpreter command to run the application.

String Field

Constructor

Set data method

the program starts, and is the control point from
which the controller class accessor methods are
Simple Class called to work on the data.

Get data method ‘ The code in the mai n method executes first when

‘ main methad

Here, again, is the example program from Lesson 1. It has no fields or
accessor methods, but because it is the only class in the program, it has a
mai n method.

cl ass Exanpl eProgram {
public static void main(String[] args){
Systemout.println("l'ma Sinple Progrant);
}
}

The public static voi d keywords mean the Javal virtual machine
(JVM) interpreter can call the program's mai n method to start the
program (public) without creating an instance of the class (static), and the
program does not return data to the Java VM interpreter (void) when it

ends.
An instance of a class is an executable copy of
the class While the class describes the data and
-~ Dbehavior, you need a class instance to acquire
and work on data. The diagram at the left
\ shows three instances of the
Third Exanpl ePr ogr amclass by the names:
Fi rst 1l nstance, Secondl nst ance and
Thi r dl nst ance.

ExampleFragram
class

The mai n method is static to give the Java VM interpreter a way to start
the class without creating an instance of the control class first. Instances
of the control class are created in the mai n method after the program
starts.

The mai n method for the simple example does not create an instance of
the Exanpl ePr ogr amclass because none is needed. The

Exanpl ePr ogr amclass has no other methods or fields, so no class
instance is needed to access them from the mai n method. The Java
platform lets you execute a class without creating an instance of that class
as long as its static methods do not call any non-static methods or fields.

The Exanpl ePr ogr amclass just calls Syst em out . printl n. The

j ava. | ang. Syst emclass, among other things, provides functionality to
send text to the terminal window where the program was started. It has all
static fields and methods. The static out field in the Syst emclass is type
Pri nt St r eam which is a class that provides various forms of print
methods, including the pri nt | n method.

20f6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications http://developer.java.sun.com/developer...aining/Programming/BasicJaval/prog.html

30f6

The static fields and methods of a class can be called by another program
without creating an instance of the class. So, just as the Java VM
interpreter command could call the st ati ¢ nmai h method in the

Exanpl ePr ogr amclass without creating an instance of the

Exanpl ePr ogr amclass, the Exanpl ePr ogr amclass can call the
static printlnmethod inthe Syst emclass, without creating an
instance of the Syst emclass.

However, a program must create an instance of a class to access its
non-static fields and methods. Accessing static and non-static fields and
methods is discussed further with several examples in the next section.

Fields and Methods

The LessonTwoA.java program alters the simple example to store the text
string in a static field called t ext . The t ext field is static so its data can
be accessed directly by the static call to out . pri nt | n without creating
an instance of the LessonTwoA class.

cl ass LessonTwoA {
static String text = "I'"ma Sinple Prograni;
public static void main(String[] args){
System out. println(text);
}

}

The LessonTwoB.java and LessonTwoC.java programs add a get Text
method to the program to retrieve and print the text.

The LessonTwoB.java program accesses the non-static t ext field with
the non-static get Text method. Non-static methods and fields are called
instance methods and fields. This approach requires that an instance of the
LessonTwoB class be created in the mai n method. To keep things
interesting, this example includes a static text field and a non-static
instance method (get St at i cText) to retrieve it.

Note: The field and method return values are all type St ri ng.

class LessonTwoB {

String text = "I"ma Sinple Prograni;
static String text2 = "I"'mstatic text";

String getText(){
return text;
}

String getStaticText(){
return text?2;
}

public static void main(String[] args){

21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications

40f6

LessonTwoB progl nstance = new LessonTwoB() ;
String retrievedText = proglnstance. get Text();
String retrievedStaticText =

progl nstance. get Stati cText();
Systemout.println(retrievedText);
Systemout.println(retrievedStaticText);

}

The LessonTwoC.java program accesses the static t ext field with the
static get Text method. Static methods and fields are called class
methods and fields. This approach allows the program to call the static

get Text method directly without creating an instance of the LessonTwoC
class.

class LessonTwoC {
static String text = "I"ma Sinple Progrant;

[/ Accessor met hod
static String getText (){
return text;
}

public static void main(String[] args){
String retrievedText = getText();
Systemout.println(retrievedText);

}

So, class methods can operate only on class fields, and instance methods
can operate on class and instance fields.

You might wonder what the difference means. In short, there is only one
copy of the data stored or set in a class field but each instance has its own
copy of the data stored or set in an instance field.

B=0 B=0

Three class Call setFieldA(S0) and
instances Initialized setFieldB(25) on first instance

A points to 36 A points to 50
i B=0 B =25
class definition
;t;E“BF'_E:;’ =38 A points to 36 A points to 50
- B=0 B=0
setFeldA method 3 3
setFeldB method £ points to 36 £ points to 50

The figure above shows three class instances with one static field and one
instance field. At runtime, there is one copy of the value for static Field A
and each instance points to the one copy. When setFieldA(50) is called on
the first instance, the value of the one copy changes from 36 to 50 and all
three instances point to the new value. But, when setFieldB(25) is called
on the first instance, the value for Field B changes from 0 to 25 for the first
instance only because each instance has its own copy of Field B.

See Understanding Instance and Class Members lesson in The Java
tutorial for a thorough discussion of this topic.

21-04-2000 17:30

http://developer.java.sun.com/developer...aining/Programming/BasicJaval/prog.html

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications http://developer.java.sun.com/developer...aining/Programming/BasicJaval/prog.html

50f6

Constructors

Classes have a special method called a constructor that is called when a
class instance is created. The class constructor always has the same
name as the class and no return type. The LessonTwoD program converts
the LessonTwoB program to use a constructor to initialize the text string.

Note: If you do not write your own constructor, the compiler adds
an empty constructor, which calls the no-arguments constructor
of its parent class. The empty constructor is called the default
constructor. The default constructor initializes all non-initialized
fields and variables to zero.

class LessonTwoD {
String text;

// Construct or
LessonTwoD() {
text = "I'ma Sinple Progrant;
}

// Accessor met hod
String getText(){
return text;
}

public static void main(String[] args){
LessonTwoD progl nst = new LessonTwoDX();
String retrievedText = proglnst.getText();
Systemout.println(retrievedText);

}

To Summarize

A simple program that prints a short text string to the console would
probably do everything in the mai n method and do away with the
constructor, t ext field, and get Text method. But, this lesson used a
very simple program to show you the structure and elements in a basic
Java program.

More Information

See Understanding Instance and Class Members lesson in The Java
tutorial for a thorough discussion of this topic.

1 As used on this web site, the terms "Java virtual machine" or "JVM"
mean a virtual machine for the Java platform.

[TOP

21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 2: Building Applications http://developer.java.sun.com/developer...aining/Programming/BasicJaval/prog.html

Printable Page &

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
FAQ | Feedback | Map | A-Z Index

For more information on Java technology

and other software from Sun Microsystems, call: QSun
Ty

(80(.)) 786-7638 . , Copyright © 1995-2000 Sun Microsystems, Inc.

Outside the U.S. and Canada, dial your country's All Rights Reserved. Terms of Use. Privacy Policy.

AT&T Direct Access Number first.

60f6 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 3: Building Applets http://developer.java.sun.com/developer...ning/Programming/BasicJaval/applet.html

e
G
JAVA
Products & APIs
Developer Connection
Docs & Training
Online Support
Community Discussion
Industry News
Solutions Marketplace

Case Studies

Printable Page &

1lof5

A-Z Index » | (Search)

EEar JAVA DEVELOPER CONNECTION"
TRAINING

Training Index

Java™ Programming Language Basics, Part 1
Lesson 3: Building Applets

[<<BACK] [CONTENTS] [NEXT>>]

Like applications, applets are created from classes. However, applets do
not have a mai n method as an entry point, but instead, have several
methods to control specific aspects of applet execution.

This lesson converts an application from Lesson 2 to an applet and
describes the structure and elements of an applet.

¢ Application to Applet
* Run the Applet
Applet Structure and Elements

¢ Packages
More Information

Application to Applet

The following code is the applet equivalent to the LessonTwoB application
from Lesson 2. The figure below shows how the running applet looks. The
structure and elements of the applet code are discussed after the section

on how to run the applet just below.

~iAppIet Viewer: | - iJ

Applet

I'm asimple applet

Applet started,

i mport java. appl et. Appl et;
i nport java.awt .G aphics;
i nport java.awt. Col or;

public class Sinpl eAppl et extends Appl et{
String text = "I"ma sinple applet”;
public void init() {

text = "I'ma sinple applet”;
set Backgr ound(Col or. cyan);

21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 3: Building Applets http://developer.java.sun.com/developer...ning/Programming/BasicJaval/applet.html

public void start() {
Systemout.println("starting...");
}

public void stop() {
Systemout.println("stopping...");

}

public void destroy() {
Systemout.println("preparing to unload...");

}

public void paint(Gaphics g){
Systemout.println("Paint");
g. set Col or (Col or. bl ue);
g. drawRect (0, O,
getSize().width -1,
get Si ze() . height -1);
g. set Col or (Col or.red);
g.drawstri ng(text, 15, 25);

}
}

The Si npl eAppl et class is declared publ i ¢ so the program that runs
the applet (a browser or appl et vi ewer), which is not local to the
program can access it.

Run the Applet

To see the applet in action, you need an HTM. file with the Applet tag as
follows:

<HTM_>

<BODY>

<APPLET CODE=Si npl eAppl et. cl ass W DTH=200 HEI GHT=100>
</ APPLET>

</ BODY>

</ HTML>

The easiest way to run the applet is with appletviewer shown below where
si mpl eAppl et . ht M is a file that contains the above HTML code:

appl et vi ewer si npl eAppl et . ht n

Note: To run an applet written with Java™ 2 APIs in a browser,
the browser must be enabled for the Java 2 Platform. If your
browser is not enabled for the Java 2 Platform, you have to use
appletviewer to run the applet or install Java Plug-in. Java Plug-in
lets you run applets on web pages under the 1.2 version of the
Java VM instead of the web browser's default Java VM.

Applet Structure and Elements
The Java API Appl et class provides what you need to design the

appearance and manage the behavior of an applet. This class provides a
graphical user interface (GUI) component called a Panel and a number of

20f5 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 3: Building Applets http://developer.java.sun.com/developer...ning/Programming/BasicJaval/applet.html

30f5

methods. To create an applet, you extend (or subclass) the Appl et class
and implement the appearance and behavior you want.

The applet's appearance is created by drawing onto the Panel or by
attaching other GUI components such as push buttons, scrollbars, or text
areas to the Panel . The applet's behavior is defined by implementing the
methods.

Extending a Class

Most classes of any complexity extend other classes. To
extend another class means to write a new class that can use

: the fields and methods defined in the class being extended. The

Container . . .

- class being extended is the parent class, and the class doing
the extending is the child class. Another way to say this is the
child class inherits the fields and methods of its parent or chain
of parents. Child classes either call or override inherited
methods. This is called single inheritance.

: The Si npl eAppl et class extends Appl et class, which
extends the Panel class, which extends the Cont ai ner

class. The Cont ai ner class extends Qbj ect , which is the
parent of all Java API classes.

The Appl et class providestheinit, start, stop, destroy, and
pai nt methods you saw in the example applet. The Si npl eAppl et
class overrides these methods to do what the Si npl eAppl et class
needs them to do. The Appl et class provides no functionality for these
methods.

However, the Appl et class does provide functionality for the

set Backgr ound method,which is called in the i ni t method. The call to
set Backgr ound is an example of calling a method inherited from a
parent class in contrast to overriding a method inherited from a parent
class.

You might wonder why the Java language provides methods without
implementations. It is to provide conventions for everyone to use for
consistency across Java APIs. If everyone wrote their own method to start
an applet, for example, but gave it a different name such as begi n or go,
the applet code would not be interoperable with other programs and
browsers, or portable across multiple platforms. For example, Netscape
and Internet Explorer know how to look for the i nit and st art methods.

Behavior

An applet is controlled by the software that runs it. Usually, the underlying
software is a browser, but it can also be appl et vi ewer as you saw in
the example. The underlying software controls the applet by calling the
methods the applet inherits from the Appl et class.

The init Method: Thei nit method is called when the applet is first

21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 3: Building Applets http://developer.java.sun.com/developer...ning/Programming/BasicJaval/applet.html

40f5

created and loaded by the underlying software. This method performs
one-time operations the applet needs for its operation such as creating the
user interface or setting the font. In the example, the i ni t method
initializes the text string and sets the background color.

The start Method: The st art method is called when the applet is
visited such as when the end user goes to a web page with an applet on it.
The example prints a string to the console to tell you the applet is starting.
In a more complex applet, the st art method would do things required at
the start of the applet such as begin animation or play sounds.

After the st art method executes, the event thread calls the pai nt
method to draw to the applet's Panel . A thread is a single sequential flow
of control within the applet, and every applet can run in multiple threads.
Appl et drawing methods are always called from a dedicated drawing and
event-handling thread.

The stop and destroy Met hods: The st op method stops the applet
when the applet is no longer on the screen such as when the end user
goes to another web page. The example prints a string to the console to
tell you the applet is stopping. In a more complex applet, this method
should do things like stop animation or sounds.

The dest r oy method is called when the browser exits. Your applet should
implement this method to do final cleanup such as stop live threads.

Appearance

The Panel provided in the Appl et class inherits a pai nt method from its
parent Cont ai ner class. To draw something onto the Applet's Panel ,
you implement the pai nt method to do the drawing.

The G- aphi cs object passed to the pai nt method defines a graphics
context for drawing on the Panel . The G- aphi cs object has methods for
graphical operations such as setting drawing colors, and drawing graphics,
images, and text.

The pai nt method for the Si npl eAppl et draws the I'm a simple applet
string in red inside a blue rectangle.

public void paint(Gaphics g){
Systemout.println("Paint");
/1 Set drawi ng color to blue
g. set Col or (Col or. bl ue);
/1 Specify the x, y, width and height for a rectangle
g. drawRect (0, O,
getSize().width -1,
get Si ze(). height -1);
/] Set drawing color to red
g. set Col or (Col or.red);
//Draw the text string at the (15, 25) x-y location
g.drawstring(text, 15, 25);
}

21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 3: Building Applets http://developer.java.sun.com/developer...ning/Programming/BasicJaval/applet.html

Packages

The applet code also has three i nport statements at the top.
Applications of any size and all applets use i nport statements to access
ready-made Java API classes in packages. This is true whether the Java
API classes come in the Java platform download, from a third-party, or are
classes you write yourself and store in a directory separate from the
program. At compile time, a program uses i nport statements to locate
and reference compiled Java API classes stored in packages elsewhere
on the local or networked system. A compiled class in one package can
have the same name as a compiled class in another package. The
package name differentiates the two classes.

The examples in Lessons 1 and 2 did not need a package declaration to
call the Syst em out . pri nt | n Java API class because the Syst em
class isin the j ava. | ang package that is included by default. You never
needan i nport java.l ang. * statement to use the compiled classes in
that package.

More Information

You can find more information on applets in the Writing Applets trail in The
Java Tutorial.

(TOP]

Printable Page &

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies
Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
FAQ | Feedback | Map | A-Z Index

For more information on Java technology

and other software from Sun Microsystems, call: @Sun
e

(800) 786-7638 Copyright © 1995-2000 Sun Microsystems, Inc.

Outside the U.S. and Canada, dial your country's

All Rights Reserved. Terms of Use. Privacy Policy.
AT&T Direct Access Number first. 9 Y ¥

50f5 21-04-2000 17:30

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface http://developer.java.sun.com/developer...ining/Programming/BasicJaval/front.html

:r,;if;ﬁ‘ A-Z Index » | Gearch)
=D
fw==-=‘ =Rar JAVA DEVELOPER CONNECTION"
JAVA TRAINING
Products & APIs Training Index
Developer Connection
Docs & Training . -
RS-, Java™ Programming Language Basics, Part 1
Community Discussion Lesson 4: BUIIdlng A User Interface
Industry News
Solutions Marketplace [<<BACK] [CONTENTS] [NEXT>>]

Case Studies

Printable Page & In the last lesson you saw how the Appl et class provides a Panel
component so you can design the applet's user interface. This lesson
expands the basic application from Lessons 1 and 2 to give it a user
interface using the Java™ Foundation Classes (JFC) Project Swing APIs
that handle user events.

* Project Swing APIs
Import Statements
Class Declaration
Instance Variables
Constructor

Action Listening
Event Handling
Main Method
Applets Revisited
More Information

Project Swing APIs

In contrast to the applet in Lesson 3 where the user
Panel panel | | interface is attached to a panel object nested in a
top-level browser, the Project Swing application in

Trame this lesson attaches its user interface to a panel
- object nested in a top-level frame object. A frame
ErOWEaK object is a top-level window that provides a title,
banner, and methods to manage the appearance and behavior of the
window.

The Project Swing code that follows builds this simple application. The
window on the left appears when you start the application, and the window
on the right appears when you click the button. Click again and you are
back to the original window on the left.

lof7 21-04-2000 17:31

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface http://developer.java.sun.com/developer...ining/Programming/BasicJaval/front.html

—|Example| - | |

—|Example| - | |

I'm a Simple Program
1] Button Clicked

Click Me | L E

Click Again |

When Application

Starts When Button Clicked

Import Statements

Here is the SwingUl.java code. At the top, you have four lines of import
statements. The lines indicate exactly which Java™ API classes the
program uses. You could replace four of these lines with this one line:

I nport java.awt. *;, to import the entire awt package, but doing that
increases compilation overhead than importing exactly the classes you
need and no others.

i nport java.awt . Col or;

i nport java.awt. Border Layout ;
i nport java.aw.event.*;

i nport javax.swi ng. *;

Class Declaration

The class declaration comes next and indicates the top-level frame for the
application's user interface is a JFr anme that implements the
Act i onLi st ener interface.

cl ass Swi ngUl extends JFrane
i npl enents Acti onLi st ener {

The JFr ane class extends the Fr ane class that is part of the Abstract
Window Toolkit (AWT) APIs. Project Swing extends the AWT with a full
set of GUI components and services, pluggable look and feel capabilities,
and assistive technology support. For a more detailed introduction to
Project Swing, see the Swing Connection, and Fundamentals of Swing,
Part 1.

The Java APIs provide classes and interfaces for you to use. An interface
defines a set of methods, but does not implement them. The rest of the
Swi ngUl class declaration indicates that this class will implement the
Act i onLi st ener interface. This means the Swi ngUl class must
implement all methods defined in the Act i onLi st ener interface.
Fortunately, there is only one, act i onPer f or med, which is discussed
below.

Instance Variables

These next lines declare the Project Swing component classes the

Swi ngUl class uses. These are instance variables that can be accessed
by any method in the instantiated class. In this example, they are built in
the Swi ngUl constructor and accessed in the act i onPer f or ned
method implementation. The pri vat e bool ean instance variable is

20f7 21-04-2000 17:31

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface http://developer.java.sun.com/developer...ining/Programming/BasicJaval/front.html

visible only to the Swi ngUl class and is used in the
act i onPer f or medmethod to find out whether or not the button has been
clicked.

JLabel text, clicked;

JButton button, clickButton

JPanel panel;

private boolean _clickMeMode = true;

Constructor

The constructor (shown below) creates the user interface components and
JPanel object, adds the components to the JPanel object, adds the
panel to the frame, and makes the JBut t on components event listeners.
The JFr anme object is created in the nmai n method when the program
starts.

Swi ngUl () {
text = new JLabel ("I'ma Sinple Program);
clicked = new JLabel ("Button Clicked");

button = new JButton("Click Me");
/1 Add button as an event [|istener
butt on. addActi onLi stener (this);

clickButton = new JButton("Cick Again");
/1 Add button as an event |i stener
clickButton.addActi onLi stener(this);

/] Create panel
panel = new JPanel ();

/1 Speci fy |layout manager and background col or
panel . set Layout (new Bor der Layout (1, 1));
panel . set Background(Col or. white);

/1 Add | abel and button to pane
get Cont ent Pane() . add(panel) ;
panel . add(Bor der Layout . CENTER, text);
panel . add(Bor der Layout . SOUTH, button);

}
_i BorderLayout | - | ||| When the JPanel object is created, the layout
Morth manager and background color are specified.

The layout manager in use determines how

Vifast Center east | User interface components are arranged on the
display area.

| South |
Liava gt Wi The code uses the Bor der Layout layout

manager, which arranges user interface
components in the five areas shown at left. To add a component, specify
the area (north, south, east, west, or center).

/| Create panel
panel = new JPanel ();

/'l Speci fy | ayout nanager and background col or
panel . set Layout (new Border Layout (1, 1));
panel . set Background(Col or. white);

3of7 21-04-2000 17:31

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface http://developer.java.sun.com/developer...ining/Programming/BasicJaval/front.html

/1 Add | abel and button to pane
get Cont ent Pane() . add(panel) ;
panel . add(Bor der Layout . CENTER, text);
panel . add(Bor der Layout . SOUTH, button);

}

To find out about some of the other available layout managers and how to
use them, see the JDC article Exploring the AWT Layout Managers.

The call to the get Cont ent Pane method of the JFr ane class is for
adding the Panel to the JFr ame. Components are not added directly to a
JFr ame, but to its content pane. Because the layout manager controls the
layout of components, it is set on the content pane where the components
reside. A content pane provides functionality that allows different types of
components to work together in Project Swing.

Action Listening

In addition to implementing the Act i onLi st ener interface, you have to
add the event listener to the JButton components. An action listener is the
SwingUI object because it implements the ActionListener interface. In this
example, when the end user clicks the button, the underlying Java platform
services pass the action (or event) to the actionPerformed method. In your
code, you implement the actionPerformed method to take the appropriate
action based on which button is clicked..

The component classes have the appropriate add methods to add action
listeners to them. In the code the JButton class has an addActionListener
method. The parameter passed to addActionListener is this, which means
the SwingUI action listener is added to the button so button-generated
actions are passed to the actionPerformed method in the SwingUI object.

button = new JButton("Click Me");
/1 Add button as an event |i stener
butt on. addActi onLi st ener (this);

Event Handling

The actionPerformed method is passed an event object that represents the
action event that occurred. Next, it uses an if statement to find out which
component had the event, and takes action according to its findings.

public void actionPerformed(Acti onEvent event) {
Obj ect source = event. get Source();

if (_clickMeMode) {
text.set Text("Button Clicked");
button. set Text("Click Again");
_clickMeMbde = fal se;

} else {
text.setText("l'ma Sinple Progran);
button.setText ("Click M");
_clickMeMbde = true;

}
}

You can find information on event handling for the different components in

40of7 21-04-2000 17:31

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface http://developer.java.sun.com/developer...ining/Programming/BasicJaval/front.html

The Java Tutorial section on Event Handling.

Main Method

The mai n method creates the top-level f r ane, sets the title, and includes
code that lets the end user close the window using the frame menu.

public static void main(String[] args){
/I Create top-level frane
Swi ngUl frame = new Swi ngUl ();
frame.setTitl e("Exanmpl e");
/1 This code lets you close the w ndow
W ndowLi stener | = new W ndowAdapter () {
public void w ndowCl osi ng(W ndowEvent e) {
System exit (0);
}
} .

frame. addW ndowLi st ener (1) ;

/1 This code lets you see the frane
frame. pack();
frame. setVisible(true);

}
}

The code for closing the window shows an easy way to add event handling
functionality to a program. If the event listener interface you need provides
more functionality than the program actually uses, use an adapter class.
The Java APIs provide adapter classes for all listener interfaces with more
than one method. This way, you can use the adapter class instead of the
listener interface and implement only the methods you need. In the
example, the WindowListener interface has 7 methods and this program
needs only the windowClosing method so it makes sense to use the
WindowAdapter class instead.

This code extends the WindowAdapter class and overrides the
windowClosing method. The new keyword creates an anonymous instance
of the extended inner class. It is anonymous because you are not assigning
a name to the class and you cannot create another instance of the class
without executing the code again. It is an inner class because the extended
class definition is nested within the SwingUI class.

This approach takes only a few lines of code, while implementing the
WindowListener interface would require 6 empty method implementations.
Be sure to add the WindowAdapter object to the frame object so the
frame object will listen for window events.

W ndowLi st ener | = new W ndowAdapter () {
/1 The instantiation of object | is extended to
/'1include this code:
public void wi ndowCl osi ng(W ndowevent e){
Systemexit(0);
}

}s
frame. addW ndowLi st ener (1) ;

Applets Revisited

50f7 21-04-2000 17:31

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface http://developer.java.sun.com/developer...ining/Programming/BasicJaval/front.html

Using what you learned in Lesson 3: Building Applets and this lesson,
convert the example for this lesson into an applet. Give it a try before
looking at the solution.

— Applet Viewer: | - | |

Applet

I'm a Simple Pragram

Click Me ‘

Anplet started.

In short, the differences between the applet and application versions are
the following:

* The applet class is declared publ i ¢ so appl et vi ewer can access
it.

¢ The applet class descends from Appl et and the application class
descends from JFr ane.

¢ The applet version has no mai n method.

¢ The application constructor is replaced in the applet by st art and
i ni t methods.

* GUI components are added directly to the Appl et ; whereas, in the

case of an application, GUI components are added to the content
pane of its JFr anme object.

More Information

For more information on Project Swing, see the Swing Connection, and
Fundamentals of Swing, Part 1.

Also see The JFC Project Swing Tutorial: A Guide to Constructing GUIs.

To find out about some of the other available layout managers and how to
use them, see the JDC article Exploring the AWT Layout Managers.

[TOP

Printable Page &h

60f7 21-04-2000 17:31

Java(TM) Language Basics, Part 1, Lesson 4: Building A User Interface http://developer.java.sun.com/developer...ining/Programming/BasicJaval/front.html

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
FAQ | Feedback | Map | A-Z Index

For more information on Java technology

and other software from Sun Microsystems, call: qun
ko

(80(.)) 786-7638 . , Copyright © 1995-2000 Sun Microsystems, Inc.

Outside the U.S. and Canada, dial your country's All Rights Reserved. Terms of Use. Privacy Policy.

AT&T Direct Access Number first.

7of7 21-04-2000 17:31

Java(TM) Language Basics, Partl, Lesson 5: Writing Servlets http://developer.java.sun.com/developer...ing/Programming/BasicJaval/serviet.html

:r,;if;ﬁ‘ A-Z Index » | Gearch)
=
= Erar JavA DEVELOPER CONNECTION™
JAVA TRAINING
Products & APIs

Training Index

Developer Connection

Docs & Training

SR Java™ Programming Language Basics, Part 1
Community Discussion Lesson 5: ertlng Servlets
Industry News

Solutions Marketplace [<<BACK] [CONTENTS] [NEXT>>]

Case Studies

Printable Page & A servlet is an extension to a server that enhances the server's
functionality. The most common use for a servlet is to extend a web server
by providing dynamic web content. Web servers display documents written
in HyperText Markup Language (HTML) and respond to user requests
using the HyperText Transfer Protocol (HTTP). HTTP is the protocol for
moving hypertext files across the internet. HTML documents contain text

that has been marked up for interpretation by an HTML browser such as
Netscape.

Servlets are easy to write. All you need is the Java® 2 Platform software,
and JavaServer™ Web Development Kit (JWSDK). You can download a
free copy of the JWSDK.

This lesson shows you how to create a very simple form that invokes a
basic servlet to process end user data entered on the form.

e About the Example
* HTML Form

¢ Servlet Backend

e More Information

About the Example

A browser accepts end user input through an HTML form. The simple form
used in this lesson has one text input field for the end user to enter text
and a Submit button. When the end user clicks the Submit button, the
simple servlet is invoked to process the end user input.

In this example, the simple servlet returns an HTML page that displays the
text entered by the end user.

Browser with
Simple Form

HTTP Server j —

File or Database

el Stihio

HTML Form

lof5 21-04-2000 17:31

Java(TM) Language Basics, Partl, Lesson 5: Writing Servlets http://developer.java.sun.com/developer...ing/Programming/BasicJaval/serviet.html

The HTML form is embedded in this HTML file. The diagram shows how
the HTML page looks when it is opened in a browser.

The HTML file and form are similar to
Enter some text and click the Submit button. the Slmple. appllcatlon and applet
Clicking Submit invokes ExampSerylet.java examples in Lesson 4 so you can
which returns an HTML page to the browser. compare the code and learn how
servlets, applets, and applications
handle end user inputs.

I'm aSimple Form

Click Me| Reset . .

' When the user clicks the Cl i ck Me
button, the servlet gets the entered text,
and returns an HTML page with the text.

The HTML page returned to the browser by the ExampServlet.java servlet
is shown below. The servlet code to retrieve the user's input and generate
the HTML page follows with a discussion.

Button Clicked

Four score and seven years age

Return to Form

Note: To run the example, you have to put the servlet and HTML
files in the correct directories for the Web server you are using.
For example, with Java WebServer 1.1.1, you place the servlet in
the ~/ JavaWebServer 1. 1. 1/ ser vl et s and the HTM. file in
the ~/ JavaWebServer 1. 1. 1/ publ i c_ht m directory.

Servlet Backend

ExampServlet.java builds an HTML page to return to the end user. This
means the servlet code does not use any Project Swing or Abstract
Window Toolkit (AWT) components or have event handling code. For this
simple servlet, you only need to import these packages:

* java. i o for system input and output. The Ht t pSer vl et class uses
the | OExcept i on class in this package to signal that an input or
output exception of some kind has occurred.

e javax. servl et , which contains generic (protocol-independent)
servlet classes. The Ht t pSer vl et class uses the
Ser vl et Except i on class in this package to indicate a servlet

problem.

¢ javax. servl et. http, which contains HTTP servlet classes. The
Ht t pSer vl et class is in this package.

i nport java.io.*;
i nport javax.servlet.?*;

20f5 21-04-2000 17:31

Java(TM) Language Basics, Partl, Lesson 5: Writing Serviets http://developer.java.sun.com/developer...ing/Programming/BasicJaval/serviet.html

30f5

i nport javax.servlet.http.*;

public class ExanpServl et extends HttpServlet {
public void doPost (HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, | CException

response. set Content Type("text/htm");
PrintWiter out = response.getWiter();

out.println("<title>Exanple</title>" +
"<body bgcol or =FFFFFF>") ;

out.println("<h2>Button Cicked</h2>");
String DATA = request. get Paranet er (" DATA")

i f(DATA !'= nul I){

out. printl n(DATA);
} else {

out.printin("No text entered.");
}

out.println("<P>Return to
For nx/ A>") ;
out.cl ose();

}
}

Class and Method Declarations

All servlet classes extend the Ht t pSer vl et abstract class.

Ht t pSer vl et simplifies writing HTTP servlets by providing a framework
for handling the HTTP protocol. Because Ht t pSer vl et is abstract,
your servlet class must extend it and override at least one of its methods.
An abst ract class is a class that contains unimplemented methods and
cannot be instantiated itself.

public class ExanpServl et extends HttpServlet {
public void doPost (HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, | OException

{

The ExanmpSer vl et class is declared publ i ¢ so the web server that
runs the servlet, which is not local to the servlet, can access it.

The ExanpSer vl et class defines a doPost method with the same
name, return type, and parameter list as the doPost method in the

Ht t pSer vl et class. By doing this, the ExanpSer vl et class overrides
and implements the doPost method in the Ht t pSer vl et class.

The doPost method performs the HTTP POST operation, which is the
type of operation specified in the HTML form used for this example. The
other possibility is the HTTP GET operation, in which case you would
implement the doGet method instead.

21-04-2000 17:31

Java(TM) Language Basics, Partl, Lesson 5: Writing Serviets http://developer.java.sun.com/developer...ing/Programming/BasicJaval/serviet.html

In short, POST requests are for sending any amount of data directly over
the connection without changing the URL, and GET requests are for getting
limited amounts of information appended to the URL. POST requests
cannot be bookmarked or emailed and do not change the Uniform
Resource Locators (URL) of the response. GET requests can be
bookmarked and emailed and add information to the URL of the response.

The parameter list for the doPost method takes a r equest and a
r esponse object. The browser sends a request to the servlet and the
servlet sends a response back to the browser.

The doPost method implementation accesses information in the r equest
object to find out who made the request, what form the request data is in,
and which HTTP headers were sent, and uses the r esponse object to
create an HTML page in response to the browser's request. The doPost
method throws an | CExcept i on if there is an input or output problem
when it handles the request, and a Ser vl et Except i on if the request
could not be handled. These exceptions are handled in the Ht t pSer vI et
class.

Method Implementation

The first part of the doPost method uses the r esponse object to create
an HTML page. It first sets the response content type to be t ext/ ht i ,
then gets a Pri nt Wi t er object for formatted text output.

response. set Content Type("text/htm");
PrintWiter out = response.getWiter();

out.println("<title>Exanple</title>" +
"<body bgcol or =#FFFFFF>") ;

out.println("<h2>Button Cicked</ h2>");

The next line uses the r equest object to get the data from the text field
on the form and store it in the DATA variable. The get par anet er method
gets the named parameter, returns nul | if the parameter was not set,
and an empty string if the parameter was sent without a value.

String DATA = request. get Paranet er (" DATA")

The next part of the doPost method gets the data out of the DATA
parameter and passes it to the r esponse object to add to the HTML
response page.

i f(DATA !'= nul l){
out. printl n(DATA);
} else {
out.printin("No text entered.");

}

The last part of the doPost method creates a link to take the end user
from the HTML response page back to the original form, and closes the
response.

40of5 21-04-2000 17:31

Java(TM) Language Basics, Partl, Lesson 5: Writing Servlets http://developer.java.sun.com/developer...ing/Programming/BasicJaval/serviet.html

out.println("<P>Return to
For nx/ A>");

out.cl ose();

Note: To learn how to use the other methods available in the

Ht t pServl et, Ht t pSer vl et Request , and
Ht t pSer vl et Response classes, see The Java Tutorial trail on

Servlets.

More Information

You can find more information on servlets in the Servlets trail in The Java

Tutorial.

[TOP]

Printable Page &

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies
Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
FAQ | Feedback | Map | A-Z Index

For more information on Java technology

and other software from Sun Microsystems, call: @Sﬂ,n
Ty

(80(_)) 786-7638)) Copyright © 1995-2000 Sun Microsystems, Inc.

Outside the U.S. and Canada, dial your country's All Rights Reserved. Terms of Use. Privacy Policy.

AT&T Direct Access Number first.

50f5 21-04-2000 17:31

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJaval/data.html

«f’%ﬁ A-Z Index » | (Search)
ge))]
ﬂ;—ﬁ-—:: EraR JAVA DEVELOPER CONNECTION"
JAVA TRAINING
Products & APIs Training Index
Developer Connection
Docs & Training . -
Sl Javam™ Programming Language Basics, Part 1
Community Discussion Lesson 6: File Access and Permissions
Industry News
Solutions Marketplace [<<BACK] [CONTENTS] [NEXT>>]

Case Studies

Printable Page & So far, you have learned how to retrieve and handle a short text string
entered from the keyboard into a simple graphical user interface (GUI).
But programs also retrieve, handle, and store data in files and databases.

This lesson expands the examples from previous lessons to perform basic
file access using the application programming interfaces (APIs) in the

j ava. i o package. It also shows you how to grant applets permission to

access specific files, and how to restrict an application so it has access to
specific files only.

¢ File Access by Applications
e System Properties

* File.separatorChar

¢ Exception Handling

* File Access by Applets

¢ Granting Applets Permission
¢ Restricting Applications

* File Access by Servlets

* Appending
* More Informattion

File Access by Applications

The Java® 2 Platform software provides a rich range of classes for
reading character or byte data into a program, and writing character or
byte data out to an external file, storage device, or program. The source
or destination might be on the local computer system where the program is
running or anywhere on the network.

This section shows you how to read data from and write data to a file on
the local computer system. See The Java™ Tutorial trail on Reading and
Writing for information on transferring data between programs, between a
program and memory, and performing operations such as buffering or
character encoding on data as it is read or written.

* Reading: A program opens an input stream on the file and reads the
data in serially (in the order it was written to the file).

* Writing: A program opens an output stream on the file and writes the

1lof12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJaval/data.html

data out serially.

This first example converts the SwingUl.java example from Lesson 4 to
accept user input through a text field. The window on the left appears
when you start the FilelO application, and the window on the right appears
when you click the button. When you click the button, whatever is entered
into the text field is saved to a file. After that, another file is opened and
read and its text is displayed in the window on the right. Click again and
you are back to the original window with a blank text field ready for more

input.
1.) i I
— EBxample || || | —| Example |- |
Text to sawve to file: Text retrieved frem file:
Four score and seven years ago Fourscore and seven yeans ...
Click Me Click Again |

When Application Starts When Button Clicked

The conversion from the SwingUl.java program for Lesson 4 to the
FilelO.java program for this lesson primarily involves the const r uct or
and the act i onPer f or med method as described here.

Constructor and Instance Variable Changes

A JText fi el d instance variable is added to the class so the
construct or can instantiate the object and the act i onPer f or med
method can access the text the end user types into it.

The const ruct or instantiates the JText Fi el d with a value of 20. This
value tells the Java platform the number of columns to use to calculate the
preferred width of the field. Lower values result in a narrower display, and
likewise, higher values result in a wider display.

The t ext label is added to the Nor t h section of the Bor der Layout so
the JText Fi el d can be added to the Cent er section.

Note: You can learn more about component sizing in The Java
Tutorial sections on Solving Common Layout Problems and
Layout Management.

//1nstance variable for text field
JText Field textField;

Filel O){

text = new JLabel ("Text to save to file:");
clicked = new
JLabel ("Text retrieved fromfile:");

button = new JButton("Cick M");
butt on. addActi onLi st ener (this);

20f12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions

30f12

clickButton = new JButton("Click Again");
clickButton.addActionLi stener(this);

/1 Text field instantiation
textField = new JText Fi el d(20);

panel = new JPanel ();

panel . set Layout (new Bor der Layout ());
panel . set Backgr ound(Col or. white);
get Cont ent Pane() . add(panel) ;

/1 Adjustments to layout to add text field
panel . add("North", text);
panel . add(" Center”, textField);
panel . add(" Sout h", button);

}
Method Changes

The act i onPer f or med method uses the Fi | el nput St r eamand

Fi | eCut put St r eamclasses to read data from and write data to a file.
These classes handle data in byte streams, as opposed to character
streams, which are shown in the applet example. A more detailed
explanation of the changes to the method implementation follows the code.

public void actionPerformnmed(
ActionEvent event) {
Chj ect source = event. get Source();
i f(source == button){
//Variable to display text read fromfile
String s = null
i f(_clickMeMde){
try{
//Code to wite to file
String text = textField.getText();
byte b[] = text.getBytes();

String outputFileName =
System get Property("user. honme",
Fi | e. separat or Char + "hone" +
Fi | e. separat or Char + "nonicap") +
File.separatorChar + "text.txt";
File outputFile = new Fil e(outputFil eNane);
Fi | eQut put St ream out = new
Fi | eQut put Streanm(out putFile);
out.wite(b);
out.close();

//Code to read fromfile
String inputFileNane =
System get Property("user. home",
Fi | e. separator Char + "hone" +
Fi |l e. separat or Char + "nonicap") +
File.separatorChar + "text.txt";
File inputFile = new File(inputFil eNane);
FilelnputStreamin = new
Fil el nput Stream(inputFile);

byte bt[] = new
byte[(int)inputFile.length()];

21-04-2000 17:32

http://developer.java.sun.com/developer...aining/Programming/BasicJaval/data.html

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJaval/data.html

in.read(bt);
s = new String(bt);
in.close();
}catch(java.io. | Oexception e){
Systemout. println("Cannot access text.txt");

//Clear text field
textField. setText("");

/I Display text read fromfile
text.setText("Text retrieved fromfile:");
text Fi el d. set Text(s);
button. set Text("Click Again");
_clickMeMbde = fal se;

} else {

//Save text to file
text.setText (" Text to save to file:");
textField. setText("");
button. set Text("Click M");
_clickMeMbde = true;

}
}
}

To write the end user text to a file, the text is retrieved from the
t ext Fi el d and converted to a byte array.

String text = textField. getText();
byte b[] = text.getBytes();

Next, a Fi | e object is created for the file to be written to and used to
create a Fi | eQut put St r eamobject.

String outputFileNane =
System get Property("user. honme",
Fil e. separat or Char + "hone" +
Fi |l e. separ at or Char + "noni cap") +
Fil e.separatorChar + "text.txt";
File outputFile = new Fil e(out putFil eNane) ;
Fi | eQut put Stream out = new
Fi | eQut put Streanm(out putFile);

Finally, the Fi | eQut put St r eamobject writes the byte array to the Fi | e
object and closes the output stream when the operation completes.

out.wite(b);
out.cl ose();

The code to open a file for reading is similar. To read text from a file, a
Fi | e object is created and used to create a Fi | el nput St r eamobject.

String inputFileNane =
System get Property("user. home",
Fil e. separat or Char + "hone" +
Fil e. separat or Char + "noni cap") +
Fil e.separatorChar + "text.txt";
File inputFile = new File(inputFil eNane);
Fi |l el nput Stream out = new
Fil el nput Stream(inputFile);

40f12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJaval/data.html

50f12

Next, a byt e array is created the same size as the file into which the file
contents are read.

byte bt[] = new byte[(int)inputFile.length()];
in.read(bt);

Finally, the byte array is used to construct a St r i ng object, which is used
to create the text for the | abel component. The Fi | el nput St r eamis
closed when the operation completes.

String s = new String(bt);
| abel . set Text (s);
in.close();

System Properties

The above code used a call to Syst em get Pr operty to create the
pathname to the file in the user's home directory. The Syst emclass
maintains a set of properties that define attributes of the current working
environment. When the Java platform starts, system properties are
initialized with information about the runtime environment including the
current user, Java platform version, and the character used to separate
components of a file name (Fi | e. separ at or Char).

The call to Syst em get Pr operty uses the keyword user . hone to get

the user's home directory and supplies the default value
Fil e. separatorChar + "hone" + File.separatorChar +

"moni cap”) in case no value is found for this key.
File.separatorChar

The above code used the j ava. i 0. Fi | e. separ at or Char variable to
construct the directory pathname. This variable is initialized to contain the
file separator value stored in the fi | e. separ at or system property and
gives you a way to construct platform-independent pathnames.

For example, the pathname / horre/ noni cap/ t ext . t xt for Unix and
\ home\ noni cap\t ext .t xt for Windows are both represented as
Fil e. separatorChar + "hone" + File.separatorChar +
"nmoni cap” + File.separatorChar + "text.txt" ina
platform-independent construction.

Exception Handling

An exception is a class that descends from either

j ava. | ang. Excepti on orj ava. |l ang. Runti neExcepti on that
defines mild error conditions your program might encounter. Rather than
letting the program terminate, you can write code to handle exceptions and
continue program execution.

21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJaval/data.html

The file input and output code in the

acti onPer f or med method is enclosed inatry
| and cat ch block to handle the

java.lang. Throwable j ava. | ang. | CExcept i on that might be thrown

by code within the block.

java.ang.Object

Java.lang. Exception java. | ang. | OExcepti on is what is called a

! checked exception. The Java platform requires that
a method catch or specify all checked exceptions
that can be thrown within the scope of a method.

java.lang.RuntimeException

Checked exceptions descend from j ava. | ang. Thr owabl e. If a checked
exception is not either caught or specified, the compiler throws an error.

In the example, the t ry and cat ch block catches and handles the
java.i o. | Oexcepti on checked exception. If a method does not catch
a checked exception, the method must specify that it can throw the
exception because an exception that can be thrown by a method is really
part of the method's public interface. Callers of the method must know
about the exceptions that a method can throw so they can take
appropriate actions.

However, the act i onPer f or med method already has a public interface
definition that cannot be changed to specify the j ava. i 0. | OExcept i on,
S0 in this case, the only thing to do is catch and handle the checked
exception. Methods you define yourself can either specify exceptions or
catch and handle them, while methods you override must catch and handle
checked exceptions. Here is an example of a user-defined method that
specifies an exception so callers of this method can catch and handle it:

public int aConputationMethod(int nunmberl,
i nt nunber 2)
throws |11 egal Val ueExcepti on{
/ / Body of nethod

}

Note: You can find more information on this topic in The Java
Tutorial trail on Handling Errors with Exceptions.

When you catch exceptions in your code, you should handle them in a way
that is friendly to your end users. The exception and error classes have a
t oSt ri ng method to print system error text and a pri nt St ackTr ace
method to print a stack trace, which can be very useful for debugging your
application during development. But, it is probably better to deploy the
program with a more user-friendly approach to handling errors.

You can provide your own application-specific error text to print to the
command line, or display a dialog box with application-specific error text.
Using application-specific error text that you provide will also make it much
easier to internationalize the application later on because you will have
access to the text.

6 0of 12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJaval/data.html

For the example programs in this lesson, the error message for the file
input and output is handled with application-specific error text that prints at
the command line as follows:

[/ Do this during devel opnent
}catch(java.io. | Oexception e){
Systemout.println(e.toString());
Systemout. println(e.printStackTrace());

}

//But deploy it like this
}catch(java.io. | OException e){
Systemout. println("Cannot access text.txt");

}

If you want to make your code even more user friendly, you could
separate the write and read operations and provide two t ry and cat ch
blocks. The error text for the read operation could be Cannot read text.txt,
and the error text for the write operation could be Cannot write text.txt.

As an exercise, change the code to handle the read and write operations
separately. Give it a try before peeking at the solution.

File Access by Applets

The file access code for the FilelOAppl.java code is equivalent to the
FilelO.java application, but shows how to use the APIs for handling data in
character streams instead of byte streams. You can use either approach
in applets or applications. In this lesson, the choice to handle data in bytes
streams in the application and in character streams in the applet is purely
random. In real-life programs, you would base the decision on your
specific application requirements.

The changes to instance variables and the const r uct or are identical to
the application code, and the changes to the act i onPer f or med method
are nearly identical with these two exceptions:

< Writing: When the t ext Fi el d text is retrieved, it is passed directly
to the out . wri t e call.

* Reading: A character array is created to store the data read in from
the input stream.

public void actionPerfornmed(Acti onEvent event){
Ohj ect source = event. get Source();
i f(source == button){
//Variable to display text read fromfile
String s = null;
i f(_clickMeMdde){
try{
//Code to wite to file
String text = textField.getText();
String outputFileNanme =
Syst em get Property("user. hone",
Fi | e. separat or Char + "hone" +

70f12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJaval/data.html

Fi |l e. separat or Char + "nonicap") +
File.separatorChar + "text.txt";
File outputFile = new Fil e(outputFil eNane);
FileWiter out = new
FileWiter(outputFile);
out.wite(text);
out.cl ose();
/1 Code to read fromfile
String inputFil eNane =
System get Property("user. hone",
Fi |l e. separat or Char + "hone" +
Fi | e. separat or Char + "nonicap") +
Fil e.separatorChar + "text.txt";
File inputFile = new Fil e(inputFileNane);
Fil eReader in = new Fil eReader (i nputFile);
char c[] = new
char[(char)inputFile.length()];
in.read(c);
s = new String(c);
in.close();
}catch(java.io. | Oexception e){
Systemout. println("Cannot access text.txt");

//Clear text field
textField. setText("");

[/ Display text read fromfile
text.setText("Text retrieved fromfile:");
text Fi el d. set Text(s);
button. set Text("Click Again");
_clickMeMbde = fal se;

} else {

/] Save text to file
text.setText (" Text to save to file:");
textField. setText("");
button.set Text("Cick M");
_clickMeMbde = true;

}
}
}

Granting Applets Permission

If you tried to run the applet example, you undoubtedly saw errors when
you clicked the C i ck Me button. This is because the Java 2 Platform
security does not permit an applet to write to and read from files without
explicit permission.

An applet has no access to local system resources unless it is specifically
granted the access. So for the Fi | eUl Appl program to read from

t ext .t xt and write to t ext . t xt, the applet has to be given the
appropriate read or write access permission for each file.

Access permission is granted with a policy file, and appletviewer is
launched with the policy file to be used for the applet being viewed.

Creating a Policy File

Policy tool is a Java 2 Platform security tool for creating policy files. The

8of12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJaval/data.html

Java Tutorial trail on Controlling Applets explains how to use Policy Tool in
good detail. Here is the policy file you need to run the applet. You can use
Policy tool to create it or copy the text below into an ASCII file.

grant {
perm ssion java.util.PropertyPerm ssion
"user. honme", "read";
perm ssion java.io. FilePermn ssion
"${user. home}/text.txt", "read,wite";
3

Running an Applet with a Policy File

Assuming the policy file is named pol fi | e and is in the same directory
with an HTML file named fi | el O. ht M that contains the HTML to run the
Fi I el QAppl applet, you would run the application in appletviewer like
this:

appl etvi ewer -J-Djava.security.policy=polfile filelO htm

Note: If your browser is enabled for the Java 2 Platform or if you
have Java Plug-in installed, you can run the applet from the
browser if you put the policy file in your local home directory.

Hereisthe fil el O ht i file for running the Fi | el OAppl applet:

<HTM_>
<BODY>

<APPLET CODE=Fi | el OAppl . cl ass W DTH=200 HElI GHT=100>
</ APPLET>

</ BODY>
</ HTML>

Restricting Applications

You can use the default security manager and a policy file to restrict the
application's access as follows.

java -Djava. security. manager
-Dj ava. security. policy=apppolfile FilelO

Because the application runs within the security manager, which disallows
all access, the policy file needs two additional permissions. One so the
security manager can access the event queue and load the user interface
components, and another so the application does not display the banner
warning that its window was created by another program (the security
manager).

grant {
perm ssion java. awmt . AWIPer ni ssi on
"accessEvent Queue";
perm ssion java. awmt . AWIPer ni ssi on

9o0of12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions

10 of 12

"showW ndowW t hout War ni ngBanner " ;

perm ssion java.util.PropertyPerm ssion

"user. honme", "read";
perm ssion java.io. FilePermn ssion
"${user. home}/text.txt", "read,wite";

b
File Access by Servlets

Although servlets are invoked from a browser, they are under the security
policy in force for the web server under which they run. When file input and
output code is added to ExanpSer vl et . j ava from Lesson 5,
FilelOServlet for this lesson executes without restriction under Java
WebServer™ 1.1.1.

I'm a Simple Form

Enter some text and click the Submit button,
Clicking Submit invokes FilelOServiet java
which returns an HTML page to the browser,

Four score and seven years agd

Click Me| | Reset

Button Clicked
Text from form: Four score and seven years ago
Text from file: Here is some text

Return to Form

i mport java.io.*;
i nport javax.servlet.*;
i mport javax.servlet.http.*;

public class Filel OServl et extends HttpServlet {

public void doPost (HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, | CException

response. set Content Type("text/htm ");

PrintWiter out = response.getWiter();

out.println("<title>Exanple<title>" +
"<body bgcol or =FFFFFF>") ;

out.println("<h2>Button Cicked</h2>");
String DATA = request. get Paranet er (" DATA") ;

i f(DATA !'= nul I'){
out.println("<STRONGText from
form </ STRONG") ;
out. printl n(DATA);
} else {
out.println("No text entered.");

21-04-2000 17:32

http://developer.java.sun.com/developer...aining/Programming/BasicJaval/data.html

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions

11 of 12

}

try{

http://developer.java.sun.com/developer...aining/Programming/BasicJaval/data.html

//Code to wite to file
String outputFil eName=
System get Property("user. hone",
Fil e. separatorChar + "home" +
Fi | e. separat or Char + "nonicap") +
File.separatorChar + "text.txt";
File outputFile = new Fil e(outputFil eNane);

FileWiter fout

= new FileWiter(outputFile);

fout.wite(DATA);

fout.close();

/1 Code to read fromfile
String inputFileNane =
Syst em get Property("user. hone",
Fi |l e. separat or Char + "hone" +
Fil e. separat or Char + "noni cap") +
Fil e.separatorChar + "text.txt";

File inputFile
Fi | eReader fin

= new Fil e(i nput Fil eNane) ;
= new

Fi | eReader (i nputFil e);

char

cl]

char[(char)inputFile.length()];

int i;
i = fin.read(c);
String s

new String(c);

out.println("<P>
Text from fil e: </ STRONG") ;

out.println(s);
fin.close();

}catch(java.io. | Oexception e){
Systemout. println("Cannot access text.txt");

}

out.println("<P>Return to
For nx/ A>") ;

out.cl ose();

}
Appending

So far the examples have shown you how to read in and write out streams
of data in their entirety. But often, you want to append data to an existing
file or read in only certain amounts. Using the RandomAccessFile class,
alter the FilelO.java class to append to the file.

Give it a try before taking a peek at the Solution.

More Information

For more infomation on file input and output, see the Reading and Writing

trail in The Java Tutorial.

You can learn more about component sizing in The Java Tutorial sections
on Solving Common Layout Problems and Layout Management.

21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 6: File Access and Permissions http://developer.java.sun.com/developer...aining/Programming/BasicJaval/data.html

[TOP]

Printable Page &

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies
Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
FAQ | Feedback | Map | A-Z Index

For more information on Java technology

and other software from Sun Microsystems, call: o'Sﬂn
Ty

(80(_)) 786-7638 . , Copyright © 1995-2000 Sun Microsystems, Inc.

Outside the U.S. and Canada, dial your country's All Rights Reserved. Terms of Use. Privacy Policy.

AT&T Direct Access Number first.

12 of 12 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissiorgtp://developer.java.sun.com/developer...raining/Programming/BasicJaval/dba.html

lofll

&
%

‘SE{;‘!-
JAVA
Products & APIs
Developer Connection
Docs & Training
Online Support
Community Discussion
Industry News
Solutions Marketplace

Case Studies

Printable Page &

A-Z Index » | (Search)

EPER JAVA DEVELOPER CONNECTION"
TRAINING

Training Index

Java™ Programming Language Basics, Part 1
Lesson 7: Database Access and Permissions

[<<BACK] [CONTENTS] [NEXT>>]

This lesson converts the application, applet, and servlet examples from
Lesson 6 to write to and read from a database using JDBC™. JDBC is the
Java™ database connectivity application programming interface (API)
available in the Java® 2 Platform software.

The code for this lesson is very similar to the code you saw in Lesson 6,
but additional steps (beyond converting the file access code to database
access code) include setting up the environment, creating a database
table, and connecting to the database. Creating a database table is a
database administration task that is not part of your program code.
However, establishing a database connection and the resulting database
access are.

As in Lesson 6, the applet needs appropriate permissions to connect to
the database. Which permissions it needs varies with the type of driver
used to make the database connection.

¢ Database Setup
¢ Create Database Table
¢ Database Access by Applications
> Establishing a Connection
> Final and Private Variables
o Writing and Reading Data
« Database Access by Applets
o JDBC Driver
> JDBC-ODBC Bridge with ODBC Driver
« Database Access by Servlets
* More Information

Database Setup

You need access to a database if you want to run the examples in this
lesson. You can install a database on your machine or perhaps you have
access to a database at work. Either way, you need a database driver
and any relevant environment settings so your program can load the driver
and locate the database. The program will also need database login
information in the form of a user name and password.

A database driver is software that lets a program establish a connection

21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissiorgtp://developer.java.sun.com/developer...raining/Programming/BasicJaval/dba.html

with a database. If you do not have the right driver for the database to
which you want to connect, your program will be unable to establish the
connection.

Drivers either come with the database or are available from the Web. If
you install your own database, consult the documentation for the driver for
information on installation and any other environment settings you need for
your platform. If you are using a database at work, consult your database
administrator for this information.

To show you two ways to do it, the application example uses the j dbc
driver, the applet examples use the j dbc and j dbc. odbc drivers, and the
servlet example uses the j dbc. odbc driver. All examples connect to an
O acl eQCl 7. 3. 4 database.

Connections to other databases will involve similar steps and code. Be
sure to consult your documentation or system administrator if you need
help connecting to the database.

Create Database Table

Once you have access to a database, create a table in it for the examples
in this lesson. You need a table with one text field for storing character
data.

TABLE DBA (
TEXT var char 2(100),
primary key (TEXT)

)

Database Access by Applications

This example converts the FilelO program from Lesson 6 to write data to
and read data from a database. The top window below appears when you
start the Dba application, and the window beneath it appears when you
click the C i ck Me button.

When you click the C i ck Me button, whatever is entered into the text
field is saved to the database. After that, the data is retrieved from the
database and displayed in the window shown on the bottom. If you write
data to the table more than once, everything written is read and displayed
in the window shown on the bottom, so you might have to enlarge the
window to see the entire list of table items.

~i Example |- |J|

[Text to save to database;

Jrange

R Click Me

When Application Starts

20f11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissiorgtp://developer.java.sun.com/developer...raining/Programming/BasicJaval/dba.html

=" Example | -]
Text retrieved fram database:
Qrange

Wpple

7 Click Again

After Writing Orange and Apple to Database

The database access application needs code to establish the database
connection and do the database read and write operations.

Establishing a Database Connection

The JDBC Dr i ver Manager class can handle multiple database drivers,
and initiates all database communication. To load the driver and connect to
the database, the application needs a Connecti on objectand Stri ngs
that represent the _dri ver and _url.

The _ur | string is in the form of a Uniform Resource Locator (URL). It
consists of the URL, Oracle subprotcol, and Oracle data source in the
form j dbc: or acl e: t hi n, the database login user nane, the
passwor d, plus machine, port, and protocol information.

private Connection c;

final static private String _driver =
"oracle.jdbc.driver.Oracl eDriver";

final static private String _url =
"jdbc: oracl e: thin:username/ password@ descri pti on=(
address_| i st=(address=(protocol =t cp)
(host =devel oper) (port=1521)))
(source_route=yes) (connect _data=(sid=jdcsid)))";

The act i onPer f or med method calls the Cl ass. f or Nane(_dri ver)
method to load the driver, and the Dri ver Manager . get Connecti on
method to establish the connection. The Exception Handling section in
Lesson 6 describes t ry and cat ch blocks. The only thing different here is
that this block uses two cat ch statements because two different errors
are possible.

The call to Cl ass. for Nane(_driver); throws

j ava. |l ang. A assNot FoundExcepti on, and the callto ¢ =

Dri ver Manager . get Connection(_url); throws

j ava. sql . SQLExcept i on. In the case of either error, the application
tells the user what is wrong and exits because the program cannot operate
in any meaningful way without a database driver or connection.

public void actionPerformed(Acti onEvent event) ({

try{
//Load the driver

Cl ass. forName(_driver);

3o0f11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissiorgtp://developer.java.sun.com/developer...raining/Programming/BasicJaval/dba.html

[/ Establ i sh dat abase connection
c = DriverManager. get Connection(_url);

}catch (java.l ang. Cl assNot FoundExcepti on e){
System out. println("Cannot find driver class");
Systemexit(1l);

}catch (java.sqgl.SQLException e){

System out. printl n("Cannot get connection");
Systemexit(1);
}

Final and Private Variables

The member variables used to establish the database connection above
are declared pri vat e, and two of those variables are also declared
final.

final: A fi nal variable contains a constant value that can never change
once it is initialized. In the example, the user name, and password are

fi nal variables because you would not want to allow an instance of this
or any other class to change this information.

private: A pri vat e variable can only be used (accessed) by the class in
which it is declared. No other class can read or change pri vat e
variables. In the example, the database driver, user name, and password
variables are pri vat e to prevent an outside class from accessing them
and jeopardizing the database connection, or compromising the secret
user name and password information. You can find more information on
this in the Objects and Classs lesson in The Java Tutorial

Writing and Reading Data

In the write operation, a St at enent object is created from the

Connecti on. The St at ement object has methods for executing SQL
queries and updates. Next, a St ri ng object that contains the SQL update
for the write operation is constructed and passed to the execut eUpdat e
method of the St at enent object.

Cbj ect source = event. get Source();
i f(source == button){
JText Area di spl ayText = new JText Area();

try{
// Code to wite to dat abase

String theText = textField.getText();

Statenment stnt = c.createStatenent();

String updateString = "I NSERT | NTO dba VALUES
(""" + theText + "")";

int count = stnt.executeUpdate(updateString);

SQL commands are St ri ng objects, and therefore, follow the rules of
St ri ng construction where the string is enclosed in double quotes (" ")
and variable data is appended with a plus (+). The variable t heText is a
text variable. Single quotes are prepended and appended to comply with
SQL syntax.

40f11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissiorgtp://developer.java.sun.com/developer...raining/Programming/BasicJaval/dba.html

50f11

In the read operation, a Resul t Set object is created from the

execut eQuer y method of the St at enent object. The Resul t Set
contains the data returned by the query. To retrieve the data returned, the
code iterates through the Resul t Set , retrieves the data, and appends
the data to the text area, di spl ayText .

// Code to read from dat abase
Result Set results = stnt.executeQuery(
"SELECT TEXT FROM dba ");
whil e(results. next()){
String s = results.getString("TEXT");
di spl ayText. append(s + "\ n");

stnt.close();
} catch(java.sqgl.SQLException e){
Systemout.println(e.toString());
}

/1 Display text read from database
panel . renmoveAl | ();
panel . add("North", clicked);
panel . add(" Center", displayText);
panel . add(" Sout h", clickButton);
panel . val i date();
panel . repaint();

}
Database Access by Applets

The applet version of the example is like the application code described
above except for the standard differences between applications and
applets described in the Structure and Elements section of Lesson 3.

However, if you run the applet without a policy file, you get a stack trace
indicating permission errors. The Granting Applets Permission section in
Lesson 6 introduced you to policy files and how to launch an applet with
the permission it needs. The Lesson 6 applet example provided the policy
file and told you how to launch the applet with it. This lesson shows you
how to read the stack trace to determine the permissions you need in a
policy file.

To keep things interesting, this lesson has two versions of the database
access applet: one uses the JDBC driver, and the other uses the the
JDBC-ODBC bridge with an Open DataBase Connectivity (ODBC) driver.

Both applets do the same operations to the same database table using
different drivers. Each applet has its own policy file with different
permission lists and has different requirements for locating the database
driver

JDBC Driver

The JDBC driver is used from a program written exclusively in the Java
language (Java program). It converts JDBC calls directly into the protocol
used by the DBMS. This type of driver is available from the DBMS vendor
and is usually packaged with the DBMS software.

21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissiortp://developer.java.sun.com/developer...raining/Programming/BasicJaval/dba.html

60of 11

Starting the Applet: To successfully run, the DbaAppl.java applet needs
an available database driver and a policy file. This section walks through
the steps to get everything set up. Here is the DbaAppl . ht m file for
running the DbaAppl applet:

<HTM_>
<BODY>

<APPLET CODE=DbaAppl . cl ass
W DTH=200
HElI GHT=100>

</ APPLET>

</ BODY>
</ HTML>

And here is how to start the applet with appletviewer:
appl et vi ewer DbaAppl . htn

Locating the Database Driver: Assuming the driver is not available to the
Dri ver Manager for some reason, the following error generates when
you click the Cl i ck Me button.

cannot find driver

This error means the DriverManager looked for the JDBC driver in the
directory where the applet HTML and class files are and could not find it.
To correct this error, copy the driver to the directory where the applet files
are, and if the driver is bundled in a zip file, unzip the zip file so the applet
can access the driver.

Once you have the driver in place, launch the applet again.
appl et vi ewer DbaAppl . ht m

Reading a Stack Trace: Assuming the driver is locally available to the
applet, if the DbaAppl.java applet is launched without a policy file, the
following stack trace is generated when the end user clicks the Cl i ck Me
button.

java.security. AccessControl Exception: access denied
(j ava. net. Socket Pernm ssi on devel oper resol ve)

The first line in the above stack trace tells you access is denied. This
means this stack trace was generated because the applet tried to access
a system resource without the proper permission. The second line means
to correct this condition you need a Socket Per m ssi on that gives the
applet access to the machine (devel oper) where the database is
located.

You can use Policy tool to create the policy file you need, or you can

create it with an ASCII editor. Here is the policy file with the permission
indicated by the stack trace:

21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissiorgtp://developer.java.sun.com/developer...raining/Programming/BasicJaval/dba.html

grant {
permn ssion java. net. Socket Perm ssi on "devel oper™,
"resol ve";
"accessC assl nPackage. sun. j dbc. odbc";

b

Run the applet again, this time with a policy file named DbaAppl Pol that
has the above permission in it:

appl etvi ewer -J-Djava. security. policy=DbaAppl Pol
DbaAppl . ht m

You get a stack trace again, but this time it is a different error condition.

java. security. AccessControl Exception: access denied
(java. net. Socket Per mi ssi on
129. 144.176. 176: 1521 connect, resol ve)

Now you need a Socket Per m ssi on that allows access to the Internet
Protocol (IP) address and port on the devel oper machine where the
database is located.

Here is the DbaAppl Pol policy file with the permission indicated by the
stack trace added to it:

grant {
perm ssion java. net. Socket Perni ssi on "devel oper”,
"resol ve";
perm ssion java. net. Socket Perm ssi on
"129.144.176.176: 1521", "connect, resol ve";

e

Run the applet again. If you use the above policy file with the Socket
permissions indicated, it works just fine.

appl etvi ewer -J-Djava. security. policy=DbaAppl Pol
DbaAppl . ht m

JDBC-ODBC Bridge with ODBC Driver

Open DataBase Connectivity (ODBC) is Microsoft's programming interface
for accessing a large number of relational databases on numerous
platforms. The JDBC-ODBC bridge is built into the Solaris and Windows
versions of the Java platform so you can do two things:

1. Use ODBC from a Java program
2. Load ODBC drivers as JDBC drivers. This example uses the
JDBC-ODBC bridge to load an ODBC driver to connect to the
database. The applet has no ODBC code, however.
The Dr i ver Manager uses environment settings to locate and load the

database driver. For this example, the driver file does not need to be
locally accessible.

70of11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissiorgtp://developer.java.sun.com/developer...raining/Programming/BasicJaval/dba.html

Start the Applet: Here is the DbaQdb. ht mi file for running the
DbaCGdbAppl applet:

<HTM_>
<BODY>

<APPLET CODE=DbaCQdbAppl . cl ass
W DTH=200
HElI GHT=100>

</ APPLET>

</ BODY>
</ HTM.>

And here is how to start the applet:
appl et vi ewer DbaOdb. ht m

Reading a Stack Trace: If the DbaOdbAppl.java applet is launched
without a policy file, the following stack trace is generated when the end
user clicks the Cl i ck Me button.

java. security. AccessControl Exception: access denied
(java.l ang. Runti nePer m ssi on
accessC assl nPackage. sun. j dbc. odbc)

The first line in the above stack trace tells you access is denied. This
means this stack trace was generated because the applet tried to access
a system resource without the proper permission. The second line means
you need a Runt i mePer m ssi on that gives the applet access to the
sun. j dbc. odbc package. This package provides the JDBC-ODBC

bridge functionality to the Javal virtual machine (VM).

You can use Policy tool to create the policy file you need, or you can
create it with an ASCII editor. Here is the policy file with the permission
indicated by the stack trace:

grant {

perm ssion java.l ang. Runti mePer ni ssi on
"accessC assl nPackage. sun. j dbc. odbc";
3

Run the applet again, this time with a policy file named DbaCQdbPol that
has the above permission in it:

appl etvi ewer -J-Djava. security. policy=DbaCdbPol
DbaCdb. ht m

You get a stack trace again, but this time it is a different error condition.

java. security. AccessControl Excepti on:
access denied (java.l ang. Runti nmePer ni ssi on
file.encoding read)

The stack trace means the applet needs read permission to the encoded

8of11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissiorgtp://developer.java.sun.com/developer...raining/Programming/BasicJaval/dba.html

9of11

(binary) file. Here is the DbaGdbPol policy file with the permission
indicated by the stack trace added to it:

grant {
perm ssion java.l ang. Runti mePern ssi on
"accessC assl nPackage. sun. j dbc. odbc";
perm ssion java.util.PropertyPerm ssion
"file.encoding", "read";
}

Run the applet again. If you use the above policy file with the Runtime and
Property permissions indicated, it works just fine.

appl etvi ewer -J-Djava. security. policy=DbaCdbPo
DbaCdb. ht m

Database Access by Servlets

As you learned in Lesson 6, servlets are under the security policy in force
for the web server under which they run. When the database read and
write code is added to the Fi | el CSer vl et from Lesson 6, the
DbaServlet.java servlet for this lesson executes without restriction under
Java WebServer™ 1.1.1.

The web server has to be configured to locate the database. Consult your
web server documentation or database administrator for help. With Java
WebServer 1.1.1, the configuration setup involves editing the startup
scripts with such things as environment settings for loading the ODBC
driver, and locating and connecting to the database.

—| Example ||]
Text to save to database:

Orange
E Click mMe

— Example | =5
Text retrieved from database:
orange

Wpple

i Click Again

i nport java.io.*;
i nport javax.servlet.*;
i nmport javax.servlet.http.*;

i mport java.sql.?*;
i mport java. net.*;
i mport java.io.*;
public class DbaServlet extends HttpServlet {

private Connection c;

21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissiorgtp://developer.java.sun.com/developer...raining/Programming/BasicJaval/dba.html

final static private String _driver =
"sun. j dbc. odbc. JdbcCOdbcDri ver™;

final static private String _user = "usernane";
final static private String _pass = "password”;
final static private String

_url = "jdbc: odbc:jdc";

public void doPost(HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, | OException{
response. set Cont ent Type("text/htm");
PrintWiter out = response.getWiter();
out.println("<title>Exanple<title>" +
"<body bgcol or =FFFFFF>") ;

out.println("<h2>Button Clicked</h2>");
String DATA = request. get Paranet er (" DATA") ;
i f (DATA !'= null){

out.println("<STRONGText from

form </ STRONG") ;
out . printl n(DATA);

} else {
out.println("No text entered.");
}
/] Est abl i sh dat abase connecti on
try{

Cl ass.forNanme (_driver);
¢ = DriverManager. get Connection(_url,
_user,
_pass);
} catch (Exception e) {
e.printStackTrace();
Systemexit(1);
}

try{
//Code to wite to database

Statenent stnmt = c.createStatenent();

String updateString = "I NSERT | NTO dba " +
"VALUES ('" + DATA + "')";

int count = stm.executeUpdate(updateString);

// Code to read from dat abase
Resul t Set results = stnt.executeQuery(
"SELECT TEXT FROM dba ");

whil e(results. next()){
String s = results.getString("TEXT");
out.println("

Text from dat abase: </ STRONG") ;

out.println(s);

stnt.close();
}catch(java. sql . SQLException e){
Systemout.println(e.toString());

}

out.println("<P>Return to
For m</ A>") ;

100f 11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 7: Database Access and Permissiorgtp://developer.java.sun.com/developer...raining/Programming/BasicJaval/dba.html

out.close();

}
}

More Information

You can find more information on variable access settings in the Objects
and Classes trail in The Java Tutorial

1 As used on this web site, the terms "Java virtual machine" or "JVM"
mean a virtual machine for the Java platform.

[TOP]

Printable Page &

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies
Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
FAQ | Feedback | Map | A-Z Index

For more information on Java technology

and other software from Sun Microsystems, call: osun
e

(80(,)) 786-7638) , Copyright © 1995-2000 Sun Microsystems, Inc.

Outside the U.S. and Canada, dial your country's All Rights Reserved. Terms of Use. Privacy Policy.

AT&T Direct Access Number first.

11of11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation

lofll

am

G

=

JAVA
Products & APIs
Developer Connection
Docs & Training
Online Support
Community Discussion
Industry News
Solutions Marketplace
Case Studies

Printable Page &

ErEP

TRAINING

http://developer.java.sun.com/developer...raining/Programming/BasicJaval/rmi.html

A-Z Index » | (Search)

JAVA DEVELOPER CONNECTION"

Training Index

Java™ Programming Language Basics, Part 1

Lesson 8: Remote Method Invocation

[<<BACK] [CONTENTS] [NEXT>>]

The Java™ Remote Method Invocation (RMI) application programming
interface (API) enables client and server communications over the net.
Typically, client programs send requests to a server program, and the
server program responds to those requests.

A common example is sharing a word processing program over a network.
The word processor is installed on a server, and anyone who wants to use
it starts it from his or her machine by double clicking an icon on the
desktop or typing at the command line. The invocation sends a request to
a server program for acess to the software, and the server program
responds by making the software available to the requestor.

; Remote !
P?c!lergtm il P?c!lergtm
g Object g
-« > >

The RMI API lets you create a publicly
accessible remote server object that enables
client and server communications through
simple method calls on the server object.
Clients can easily communicate directly with
the server object and indirectly with each

other through the server object using Uniform Resource Locators (URLS)
and HyperText Transfer Protocol (HTTP).

This lesson explains how to use the RMI API to establish client and server
communications.

About the Example

(e}

(e}

Program Behavior

File Summary
Compile the Example

Start the RMI Reqistry

Run the RemoteServer Server Object

Run the RMIClientl Program

Run the RMIClient2 Program

* RemoteServer Class

* Send Interface

* RMIClientl Class

* RMIClient2 Class

* More Information

About the Example

21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJaval/rmi.html

This lesson converts the File Input and Output application from Lesson 6:
File Access and Permissions to the RMI API.

Program Behavior

The RMIClientl program presents a simple user interface and prompts for
text input. When you click the C i ck Me button, the text is sent to the
RMIClient2 program by way of the remote server object. When you click
the C i ck Me button on the RM Cl i ent 2 program, the text sent from
RM d i ent 1 appears.

—| Clientone | - | || [~ cClientTwo | - | _||
Text ta send: Text received:

Apples and pples and

E Click mMe i B Click mMe

First Instance of Client 1

If you start a second instance of RM Cl i ent 1 and type in some text, that
text is sentto RM C i ent 2 when you click the C i ck Me button. To see
the text received by RM i ent 2, click its Cl i ck Me button.

—| ClientOne | -| ||

Text to send:

aranges

—i Client Two | - |J|

Text received:

Apples and oranges

E Click mMe

Click mMe

Second Instance of Client 1
File Summary

The example program consists of the RMIClientl program, remote object
and interface, and the RMIClient2 program as illustrated in the diagram.
The corresponding source code files for these executables are described
in the bullet list below.

Server Object

R;::]Gienﬂ Send RemoteSend
gram || =7 | interface Object RMIClient2
2 1
_ J sendData() | sendData() FROGET
RMIClient] getData{) | getData()
Program | |

¢ RMiIClientl.java: Client program that calls the sendDat a method on
the Renot eSer ver server object.

< RMiIClient2.java: Client program that calls the get Dat a method on

20f11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJaval/rmi.html

3of11

the Renot eSer ver server object.

* RemoteServer.java: Remote server object that implements
Send. j ava and the sendDat a and get Dat a remote methods.

¢ Send.java: Remote interface that declares the sendDat a and
get Dat a remote server methods.

In addition, the following java.policy security policy file grants the
permissions needed to run the example.

grant {
perm ssion java. net. Socket Perm ssi on
"*:1024-65535",
"connect, accept, resol ve";
perm ssion java. net. Socket Perm ssi on
"*: 80", "connect";
perm ssion java. awmt . AWPer ni ssi on
"accessEvent Queue";
perm ssion java. awmt . AWIPer ni ssi on
"showW ndowW t hout War ni ngBanner " ;
3

Compile the Example

These instructions assume development is in the zel da home directory.
The server program is compiled in the home directory for user zel da, but
copied to the publ i c_ht ml directory for user zel da where it runs.

Here is the command sequence for the Unix and Win32 platforms; an
explanation follows.

Uni x:

cd / hone/ zel da/ cl asses

javac Send.java

javac RenoteServer.java

javac RM Client2.java

javac RM Clientl.java

rmc -d . RenoteServer

cp RenoteServer*.class /honme/zeldal/public_htm/classes
cp Send.class /home/zel da/public_htm/classes

W n32:

cd \hone\ zel da\ cl asses

javac Send.java

j avac RenoteServer.java

javac RM dient2.java

javac RMClientl.]java

rmc -d . RenoteServer

copy RenoteServer*.class \hone\zel da\public_htm\classes
copy Send. cl ass \hone\zel da\ public_htm\cl asses

The first two j avac commands compile the Renpt eSer ver and Send
class and interface. The third j avac command compiles the RM C i ent 2
class. The last j avac command compiles the RM Cl i ent 1 class.

The next line runs the r m ¢ command on the Renot eSer ver server

21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJaval/rmi.html

class. This command produces output class files of the form
Cl assNane_St ub. cl ass and C assNane_Skel . cl ass. These output
classes let clients invoke methods on the Renot eSer ver server object.

The first copy command moves the Renpt eSer ver class file with its
associated skel and st ub class files to a publicly accessible location in
the / honme/ zel da/ publ i c_ht m / cl asses directory, which is on the
server machine, so they can be publicly accessed and downloaded. They
are placed in the publ i ¢_ht nl directory to be under the web server
running on the server machine because these files are accessed by client
programs using URLS.

The second copy command moves the Send class file to the same location
for the same reason. The RM C i ent 1 and RM Cl i ent 2 class files are
not made publicly accessible; they communicate from their client machines
using URLs to access and download the remote object files in the
public_htm directory.

* RM i ent 1l isinvoked from a client-side directory and uses the
server-side web server and client-side Java VM to download the
publicly accessible files.

* RM C i ent 2 is invoked from a client-side directory and uses the
server-side web server and client-side Java VM to download the
publicly accessible files.

Client Host

RMIClient1
Server Host
. . \i Remote
Client- Side Java VM Server
Object
Client Host
Server- Side Web Server
/ and Java VM
RMIClient2

Client- Side Java VM

Start the RMI Registry

Before you start the client programs, you must start the RMI Registry,
which is a server-side naming repository that allows remote clients to get a
reference to the remote server object.

Before you start the RMI Registry, make sure the shell or window in which
you run the r m r egi st ry command does not have a CLASSPATH
environment variable that points to the remote object classes, including the
st ub and skel classes, anywhere on your system. If the RMI Registry
finds these classes when it starts, it will not load them from the server-side

40f11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJaval/rmi.html

Java VM, which will create problems when clients try to download the
remote server classes.

The following commands unset the CLASSPATH and start the RMI Registry
on the default 1099 port. You can specify a different port by adding the
port number as follows: rm regi stry 4444 &. If you specify a different
port number, you must specify the same port number in your server-side
code as well.

Uni x:

cd /hone/ zel da/ public_htm /cl asses
unset env CLASSPATH

rmregistry &

W n32:

cd \hone\ zel da\ public_htm\classes
set CLASSPATH=

start rmiregistry

Note: You might want to set the CLASSPATH back to its original
setting at this point.

Run the RemoteServer Server Object

To run the example programs, start Renot eSer ver first. If you start
either RM Cl i ent 1 or RM O i ent 2 first, they will not be able to establish
a connection because the remote server object is not running.

In this example, Renot eSer ver is started from the
/ honme/ zel da/ publ i c_htm / cl asses directory.

The lines beginning at j ava should be all on one line with spaces where

the lines break. The properties specified with the - D option to the j ava

interpreter command are program attributes that manage the behavior of
the program for this invocation.

Uni x:

cd /honme/ zel da/ public_htm/classes

j ava

-Djava.rm . server.codebase=http://kg6py/ ~zel da/ cl asses
-D ava.rm . server. host name=kqg6py. eng. sun. com

-Dj ava. security. policy=java. policy RenoteServer

W n32:
cd \hone\ zel da\ public_htm\cl asses
java -Djava.rmn.server.codebase=fil e:
c:\ honme\ zel da\ public_htm \cl asses
-Djava.rm . server. host name=kg6py. eng. sun. com
-Dj ava. security. policy=java. policy RenoteServer

* Thejava.rm . server. codebase property specifies where the
publicly accessible classes are located.

e Thejava.rm . server. host nane property is the complete host

50f11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJaval/rmi.html

60of 11

name of the server where the publicly accessible classes reside.

e Thejava.rm.security. policy property specifies the policy file
with the permissions needed to run the remote server object and
access the remote server classes for download.

* The class to execute (Renot eSer ver).
Run the RMIClientl Program

Here is the command sequence for the Unix and Win32 platforms; an
explanation follows.

In this example, RM d i ent 1 is started from the
/ hone/ zel da/ cl asses directory.

The lines beginning at j ava should be all on one line with spaces where
the lines break. Properties specified with the - D option to the j ava
interpreter command are program attributes that manage the behavior of
the program for this invocation.

Uni x:
cd / hone/ zel da/ cl asses

java -Djava.rni.server.codebase=
http://kg6py/ ~zel da/ cl asses/
-Dj ava. security. policy=java. policy
RM Clientl kg6py. eng.sun.com

W n32:
cd \home\ zel da\ cl asses

java -Djava. rni.server.codebase=
file:c:\honme\zel da\cl asses\

-Dj ava. security. policy=java. policy
RM Clientl kg6py. eng. sun.com

< Thejava.rm . server. codebase property specifies where the
publicly accessible classes for downloading are located.

e Thejava. security. policy property specifies the policy file with
the permissions needed to run the client program and access the
remote server classes.

* The client program class to execute (RM Cl i ent 1), and the host
name of the server (Kq6py) where the remote server classes are.

Run RMIClient2

Here is the command sequence for the Unix and Win32 platforms; an
explanation follows.

In this example, RM C i ent 2 is started from the
/ hone/ zel da/ cl asses directory.

21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJaval/rmi.html

The lines beginning at j ava should be all on one line with spaces where

the lines break. The properties specified with the - D option to the j ava

interpreter command are program attributes that manage the behavior of
the program for this invocation.

Uni x:
cd / hone/ zel da/ cl asses
java -Djava.rmn.server.codebase=
http://kg6py/ ~zel da/ cl asses
-Dj ava. security. policy=java. policy
RM Client2 kqg6py. eng. sun. com

W n32:
cd \hone\ zel da\ cl asses
java -Djava.rni.server.codebase=
file:c:\home\zel da\public _htm\classes
-Dj ava. security. policy=java. policy
RM Client2 kg6py. eng. sun.com

e Thejava.rm . server. codebase property specifies where the
publicly accessible classes are located.

e Thejava.rm . server. host nane property is the complete host
name of the server where the publicly accessible classes reside.

* Thejava.rm.security. policy property specifies the policy file
with the permissions needed to run the remote server object and
access the remote server classes for download.

* The class to execute (RM Cl i ent 2).
RemoteServer Class
The RemoteServer class extends Uni cast Renot eCbj ect and

implements the sendDat a and get Dat a methods declared in the Send
interface. These are the remotely accessible methods.

Uni cast Renot ebj ect implements a number of j ava. | ang. Qbj ect
methods for remote objects and includes constructors and static methods
to make a remote object available to receive method calls from client
programs.

cl ass Renpt eServer extends Uni cast Renot eCbj ect
i mpl enents Send {

String text;
public RenoteServer() throws RenpteException {

super();

public void sendData(String gotText){
text = got Text,;

}
public String getData(){

70f11 21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJaval/rmi.html

8of 11

return text;

}

The mai n method installs the RM Securi t yManager and opens a
connection with a port on the machine where the server program runs. The
security manager determines whether there is a policy file that lets
downloaded code perform tasks that require permissions. The mai n
method creates a name for the the Renpt eSer ver object that includes
the server name (kq6py) where the RMI Registry and remote object run,
and the name, Send.

By default the server name uses port 1099. If you want to use a different
port number, you can add it with a colon as follows: kq6py: 4444. If you
change the port here, you must start the RMI Registry with the same port
number.

The t ry block creates an instance of the Renot eSer ver class and binds
the nane to the remote object to the RMI Registry with the
Nam ng. r ebi nd(nane, renoteServer); statement.

public static void main(String[] args){
i f(System get SecurityManager() == null) {
Syst em set Securit yManager (new
RM Securi tyManager());
}

String nanme = "//kqg6py. eng. sun. com Send";
try {
Send renoteServer = new RenoteServer();
Nam ng. rebi nd(nanme, renoteServer);
Systemout. println("RenoteServer bound");
} catch (java.rm . RenoteException e) {
Systemout. println("Cannot create
renote server object");
} catch (java.net. Mal f ornedURLException e) {
Systemout. println("Cannot | ook up
server object");

Note: The r enpt eSer ver object is type Send (see instance
declaration at top of class) because the interface available to
clients is the Send interface and its methods; not the

Renot eSer ver class and its methods.

Send Interface

The Send interface declares the methods implemented in the
Renot eSer ver class. These are the remotely accessible methods.

public interface Send extends Renmpte {

public void sendData(String text)
t hrows Renpt eException

21-04-2000 17:32

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation

9of11

public String getData() throws RenpteException;
}

RMIClientl Class

The RMIClientl class establishes a connection to the remote server
program and sends data to the remote server object. The code to do
these things is in the act i onPer f or med and mai n methods.

actionPerformed Method

The act i onPer f or ned method calls the Renpt eSer ver . sendDat a
method to send text to the remote server object.

public void actionPerformed(Acti onEvent event) {
Obj ect source = event. getSource();

i f(source == button){
/1 Send data over socket

String text = textField. getText();

try{
send. sendDat a(t ext);

} catch (java.rm . RenoteException e) {
Systemout.println("Cannot send data to server");

}

textField. set Text(new String(""));

}

main Method

The mai n method installs the RM Secur i t yManager and creates a
nanme to use to look up the Renot eSer ver server object. The client uses
the Nam ng. | ookup method to look up the Renot eSer ver object in the
RMI Registry running on the server.

The security manager determines whether there is a policy file that lets
downloaded code perform tasks that require permissions.

RMClientl frane = new RMCient1();

i f(System get SecurityManager() == null) {
System set Secur it yManager (new RM SecurityManager());
}

try {
/largs[0] contains nanme of server where Send runs

String name = "//" + args[0] + "/ Send";
send = ((Send) Nam ng. | ookup(nane));
} catch (java.rm . Not BoundException e) {
System out. println("Cannot | ook up
remote server object");
} catch(java.rmn . Renot eException e){
Systemout. println("Cannot | ook up
renote server object");
} catch(java. nnet. Mal formedURLException e) {
System out. println("Cannot | ook up

21-04-2000 17:32

http://developer.java.sun.com/developer...raining/Programming/BasicJaval/rmi.html

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation

100f 11

renote server object");

}
RMIClient2 Class

The RMIClient2 class establishes a connection with the remote server
program and gets the data from the remote server object and displays it.
The code to do this is in the act i onPer f or med and mai n methods.

actionPerformed Method

The act i onPer f or med method calls the Renot eSer ver . get Dat a
method to retrieve the data sent by the client program. This data is
appended to the Text Ar ea object for display to the end user on the
server side.

public void actionPerfornmed(Acti onEvent event) {
Obj ect source = event. get Source();

i f(source == button){

try{
String text = send.getData();

t ext Area. append(text);
} catch (java.rm . RenoteException e) {
Systemout. println("Cannot send data
to server");

}

main Method

The mai n method installs the RM Secur i t yManager and creates a
name to use to look up the Renot eSer ver server object. The ar gs[0]
parameter provides the name of the server host. The client uses the
Nam ng. | ookup method to look up the Renpt eSer ver object in the
RMI Registry running on the server.

The security manager determines whether there is a policy file that lets
downloaded code perform tasks that require permissions.

RMCient2 frame = new RMdient2();

i f(System get SecurityManager() == null) {

System set Securi t yManager (new RM SecurityManager());
}
try {

String name = "//" + args[0] + "/ Send";
send = ((Send) Nam ng. | ookup(nane));
} catch (java.rm . Not BoundException e) {
Systemout. println("Cannot | ook up renote
server object");
} catch(java.rmn .Renpt eException e){
Systemout. println("Cannot | ook up renote
server object");

21-04-2000 17:32

http://developer.java.sun.com/developer...raining/Programming/BasicJaval/rmi.html

Java(TM) Language Basics, Part 1, Lesson 8: Remote Method Invocation http://developer.java.sun.com/developer...raining/Programming/BasicJaval/rmi.html

} catch(java. net. Mal f ormedURLException e) {
System out. println("Cannot | ook up renote
server object");

More Information

You can find more information on the RMI API in the RMI trail of The Java

Tutorial.

[TOP]

Printable Page &

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies
Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
FAQ | Feedback | Map | A-Z Index

For more information on Java technology

and other software from Sun Microsystems, call: @Sﬂ,n
o

(80(_)) 786-7638)) Copyright © 1995-2000 Sun Microsystems, Inc.

Outside the U.S. and Canada, dial your country's All Rights Reserved. Terms of Use. Privacy Policy.

AT&T Direct Access Number first.

11of11 21-04-2000 17:32

Essentials of the Java(TM) Programming Language, Part 2 http://developer.java.sun.com/developer...ining/Programming/BasicJava2/index.html

:{%/ p) A2 Index » | Gearc)
= wear JAVA DEVELOPER CONNECTION®
JAVA TRAINING

Products & APIs

ol Essentials of the Java™ Programmin
DEREE TR Language: A Hands-On Guide, Part

Online Support

Community Discussion

by Monica Pawle

Industry News

Solutions Marketplace

[CONTENTS] [NEXT>

Case Studies

ble Page
Primtable Paze & This series of lessons builds on the material presented in Java™

Programming Language Basics, Part 1, which introduced applications,
applets, and servlets; simple file and database access operations; and
remote method invocation (RMI).

The lessons and code examples for Part 2 are somewhat more complex.
They walk you through network communications, building a user interface
using more components, data encryption and decryption (pseudo code only
grouping multiple data elements into one object (collections), and
internationalizing a program. Part 2 concludes with some object-oriented
programming concepts.

Contents

Lesson 1: Socket Communications

e What are Sockets and Threads?

e About the Examples

e Example 1: Server-Side Program

e Example 1: Client-Side Program

e Example 2: Multithreaded Server Example
e More Information

Lesson 2: User Interfaces Revisited

About the Example
Fruit Order Client Code
° Global Variables

o Constructor
° Event Handling
° Cursor Focus
o Converting Strings to Numbers and Back
Server Program Code
View Order Client Code
Program Improvements
More Information

Lesson 3: Cryptography

* About the Example

lof3 21-04-2000 17:33

Essentials of the Java(TM) Programming Language, Part 2 http://developer.java.sun.com/developer...ining/Programming/BasicJava2/index.html

¢ Running the Example
¢ Pseudo Code
¢ More Information

Lesson 4: Serialization

About the Example
Wrapping the Data
Sending Data
Server Program
Receiving Data
More Information

Lesson 5: Collections

¢ About Collections
¢ Creating a Set

* Printing

¢ More Information

Lesson 6: Internationalization

* |dentify Culturally Dependent Data

* Create Keyword and Value Pair Files
* Internationalize Application Text

* Localize Numbers

* Compile and Run the Application

¢ Program Improvements

* More Information

Lesson 7: Packages and Java Archive File Format

¢ Setting up Class Packages
o Create the Directories
o Declare the Packages
o Make Classes and Fields Accessible
o Change Client Code to Find the Properties File
o Compile and Run the Example
¢ Using JAR Files to Deploy
o Server Set of Files
o Fruit Order Client Set of Files
o View Order Client Set of Files
o More Information

Lesson 8: Object-Oriented Programming

* Object-Oriented Programming Defined

* Classes

* Objects

* Well-Defined Boundaries and Cooperation
¢ |nheritance

¢ Polymorphism

¢ Data Access Levels

20f3 21-04-2000 17:33

Essentials of the Java(TM) Programming Language, Part 2 http://developer.java.sun.com/developer...ining/Programming/BasicJava2/index.html

¢ Your Own Classes
e Program Improvements
¢ More Information

In Closing

Reader Feedback
Tell us what you think of this training book and earn two DukeDollars.
* O Very worth reading O Worth reading © Not worth reading

) If you have other comments or ideas for future training books, pleas:
type them here:

[3

| Submit | Reset

TOF
Printable Page &
Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies
Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
FAQ | Feedback | Map | A-Z Index
For more information on Java technology
and other software from Sun Microsystems, call: qun
Ty
(SOQ) 786-7638)) Copyright © 1995-2000 Sun Microsystems, Inc.
Outside the U.S. and Canada, dial your country's All Rights Reserved. Terms of Use. Privacy Policy.

AT&T Direct Access Number first.

30f3 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 1: Socket Communications http://developer.java.sun.com/developer...ning/Programming/BasicJava2/socket.html

fé* A-Z Index » | Gearch)
)]
gﬂ; Eran JAVA DEVELOPER CONNECTION"
JAVA TRAINING
Products & API - M
Java™ Programming Language Basics, Part 2
Developer Connection . .
Docs & Training Lesson 1: Socket Communications
Online Support
Community Discussion [«<<BACK] [CONTENTS] [NEXT>>]

Industry News

Solutions Marketplace Java™ Programming Language Basics, Part 1, finished with a simple

Case Studies network communications example using the Remote Method Invocation

Printable Page & (RMI) application programming interface (API). The RMI example allows
multiple client programs to communicate with the same server program
without any explicit code to do this because the RMI API is built on sockets
and threads.

This lesson presents a simple sockets-based program to introduce the
concepts of sockets and multi-threaded programming. A multi-threaded
program performs multiple tasks at one time such as fielding simultaneous
requests from many client programs.

e What are Sockets and Threads?

e About the Examples

e Example 1: Server-Side Program

e Example 1: Client-Side Program

e Example 2: Multithreaded Server Example
e More Information

What are Sockets and Threads?

A socket is a software endpoint that establishes bidirectional
communication between a server program and one or more client
programs. The socket associates the server program with a specific
hardware port on the machine where it runs so any client program
anywhere in the network with a socket associated with that same port can
communicate with the server program.

Hfgr':“ A server program typically provides resources to
———1 a network of client programs. Client programs
Server Port Genunh Send requests to the server program, and the
Program 4321 & |Prageam | server program responds to the request.

Client
p...];",f'am One way to handle requests from more than one

client is to make the server program
multi-threaded. A multi-threaded server creates a thread for each
communication it accepts from a client. A thread is a sequence of
instructions that run independently of the program and of any other
threads.

Using threads, a multi-threaded server program can accept a connection

lof8 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 1: Socket Communications http://developer.java.sun.com/developer...ning/Programming/BasicJava2/socket.html

from a client, start a thread for that communication, and continue listening
for requests from other clients.

About the Examples

The examples for this lesson consist of two versions of the client and
server program pair adapted from the FilelO.java application presented in
Part 1, Lesson 6: File Access and Permissions.

Example 1 sets up a client and server communication between one server
program and one client program. The server program is not multi-threaded
and cannot handle requests from more than one client.

Example 2 converts the server program to a multi-threaded version so it
can handle requests from more than one client.

Example 1: Client-Side Behavior

The client program presents a simple user interface and prompts for text
input. When you click the Cl i ck Me button, the text is sent to the server
program. The client program expects an echo from the server and prints
the echo it receives on its standard output.

~i Client Program | - |J|

Text to send over socket:

aranges

i Click Me

Example 1: Server-Side Behavior

The server program presents a simple user interface, and when you click
the C i ck Me button, the text received from the client is displayed. The
server echoes the text it receives whether or not you click the C i ck Me
button.

—i Server Program | - |J|

Text received over socket:

Qrdnges

Click Me

Example 1: Compile and Run

To run the example programs, start the server program first. If you do not,
the client program cannot establish the socket connection. Here are the
compiler and interpreter commands to compile and run the example.

j avac Socket Server.java
javac SocketClient.java

j ava Socket Server

20f8 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 1: Socket Communications http://developer.java.sun.com/developer...ning/Programming/BasicJava2/socket.html

java Socket d i ent
Example 1: Server-Side Program

The server program establishes a socket connection on Port 4321 in its
| i st enSocket method. It reads data sent to it and sends that same data
back to the server in its act i onPer f or nred method.

listenSocket Method

The | i st enSocket method creates a Ser ver Socket object with the
port number on which the server program is going to listen for client
communications. The port number must be an available port, which means
the number cannot be reserved or already in use. For example, Unix
systems reserve ports 1 through 1023 for administrative functions leaving
port numbers greater than 1024 available for use.

public void |istenSocket (){

try{
server = new Server Socket (4321);

} catch (I Oexception e) {
Systemout.println("Could not listen on port 4321");
Systemexit(-1);

}

Next, the | i st enSocket method creates a Socket connection for the
requesting client. This code executes when a client starts up and requests
the connection on the host and port where this server program is running.
When the connection is successfully established, the server . accept
method returns a new Socket object.

try{
client = server.accept();

} catch (I OException e) {
Systemout.println("Accept failed: 4321");
Systemexit(-1);

}

Then, the | i st enSocket method creates a Buf f er edReader object to
read the data sent over the socket connection from the cl i ent program.
It also creates a Pri nt Wi t er object to send the data received from the
client back to the server.

try{
in = new BufferedReader (new | nput St reanReader (

client.getlnputStream()));
out = new PrintWiter(client.getQutputStream),
true);
} catch (I Oexception e) {
Systemout.println("Read failed");
Systemexit(-1);
}
}

Lastly, the | i st enSocket method loops on the input stream to read data
as it comes in from the client and writes to the output stream to send the

30f8 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 1: Socket Communications http://developer.java.sun.com/developer...ning/Programming/BasicJava2/socket.html

data back.

whi l e(true){

try{
line = in.readLine();

/1 Send data back to client
out.println(line);

} catch (1 OException e) {
Systemout. println("Read failed");
Systemexit(-1);

}

}

actionPerformed Method

The act i onPer f or med method is called by the Java platform for action
events such as button clicks. This act i onPer f or med method uses the
text stored in the | i ne object to initialize the t ext Ar ea object so the
retrieved text can be displayed to the end user.

public void actionPerfornmed(Acti onEvent event) {
Cbj ect source = event. get Source();

i f(source == button){
t ext Area. set Text (I ine);
}

}

Example 1: Client-Side Program

The client program establishes a connection to the server program on a
particular host and port number inits | i st enSocket method, and sends
the data entered by the end user to the server program in its

acti onPer f or med method. The act i onPer f or med method also
receives the data back from the server and prints it to the command line.

listenSocket Method

The | i st enSocket method first creates a Socket object with the
computer name (kg6py) and port number (4321) where the server
program is listening for client connection requests. Next, it creates a
Print Wi ter object to send data over the socket connection to the
server program. It also creates a Buf f er edReader object to read the
text sent by the server back to the client.

public void |istenSocket (){
/] Create socket connection
try{
socket = new Socket ("kg6py", 4321);
out = new PrintWiter(socket.getQutputStreanm),
true);
in = new BufferedReader (new | nput St reamReader (
socket. getl nput Stream()));
} catch (UnknownHost Exception e) {
System out. println("Unknown host: kqg6py");
Systemexit(1l);
} catch (1 OException e) {

40f8 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 1: Socket Communications

50f8

Systemout.println("No I/0");
Systemexit(1);
}
}

actionPerformed Method

The act i onPer f or med method is called by the Java platform for action
events such as button clicks. This act i onPer f or med method code gets
the text in the Text fi el d object and passes it to the Pri nt Wi ter
object, which then sends it over the socket connection to the server
program.

The act i onPer f or med method then makes the Text fi el d object blank
so it is ready for more end user input. Lastly, it receives the text sent back

to it by the server and prints the text out.

public void actionPerformed(Acti onEvent event)({
Cbj ect source = event. get Source();

i f(source == button){
/1 Send data over socket
String text = textField. getText();
out.println(text);
textField.set Text(new String(""));
out.println(text);

/| Receive text from server
try{
String line = in.readLine();
Systemout. println("Text received:
} catch (I OException e){
Systemout.println("Read fail ed");
Systemexit(1);

+ line);

}

Example 2: Multithreaded Server Example

The example in its current state works between the server program and
one client program only. To allow multiple client connections, the server
program has to be converted to a multithreaded server program.

21-04-2000 17:33

http://developer.java.sun.com/developer...ning/Programming/BasicJava2/socket.html

Java (TM) Language Basics, Part 2, Lesson 1: Socket Communications http://developer.java.sun.com/developer...ning/Programming/BasicJava2/socket.html

—|Client Program| - | ||| | —| Server Program | - | ||
Textto send over socket; Text received over socket
Apples and JApples and Peaches and Pears
[Click Me |
First Client

—|Client Program| - | ||
Textto send over socket;
Feaches and

Click e

Second Client

—|Client Program| - | ||
[Textto send over socket:
Fears

Click e

Third Client

The multithreaded server program creates a new thread for every client
request. This way each client has its own connection to the server for

passing data back and forth. When running multiple threads, you have to
be sure that one thread cannot interfere with the data in another thread.

In this example the | i st enSocket method loops on the

server. accept call waiting for client connections and creates an
instance of the C i ent Wr ker class for each client connection it accepts.
The t ext Ar ea component that displays the text received from the client
connection is passed to the Cl i ent Wor ker instance with the accepted
client connection.

public void listenSocket (){
try{
server = new Server Socket (4444);
} catch (I OException e) {
Systemout.println("Could not listen on port 4444");
Systemexit(-1);
}
whil e(true){
Cli ent Wrker w;
try{
//server.accept returns a client connection
w = new CientWrker(server.accept(), textArea);
Thread t = new Thread(w);
t.start();
} catch (I OException e) {
Systemout. println("Accept failed: 4444");
Systemexit(-1);
}
}
}

The important changes in this version of the server program over the
non-threaded server program are the | i ne and cl i ent variables are no

longer instance variables of the server class, but are handled inside the
C i ent Wor ker class.

60f8 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 1: Socket Communications

70f8

The C i ent Wr ker class implements the Runnabl e interface, which has
one method, r un. The r un method executes independently in each thread.
If three clients request connections, three C i ent Wr ker instances are
created, a thread is started for each C i ent Wr ker instance, and the

r un method executes for each thread.

In this example, the r un method creates the input buffer and output writer,
loops on the input stream waiting for input from the client, sends the data it
receives back to the client, and sets the text in the text area.

class dientWrker inplenments Runnabl e {
private Socket client;
private JText Area textArea,;

[/ Constructor
ClientWorker (Socket client, JTextArea textArea) {
this.client = client;
this.text Area = textArea;

}

public void run(){
String line;
Buf f eredReader in = null;
PrintWiter out = null;
try{
in = new BufferedReader (new
I nput St reanReader (client.getlnputStream()));
out = new
PrintWiter(client.getQutputStrean(), true);
} catch (I OException e) {
Systemout.printin("in or out failed");
Systemexit(-1);
}

whi | e(true){

try{
line = in.readLine();
/1 Send data back to client
out.println(line);
[/ Append data to text area
t ext Area. append(li ne);
}catch (1 OException e) {
Systemout.println("Read failed");
Systemexit(-1);
}
}
}
}

The JText Ar ea. append method is thread safe, which means its
implementation includes code that allows one thread to finish its append
operation before another thread can start an append operation. This
prevents one thread from overwriting all or part of a string of appended
text and corrupting the output. If the JText Ar ea. append method were
not thread safe, you would need to wrap the call to

t ext Area. append(li ne) inasynchroni zed method and replace the
r un method call to t ext Ar ea. append(! i ne) with a call to
appendText (i ne):

21-04-2000 17:33

http://developer.java.sun.com/developer...ning/Programming/BasicJava2/socket.html

Java (TM) Language Basics, Part 2, Lesson 1: Socket Communications http://developer.java.sun.com/developer...ning/Programming/BasicJava2/socket.html

publi ¢ synchroni zed voi d appendText (line){
t ext Area. append(line);
}

The synchr oni zed keyword means this thread has a lock on the
t ext Ar ea and no other thread can change the t ext Ar ea until this thread
finishes its append operation.

The finalize() method is called by the Java virtual machine (JVM)*
before the program exits to give the program a chance to clean up and
release resources. Multi-threaded programs should close all Fi | es and
Socket s they use before exiting so they do not face resource starvation.
The call to server. cl ose() inthe fi nali ze() method closes the
Socket connection used by each thread in this program.

protected void finalize(){
/1 Objects created in run nethod are finalized when
//programterm nates and thread exits
try{
server.cl ose();
} catch (I OException e) {
Systemout. println("Could not close socket");
Systemexit(-1);
}
}

More Information

You can find more information on sockets in the All About Sockets section
in The Java Tutorial.

[TOP]

Printable Page &

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies
Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
FAQ | Feedback | Map | A-Z Index

For more information on Java technology

and other software from Sun Microsystems, call: 05”?1

(800) 786-7638 -

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

80f8 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited

@A
:'?

JAVA
Products & APIs
Developer Connection
Docs & Training
Online Support
Community Discussion
Industry News
Solutions Marketplace

Case Studies

Printable Page &

10of13

A-Z Index » | (Search)

EEar JAVA DEVELOPER CONNECTION"
TRAINING

Java™ Programming Language Basics, Part 2
Lesson 2: User Interfaces Revisited

[<<BACK] [CONTENTS] [NEXT>>]

In Java™ Programming Language Basics, Part 1, you learned how to use
Java Foundation Classes (JFC) Project Swing (Project Swing) components
to build a simple user interface with very basic backend functionality. You
also learned how to use the Remote Method Invocation (RMI) application
programming interface (API) to send data from a client program to a
server program on the net where the data can be accessed by other client
programs.

This lesson takes the RMI application from Part 1, Lesson 8: Remote
Method Invocation, creates a more involved user interface, and uses a
different layout manager. These changes give you the beginnings of a very
simple electronic-commerce application that consists of two types of client
programs: one lets end users place purchase orders and the other lets
order processors view the orders.

e About the Example
Fruit Order Client Code

o Instance Variables

o Constructor

o Event Handling

o Cursor Focus

o Converting Strings to Numbers and Back
Server Program Code
View Order Client Code
Program Improvements
More Information

About the Example

This is a very simple electronic commerce example for instructional
purposes only. It consists of three programs: two client programs, one for
ordering fruit and another for viewing the order, and one server program
that makes order information available to clients that view the orders.

Fruit Order Client

The FruitClient program presents a user interface and prompts the end
user to order apples, peaches, and pears at $1.25 each.

21-04-2000 17:33

http://developer.java.sun.com/developer... Training/Programming/BasicJava2/ui.html

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited

20f13

ai Fruit $1.25 Each| - |J|

http://developer.java.sun.com/developer... Training/Programming/BasicJava2/ui.html

After the end user enters the number of each
item to order, he or she presses the Return

Select tems Specify Quantity
Apples 2
Feaches 1
Fears 4

Total ltems:

Motal Cost: 8.75

Credit Card: |1234-4321-1234-3

Customer D [munchkin

Reset | Furchase

key to commit the order and update the
running total.

The Tab key or mouse moves the cursor to
the next field. At the bottom, the end user
provides a credit card number and customer
ID.

When the end user clicks Pur chase, all

1 values entered into the form are sent to the

server program.

The end user must press the Return key for the total to update. If the
Return key is not pressed, an incorrect total is sent across the net with the
order. The end of this lesson asks you to change the code so there is no
danger incorrect totals are sent across the net because the end user did

not press the Return key.

Server Program

The RemoteServer program provides remotely accessible send and get

methods. Fruit order clients

call send methods to send data to the server,

and view order clients call the get methods to retrieve the data. In this
example, the server program has no user interface.

View Order Client

The OrderClient program presents a user interface, and when the end user
clicks Vi ew Or der, the program gets the order data from the server
program and puts it on the screen.

—i Fruit Order | |J|
Credit Card: 1224-42321-1224-21

Customer 1D rmunchikin

A pples: 2

Feaches: 1

Fears: 4

Total ltems: 7

Total Cost: §.75

View Order H Reset |

Compile and Run the Example

See Part 1, Lesson 8: Remote Method Invocation, for information on how

to run the example. Use the Part 1, Lesson 8 instructions, but use the
source code provided in this lesson. Here is a summarized version of those

steps:

21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited

30f13

http://developer.java.sun.com/developer... Training/Programming/BasicJava2/ui.html

Compile: These instructions assume development is in the zel da home

directory.

Uni x:

cd / hone/ zel da/ cl asses

javac Send. | ava

javac RenoteServer.java

javac RM dient2.java

javac RM Clientl.java

rmc -d . RenoteServer

cp RenoteServer*.class /honme/zel da/public_htm/classes
cp Send.class /honme/zel da/public_htm/classes

W n32:

cd \ hone\ zel da\ cl asses

javac Send.java

javac RenoteServer.java

javac RM Client2.java

javac RM Cientl.java

rmc -d . RenoteServer

copy RenpteServer*.class \hone\zel da\public_htm\classes
copy Send. cl ass \ hone\ zel da\ public_htm\cl asses

Start rmi Registry:

Uni x:

cd /honme/zel da/public_htm/classes
unset env CLASSPATH

rmregistry &

W n32:

cd \hone\ zel da\ public_htm\cl asses
set CLASSPATH=

start rmiregistry

Start Remote Server:

Uni x:

cd /hone/ zel da/ public_htm /cl asses

j ava

-Djava.rm . server.codebase=http:// kg6py/ ~zel da/ cl asses
-Djava.rm . server. host nanme=kqg6py. eng. sun. com

-Dj ava. security. policy=java. policy RenoteServer

W n32:

cd \hone\ zel da\ public_htm\cl asses

java -Djava.rm .server.codebase=
file:c:\home\zel da\public _htm\classes

-Dj ava. rm . server. host name=kqg6py. eng. sun. com

-Dj ava. security. policy=java. policy RenoteServer

Start RMIClient1:

Uni x:
cd / hone/ zel da/ cl asses

java -Djava.rn .server.codebase=
http://kg6py/ ~zel da/ cl asses/
-Dj ava. security. policy=java.policy RMClientl

21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer... Training/Programming/BasicJava2/ui.html

kg6py. eng. sun. com ~zel da

W n32:
cd \ hone\ zel dzel daa\ cl asses

java -Djava.rn.server.codebase=
file:c:\hone\zel da\cl asses\

-Dj ava. security.policy=java.policy RMClientl

kq6py. eng. sun. com hone\ zel da\ publ i c\ ht n

Start RMIClient2:

Uni x:

cd / hone/ zel da/ cl asses

java -Djava.rmn.server.codebase=
http://kg6py/ ~zel da/ cl asses

-Dava.rm . server. host nanme=kqg6py. eng. sun. com

-Djava. security.policy=java.policy RMCient2
kg6py. eng. sun. com

W n32:

cd \ hone\ zel da\ cl asses

java -Djava.rni.server.codebase=
file:c:\home\zel da\public_htm\classes

-Dj ava. rm . server. host name=kq6py. eng. sun. com

-Dj ava. security.policy=java.policy RMCient2
kg6py. eng. sun. com

Fruit Order Client Code

The RMIClientl.java code uses label, text field, text area, and button
components to create the user interface for ordering fruit.

'_ ' On the display, user interface components
—| Fruit $1.25 Each | | || are arranged in a 2-column grid with labels in
selectltems - Specily Cuantiyl the |eft column, and the input and output data

Apples 2 fields (text fields and text areas) aligned in
Peaches 1 the I’Ight column.
Pears < .

2 The end user enters his or her apples,

Total ltems:

peaches, and pears order into the text fields
and presses the Return key after each fruit
Credit Gard: [i234-4321-1234-3] | entry, When the Return key is pressed, the
Customer ID: [munchkin text field behavior updates the item and cost
i e | Purchase || totals displayed in the text areas.

MTotal Cost: §.75

The Reset button behavior clears the
display, and the underlying total cost and items variables. The Pur chase
button behavior sends the order data to the server program. If the Reset
button is clicked before the Pur chase button, nul | values are sent over
the network.

Instance Variables
These next lines declare the Project Swing component classes the

Swi ngUl class uses. These are instance variables that can be accessed

40f13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited

50f13

by any method in the instantiated class. In this example, they are built in
the Swi ngUl constructor and accessed in the act i onPer f or med
method implementation.

JLabel col 1, col 2;

JLabel totalltens, total Cost;
JLabel cardNum custl D;

JLabel appl echk, pearchk, peachchk;

JButton purchase, reset;
JPanel panel;

JText Fiel d appl egnt, pearqnt, peachgnt;
JText Field creditCard, custoner;
JText Area itens, cost;

stati ¢ Send send;
int itotal =0;
doubl e i cost =0;

Constructor

The constructor is fairly long because it creates all the components, sets
the layout to a 2-column grid, and places the components in the grid on a
panel. A panel is a container component that holds other components.

The Reset and Pur chase buttons and the appl eQnt , pear Ont , and
peachnt text fields are added as action listeners. This means when the
end user clicks one of the buttons or presses Return in one of the text
fields, an action event occurs that causes the platform to call the
Fruitdient. actionPerforned method where the behaviors for
these components are defined.

As explained in Partl, Lesson 4: Building a User Interface, a class
declares the Act i onLi st ener interface and implements the

acti onPer f or med method if it needs to handle action events such as
button clicks and text field Returns. Other user interface components
generate some different action events, and as a result, require you to
implement different interfaces and methods.

/|l Create left and right columm | abels
coll new JLabel ("Sel ect Itens");
col 2 new JLabel (" Specify Quantity");

/I Create | abel s and text field conponents
appl echk = new JLabel (" Appl es") ;

appl egnt = new JText Fiel d();

appl egnt . addAct i onLi st ener (this);

pear chk new JLabel (" Pears");
peargnt = new JTextFiel d();
pear gnt . addActi onLi stener(this);

peachchk = new JLabel (" Peaches");
peachgnt = new JTextFiel d();
peachqgnt . addAct i onLi st ener (t hi s);

21-04-2000 17:33

http://developer.java.sun.com/developer... Training/Programming/BasicJava2/ui.html

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer... Training/Programming/BasicJava2/ui.html

cardNum = new JLabel (" Credit Card:");
creditCard = new JTextField();

customer = new JTextField();
custI D = new JLabel (" Custoner I1D:");

//Create | abels and text area conponents
totalltens = new JLabel ("Total ltenms:");
total Cost = new JLabel ("Total Cost:");
itenms = new JText Area();

cost = new JText Area();

/'l Create buttons and nmeke action |isteners
purchase = new JButton("Purchase");
pur chase. addActi onLi st ener (t hi s);

reset = new JButton("Reset");
reset. addActi onLi stener(this);

In the next lines, a JPanel component is created and added to the
top-level frame, and the layout manager and background color for the
panel are specified. The layout manager determines how user interface
components are arranged on the panel.

The example in Part 1, Lesson 4: Building a User Interface, used the

Bor der Layout layout manager. This example uses the Gri dLayout
layout manager, which arranges components in a grid or the number of
rows and columns you specify. The example uses a 2-column grid with an
unlimited number of rows as indicated by the zero (unlimited rows) and two
(two columns) in the statement panel . set Layout (new

GridLayout (0, 2));

The layout manager and color are set on the panel, and the panel is added
to the content pane with a call to the get Cont ent Pane method of the
JFr ane class. A content pane lets different types of components work
together in Project Swing.

//Create a panel for the conponents
panel = new JPanel ();

/] Set panel |ayout to 2-colum grid
//on a white background
panel . set Layout (new Gri dLayout (0, 2));
panel . set Background(Col or.white);

/1 Add conponents to panel columms
/1going left to right and top to bottom
get Cont ent Pane() . add(panel) ;
panel . add(col 1);
panel . add(col 2);

panel . add(appl echk);
panel . add(appl egnt) ;

panel . add(peachchk) ;
panel . add(peachgnt) ;

panel . add(pear chk) ;

60f 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer... Training/Programming/BasicJava2/ui.html

70f13

panel . add(pearqnt);

panel . add(total I tens);
panel . add(itens);

panel . add(t ot al Cost);
panel . add(cost);

panel . add(car dNumj ;
panel . add(creditCard);

panel . add(cust|D);
panel . add(cust oner);

panel . add(reset);
panel . add(purchase);

Event Handling

The act i onPer f or med method provides behavior for each of the
following possible application events:

* The mouse is clicked on the Pur chase or Reset button.

* The Return key is pressed inside the appl e(nt , peacht , or
pear Ont field.

Rather than show the entire act i onPer f or med method here, this section
describes the pur chase button and pear Qnt text field behaviors only.
The Reset button is similar to the pur chase button, and the other text
fields are similar to pear Qnt .

Purchase Button: The Pur chase button behavior involves retrieving data
from the text fields and text areas, and sending that data to the server
program. The server program is available to the Frui t C i ent program
through its Send interface, which declares the remote server methods for
sending and getting data.

The send variable is an instance of the Send interface. This instance is
created in the Frui t C i ent program's mai n method. The send variable
is declared st at i ¢ and global in the Frui t O i ent program so the
stati ¢ mai n method can instantiate it, and to make it accessible to the
act i onPer f or med method.

i f (source == purchase){
cardnum = creditCard. get Text ();
cust| D = custoner. get Text();
appl es = appl egnt. get Text () ;
peaches = peachqgnt. get Text ();
pears = pearqgnt.get Text();
try{

send. sendCredi t Card(cardnum ;
send. sendCust | D(cust | D)

send. sendAppl ent (appl es) ;
send. sendPeachnt (peaches);
send. sendPear Ont (pears) ;

21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer... Training/Programming/BasicJava2/ui.html

send. sendTot al Cost (i cost);

send. sendTotal Itens(itotal);
} catch (Exception e) {

System out . println("Cannot send data to server");
}

}

pearQnt Text Field: The pear Qnt text field behavior involves retrieving
the number of pears the end user wants to order, adding the number to the
items total, using the number to calculate the cost, and adding the cost for
pears to the total cost. Two interesting things in this code involve managing
the cursor focus and converting strings to numbers for the calculations.
Both topics are covered below.

i f(source == pearqgnt){
nunber = pearqgnt. get Text ();
i f(nunber.length() > 0){
pearsNo = I nteger.val ueX (nunber);
itotal += pearsNo.intVal ue();
pear gnt . set Next Focusabl eConponent (credit Card);
} else {
itotal += 0;
pear gnt . set Next Focusabl eConponent (credit Card);

}
}

Cursor Focus

End users can use the Tab key to move the cursor from one component to
another within the user interface. The default Tab key movement steps
through all user interface components including the text areas.

Because the end user does not interact with the text areas, there is no
reason for the cursor to go there. The example program includes a call in
its constructor to pear gnt . set Next Focusabl eConponent to make
the cursor move from the pear qnt text field to the cr edi t car d text field
bypassing the total cost and total items text areas when the Tab key is
pressed.

appl echk = new JLabel (" Appl es");
appl egnt = new JText Fi el d();
appl egnt . addAct i onLi stener(this);

pearchk = new JLabel (" Pears");
peargnt = new JTextField();
pear gnt . addActi onLi stener (this);

peachchk = new JLabel (" Peaches");
peachqnt new JText Fiel d();
peachqgnt . addActi onLi st ener (this);

cardNum = new JLabel (" Credit Card:");
creditCard = new JTextField();

/1 Make cursor go to creditCard conponent
pear gnt . set Next Focusabl eConponent (credi t Card);

customer = new JTextField();
custl D = new JLabel (" Custonmer 1D ");

80f13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer... Training/Programming/BasicJava2/ui.html

Converting Strings to Numbers and Back

To calculate the items ordered and their cost, the string values retrieved
from the appl ent , peachQnt , and pear Ont text fields have to be
converted to their number equivalents.

The string value is returned in the nunber variable. To be sure the user
actually entered a value, the string length is checked. If the length is not
greater than zero, the end user pressed Return without entering a value. In
this case, the el se statement adds zero to the running total and the
cursor focus is set for the cr edi t Car d text field. Adding zero is not really
necessary, but does make the code more understandable for someone
reading it.

If the length is greater than zero, an instance of the

j ava. | ang. I nt eger class is created from the string. Next, the

I nt eger. i ntVal ue() method is called to produce the integer (i nt)
equivalent of the string value so it can be added to the items total kept in
the i t ot al integer variable.

i f(nunber.length() > 0){

pearsNo = Integer.val ue (nunber);
itotal += pearsNo.intVal ue();
} else {

itotal += 0;

}

To display the running item and cost totals in their respective text areas,
the totals have to be converted back to strings. The code at the end of the
act i onPer f or med method shown below does this.

To display the total items, a j ava. | ang. | nt eger object is created from
thei t ot al integer variable. The | nt eger . t oSt ri ng method is called
to produce the St ri ng equivalent of the integer (i nt). This string is
passed to the callto t hi s. cost . set Text (t ext 2) to update the Total
Cost field in the display.

Note: The cost text area variable is referenced ast hi s. cost
because the act i onPer f or med method also has a cost
variable of type Doubl e. To reference the global text area and
not the local Doubl e by the same name, you have to reference it
asthis.cost.

num = new I nteger(itotal);
text = numtoString();
this.itens. set Text(text);

icost = (itotal * 1.25);
cost = new Doubl e(icost);
text2 = cost.toString();
this.cost. set Text (text?2);

90f13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer... Training/Programming/BasicJava2/ui.html

Until now, all data types used in the examples have been classes. But, the
i nt and doubl e data types are not classes. They are primitive data

types.

The i nt data type contains a single whole 32-bit integer value that can be
positive or negative. You can use the standard arithmetic operators (+, -,
* and /) to perform arithmetic operations on the integer.

The | nt eger class, not only contains a whole 32-bit integer value that can
be positive or negative, but provides methods for working on the value. For
example, the | nt eger . i nt Val ue method lets you convert an | nt eger
toan i nt to perform arithmetic operations.

The doubl e data type contains a 64-bit double-precision floating point
value. The Doubl e class not only contains a 64-bit double-precision
floating point value, but provides methods for working on the value. for
example, the Doubl e. doubl eVal ue method lets you convert a Doubl e
to a doubl e to perform arithmetic operations.

Server Program Code

The server program consists of the RemoteServer.java class that
implements the methods declared in the Send.java interface. These
classes are described in Part 1, Lesson 8: Remote Method Invocation with
the only difference being in this lesson there are many more sendXXX and
get XXX methods to declare and implement. Here is the list:

public void sendCreditCard(String creditcard){cardnum = creditcard;}
public String getCreditCard(){return cardnum;}

public void sendCustID(String cust){custID = cust;}

public String getCustID(){return custID;}

public void sendAppleQnt(String apps){apples = apps;}
public String getAppleQnt(){return apples;}

public void sendPeachQnt(String pchs){ peaches = pchs;}
public String getPeachQnt(){return peaches;}

public void sendPearQnt(String prs){pears = prs;}

public String getPearQnt(){return pears;}

public void sendTotalCost(double cst){cost = cst;}

public double getTotalCost(){return cost; }

public void sendTotalltems(int itm){items = itm;}

public int getTotalltems(){return items;}

The important thing to note is data of any type and size can be easily
passed from one client through the server to another client using the RMI
API. No special handling is needed for large amounts of data or special
considerations for different data types, which can sometimes be issues
when using socket communications.

View Order Client Code

The OrderClient.java class uses text areas and buttons to display the
order information.

10 of 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer... Training/Programming/BasicJava2/ui.html

. The code is very similar to the
—| Fitorder | | | Fr it or der. j ava class so rather than
Credit Care. IRV oheat much of what you have read above,
this section highlights two parts of the

Custormer D¢ rmunchkin

lapples 2 act i onPer f or med method behavior for
Peaches: 1 viewing an order.
Fears: 4

The first part retrieves the credit card

number, and the number of apples, peaches,
and pears ordered from the server and sets
vieworser | Reset || those values in the corresponding text areas.

Total Items: 7

Total Cost: 8.75

The second patrt retrieves the cost and item
totals, which are doubl e and i nt eger , respectively. It then converts the
total cost to a j ava. | ang. Doubl e object, and the total items to a
j ava. | ang. I nt eger object, and calls the t oSt r i ng method on each to
get the string equivalents. Finally, the strings can be used to set the values
for the corresponding text areas.

i f(source == view){

try{

// Retrieve and di spl ay text
text = send.getCreditCard();
credi t No. set Text (text);

text = send. getCustlD();
cust oner No. set Text (text);

text = send. get Appl eQnt ();
appl esNo. set Text (text);

text = send. get Peachnt ();
peachesNo. set Text (text);

text = send. getPeart();
pear sNo. set Text (t ext);

[/ Convert Nunbers to Strings
cost = send. get Total Cost();
pri ce = new Doubl e(cost);
unit = price.toString();

i cost.setText(unit);

items = send.getTotal ltens();
itms = new I nteger(itens);

i = itms.toString();
itotal.setText(i);

} catch (Exception e) {
Systemout. println("Cannot send data to server");

}
}

Program Improvements

The example program as it is currently written has two major design flaws

11 0f 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer... Training/Programming/BasicJava2/ui.html

in the fruit order client. The first one involves the need to press the Return
key for calculations to happen, and the second involves handling the error
condition if the end user enters a character that is not a number when
ordering apples, peaches, and pears.

Calculations and Pressing Return: If the end user enters a value for
apples, peaches, or pears and moves to the next field without pressing the
Return key, no calculation is made. This means when the end user clicks
the Purchase key, the order is sent, but the item and cost totals will be
incorrect. So, in this particular application relying on the Return key action
event is not good design.

Modify the act i onPer f or med method so this does not happen. Here is
one possible solution. Give it a try before taking a look.

Non-Number Errors: If the end user enters a non-number value for
apples, peaches, or pears the program will present a stack trace indicating
an illegal number format. A good program will catch and handle the error,
rather than produce a stack trace.

Hint: You need to figure out which part of the code throws the error and
enclose itinatry and cat ch block. t ry and cat ch blocks were first

introduced in Part 1, Lesson 6: File Access and Permissions. The error

you need to catch is j ava. | ang. Nunber For mat Excepti on.

Give it a try before taking a look at the solution.
More Information

You can find more information on event listening in the Writing Event
Listeners lesson in The Java Tutorial.

The Variables and Data Types trail in The Java Tutorial provides more
information on primitive data types.

See The JFC Swing Tutorial: A Guide to Constructing GUIs for more
information on Project Swing.

*As used on this web site, the terms "Java virtual machine" or "JVM"
mean a virtual machine for the Java platform.

[TOP

Printable Page S

12 of 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 2: User Interfaces Revisited http://developer.java.sun.com/developer... Training/Programming/BasicJava2/ui.html

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
FAQ | Feedback | Map | A-Z Index

For more information on Java technology

and other software from Sun Microsystems, call: qun
ko

(80(.)) 786-7638 . , Copyright © 1995-2000 Sun Microsystems, Inc.

Outside the U.S. and Canada, dial your country's All Rights Reserved. Terms of Use. Privacy Policy.

AT&T Direct Access Number first.

13 0f 13 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 3: Cryptography http://developer.java.sun.com/developer...ning/Programming/BasicJava2/crypto.html

e
G
JAVA

Products & APIs
Developer Connection
Docs & Training
Online Support
Community Discussion
Industry News
Solutions Marketplace

Case Studies

Printable Page &

lof7

A-Z Index » | (Search)

EEar JAVA DEVELOPER CONNECTION"
TRAINING

Java™ Programming Language Basics, Part 2
Lesson 3: Cryptography

[<<BACK] [CONTENTS] [NEXT>>]

Many people are protective of their credit card numbers, and for good
reason. A stolen credit card number with other personal information can
give a thief all he or she needs to create serious mayhem in someone's
life. One way to keep credit card and other proprietary information secure
when sending it over the net is to encrypt it.

Encryption is the process of applying a key to plain text that transforms
that plain text into unintelligible (cipher) text. Only programs with the key to
turn the cipher text back to original text can decrypt the protected
information.

This lesson adapts the Part 2, Lesson 2: User Interfaces Revisited
example to encrypt the credit card number before sending it over the net,
and decrypt it on the other side.

Note: Because cryptography software is not exportable outside
the United States and Canada, the example in this lesson is in
pseudo code rather than source code.

¢ About the Example
* Running the Example
* Pseudo Code
o Server
o Generating the Public and Private Key
o Sealing the Symmetric Key
o Encrypting the Symmetric Key with the RSA Algorithm
* More Information

About the Example
To safely send the credit card number over the net, the example program

gets the plain text credit card number entered by the end user and passes
the credit card number to its encr ypt method.

21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 3: Cryptography

ai Fruit $1.25 Each| - |J|

Select tems
Apples
Feaches
Fears

[Total ltems:

Total Cost:

Credit Card:

Customer 1D

Specify Quantity

hzaa-a321-1234-3

runchkin

http://developer.java.sun.com/developer...ning/Programming/BasicJava2/crypto.html

The encr ypt method creates a cipher and
session key, and uses the session key with
the cipher to encrypt the credit card number.

A session key is a secret key that is
generated new each time the Pur chase
button is clicked. Changing the session key
protects against an unauthorized program
getting the key and decrypting hundreds and
thousands of credit card numbers with it.

| The credit card number is encrypted and
decrypted with the same session key. This
type of cryptography is called symmetric key
encryption, and in our example, requires the session key and encrypted
credit card number be sent over the ret to the receiving program. Because
the session key is sent over the net, it too should be protected against
unauthorized access.

Reset | Furchase

To protect the session key, it is encrypted with or wrapped under the
public key of the recipient. Even if an unauthorized program gets the
wrapped session key and credit card number, he or she would have to
recover the session key with the intended recipient's private key to be able
to decrypt the credit card number with the session key.

Anything encrypted with a public key, can only be decrypted with the
private key corresponding to the public key that originally encrypted it. This
type of cryptography is called asymmetric key encryption. In the example,
the public key is made readily available to any client program that requests
it, and the private key is kept secret and made available to specific,
trusted clients only.

As shown in the diagram, this example uses a separate program to
generate the public and private key pair. The public key is stored in one
file, and the private key is stored in another. The file with the private key
must be kept in a very secure place. Many companies keep the private key
file on an external storage medium such as tape or disk to prevent an
unauthorized person or program from breaking into the system and getting
the private key.

The server program loads the public key from the public key file, and
makes it available to order clients for encrypting the session key. Order
processing clients get the encrypted session key and credit card number,
load the private key, use the private key to decrypt the session key, and
use the session key to decrypt the credit card number.

20f7 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 3: Cryptography http://developer.java.sun.com/developer...ning/Programming/BasicJava2/crypto.html

Key pair
Generation
Program
Fublic % Private
key file & key file
Frivate
key
; Order
Order Client ',(M PSmer\::rrn Frocessing
4 Client
:

Encrypted credit
card and locked
session key

Running the Example

If you are within the United States or Canada, you can download the

j avax. crypt o package from the Products & APIs page. It contains
documentation and a Java™ Archive (JAR) file with the cryptographic APIs
and a cryptographic service provider. A cryptographic service provider is a
package or set of packages that supplies a concrete implementation of a
cryptographic algorithm.

Copy the JAR file to the j dk1. 2/ j re/ | i b/ ext directory of your Java 2
SDK, Standard Edition, installation or to the j rel. 2/1i b/ security
directory of your Java Runtime Environment (JRE) 1.2 installation.

Make sure you have the following entries in the
jdkl.2/jrellibl/security/java.security or
jrel.2/lib/securityl/java.security file:

security. provider.1l=sun.security. provider. Sun
security. provider.2=com sun. crypto. provi der. SunJCE

You also need to install a package with an asymmetric algorithm such as
the Rivest, Shamir, and Adleman (RSA) Asymmetric-Cipher algorithm.

The asymmetric algorithm is needed to create the asymmetric cipher for
the public and private key encryption. Add the asymmetric algorithm
package to j dk1. 2/jrel/lib/security/java.security or
jrel.2/lib/security/java.security as
security.provider.3=andputitinthe jdkl.2/jre/lib/ext or
jrel. 2/1ib/ext directory with the other JAR files.

Using the documentation in the download, convert the pseudo code to
source code.

Compile and run the example as usual.
Pseudo Code
A cipher object is used in the encryption and decryption process. The

cipher object is created with a specific cryptographic algorithm depending
on the type of encryption in use. In this example, two types of encryption

3of7 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 3: Cryptography http://developer.java.sun.com/developer...ning/Programming/BasicJava2/crypto.html

are used: symmetric and asymmetric.

Symmetric key encryption uses a symmetric algorithm such as Data
Encryption Standard (DES). The asymmetric key encryption uses an
asymmetric algorithm such as Rives, Shamir, and Adleman (RSA)
Asymmetric-Cipher algorithm.

The j avax. cr ypt o package defines the framework for both symmetric
and asymmetric encryption into which concrete cipher implementations can
be plugged. The SunJCE provider that comes standard with JCE 1.2
supplies only implementations of symmetric encryption algorithms such as
DES. For an implementation of an asymmetric encryption algorithm such
as RSA, you need to install a different provider.

The pseudo code shows two ways to do the asymmetric encryption of the
session key. One way uses an RSA key to encrypt the symmetric key. The
other way uses another asymmetric algorithm to seal (encrypt) the
symmetric key. Sealing is the preferred way, but presents a problem when
you use the RSA key because the RSA algorithm imposes a size

restriction (discussed below) on the object being encrypted and sealing
makes the object too large for RSA encryption.

After the cipher is created with the correct symmetric or asymmetric
algorithm, it is initialized for encryption or decryption with a key. In the
case of symmetric encryption, the key is a secret key, and in the case of
asymmetric encryption, the key is either the public or private key.

Server

The Send interface declares and the Renot eSer ver class implements
methods to handle the encrypted credit card number and the encrypted
secret key. It also defines a method to return the public key when a client
requests it. In pseudo code, this is what the server interface and class
need to declare and implement:

met hod to get the public key

met hod to send the encryped credit card nunber
method to get the encrypted credit card nunber
met hod to send the encrypted symmetric key
method to get the encrypted symetric key

>>>>>

Generating the Public and Private Key Pair

You need a program to generate a public and private key pair and store
them to separate files. The public key is read from its file when a client
calls the method to get the public key. The private key is read from its file
when RM C i ent 2 needs it to decrypt the secret key.

Generate public and private key pair
usi ng asymmetric al gorithm

Store private Key in very safe pl ace

Store public key in accessible place

Sealing the Symmetric Key

40of7 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 3: Cryptography

50f7

Sealing the symmetric key involves creating a sealed object that uses an
asymmetric cipher to seal (encrypt) the session key. The RSA asymmetric
algorithm cannot be used because it has the size restrictions described in
the next section, and the sealing process makes the session key too large
to use with the RSA algorithm.

RMIClientlSealed.java: The RMIClientl.java code has an encr ypt
method to encrypt the credit card number, seal the symmetric key, and
send the encrypted credit card number and sealed key to the server. Here
Is the pseudo code to do it:

private void encrypt(credit card nunber){
Create cipher for symetric key encryption (DES)
Create a key generator
Create a secret (session) key with key generator
Initialize cipher for encryption with session key
Encrypt credit card nunber with cipher
Get public key from server
Create cipher for asymretric encryption

(do not use RSA)
Initialize cipher for encryption with public key
Seal session key using asymetric Cipher
Send encrypted credit card nunber and seal ed
session key to server

}

RMIClient2Sealed.java: The RMIClient2.java code has a decr ypt
method to unseal the symmetric key and decrypt the credit card number.
Here is the pseudo code to do it:

public byte[] decrypt(encrypted key,
encrypted credit card nunber) {

Get private key fromfile
Create asymetric cipher (do not use RSA)
Initialize cipher for decryption with private key
Unseal wrapped session key using asymretric cipher
Create symmetric cipher
Initialize cipher for decryption with session key
Decrypt credit card nunber with symretric cipher

}

Encrypting the Symmetric Key with the RSA Algorithm

The RSA algorithm imposes size restrictions on the object being
encrypted. RSA encryption uses the PKCS#1 standard with PKCS#1 block
type 2 padding. The PKCS RSA encryption padding scheme needs 11
spare bytes to work. So, if you generate an RSA key pair with a key size
of 512 bits, you cannot use the keys to encrypt more than 53 bytes (53 =
64 - 11).

So, if you have a session key that is only 8 bytes long, sealing expands it
to 3644 bytes, which is way over the size restriction imposed by the RSA
algorithm. In the process of sealing, the object to be sealed (the session
key, in this case) is first serialized, and then the serialized contents are
encrypted. Serialization adds more information to the session key such as

21-04-2000 17:33

http://developer.java.sun.com/developer...ning/Programming/BasicJava2/crypto.html

Java (TM) Language Basics, Part 2, Lesson 3: Cryptography http://developer.java.sun.com/developer...ning/Programming/BasicJava2/crypto.html

the class of the session key, the class signature, and any objects
referenced by the session key. The additional information makes the
session key too large to be encrypted with an RSA key, and the result is a
javax.crypto. ||l egal Bl ockSi zeExcept i on run time error.

RMIClientl.java: The RMIClientl.java code has an encr ypt method to
encrypt the credit card number, seal (encrypt) the session key, and send
the encrypted credit card number and sealed session key to the server.
Here is the pseudo code to do it:

private void encrypt(credit card number) {
Create cipher for symmetric key encryption (DES)
Create a key generator
Create a secret (session) key with key generator
Initialize cipher for encryption with session key
Encrypt credit card nunmber wi th cipher
Get public key from server
Create cipher for asymretric encryption (RSA)
Initialize cipher for encryption with public key
Encrypt session key
Send encrypted credit card nunber and session

key to server

}

RMIClient2.java: The RMIClient2.java code has a decr ypt method to
unseal (decrypt) the symmetric key and decrypt the credit card number.
Here is the pseudo code to do it:

public String decrypt(encrypted key,
encrypted credit card nunber) {
Decrypt credit card nunber
Get private key fromfile
Create asymmetric ci pher (RSA)
Initialize cipher for decryption with private key
Decrypt symetric key
Instantiate symretric key
Create synmetric cipher
Initialize Ci pher for decryption with session key
Decrypt credit card nunber with symmetric Cipher

}

More Information

You can find more information on key encryption on the Security Dynamics
Web site (for RSA encryption), or by using a search engine and searching
on RSA Cryptography, asymmetric key encryption, or symmetric key
encryption.

[TOP]

Printable Page &

60f7 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 3: Cryptography http://developer.java.sun.com/developer...ning/Programming/BasicJava2/crypto.html

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
FAQ | Feedback | Map | A-Z Index

For more information on Java technology

and other software from Sun Microsystems, call: qun
ko

(80(.)) 786-7638 . , Copyright © 1995-2000 Sun Microsystems, Inc.

Outside the U.S. and Canada, dial your country's All Rights Reserved. Terms of Use. Privacy Policy.

AT&T Direct Access Number first.

7of7 21-04-2000 17:33

Java (TM) Language Basics, Part 2, Lesson 4: Serialization http://developer.java.sun.com/developer...ning/Programming/BasicJava2/serial.html

J,g;f-' A2 Index » | Gearc)
ge))]
S Erar JavA DEVELOPER CONNECTION™
JAVA TRAINING
Products & API . -
vt Commection Java™ Programming Language Basics, Part 2
Docs & Training LeSSOI’l 4 Ser|a||zat|0n
Online Support
Community Discussion [«<<BACK] [CONTENTS] [NEXT>>]

Industry News

solutions Marketplace —— ONe big problem with the example program in its current form is the fact

Case Studies that sending clients can overwrite each other's data before receiving clients

Printable Page & have a chance to get and process it. This lesson adapts the server code to
ensure all orders are processed (nothing is overwritten), and all orders are
processed in the order they are received by the server.

¢ About the Example
¢ Wrapping the Data
Sending Data

¢ Server Program

¢ Receiving Data

¢ More Information

About the Example

The example adapts the Part 2, Lesson 2: User Interfaces Revisited
example to wrap the fruit order data into a single data object and send the
data object over the network to the server. This is more efficient than
sending each unit of data separately.

Wrapping the Data

The DataOrder.java class is very simple. It defines the fields that wrap and
store the fruit order data. It has no methods. It implements the

Seri al i zabl e interface so its data can be serialized, and written to and
read from a file as a single unit.

Object serialization transforms an object's data to a bytestream that
represents the state of the data. The serialized form of the data contains
enough information to recreate the object with its data in a similar state to
what it was when saved.

i nport java.io.*;
cl ass DataOrder inplenments Serializablef
String appl es, peaches, pears, cardnum custlD;

doubl e icost;
int itotal;

}
Sending Data

lof5 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 4: Serialization http://developer.java.sun.com/developer...ning/Programming/BasicJava2/serial.html

The RMIClientl.java program is modified to use the Dat aOr der class to
send the order data over the net. The RM d i ent 1. acti onPer f or ned
method creates an instance of the Dat aOr der class and initializes its
fields with order data retrieved from the user interface text fields and
areas.

public void actionPerfornmed(Acti onEvent event) {
Cbj ect source = event. get Source();

I nt eger appl esNo, peachesNo, pearsNo, num
Doubl e cost;

String nunmber, text, textz2;

Dat aCr der order = new DataOrder();

i f(source == purchase){
order.cardnum = creditCard. get Text ();
order.custl D = custoner. get Text ();
order. appl es = appl egnt. get Text ();
order. peaches = peachqnt. get Text ();
order. pears = pearqnt.getText();

The total number of items is calculated using the or der . i cost field.

i f(order.apples.length() > 0){

try{
appl esNo = I nteger.val ue (order. appl es);

order.itotal += appl esNo.intVal ue();
} catch (java.lang. Nunber For mat Exception e) {
appl egnt . set Text ("I nvalid Val ue");

} else {
order.itotal += O;
}

The total number of items is retrieved from the or der . i t ot al field and
displayed in the user interface.

num = new | nteger(order.itotal);
text = numtoString();
this.itens. set Text (text);

Similarly, the total cost is calculated and displayed in the user interface
using the or der . i cost field.

order.icost = (order.itotal * 1.25);
cost = new Doubl e(order.icost);
text2 = cost.toString();
this.cost. set Text (text?2);

try{
send. sendOr der (order);

} catch (Exception e) {
Systemout. println("Cannot send data to server");
}

After the totals are calculated, the or der object is sent over the net to the
server program.

Server Program

20f5 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 4: Serialization http://developer.java.sun.com/developer...ning/Programming/BasicJava2/serial.html

The Send.java and RemoteServer.java classes are much simpler in this
lesson. They have one get XXX method that returns an instance of

Dat aOr der, and one set XXX method that accepts an instance of

Dat aOr der .

Send.java

i nport java.rmnm . Renote;
i mport java.rmn . Renot eException;

public interface Send extends Renmote {
public void sendOrder(DataCrder order)
t hr ows Renpt eExcepti on;
public DataOrder getOrder() throws RenpteException;

}

RemoteServer.java

The Renot eSer ver. sendOr der method accepts a Dat aOr der
instance as input, and stores each order in a separate file where the file
name is a number. The first order received is stored in a file named 1, the
second order is stored in a file named 2, and so forth.

To keep track of the file names, the val ue variable is incremented by 1
each time the sendOr der method is called, converted to a St ri ng, and
used for the file name in the serialization process.

Objects are serialized by creating a serialized output stream and writing
the object to the output stream. In the code, the first line in the t r y block
creates a Fi | eQut put St r eamwith the file name to which the serialized
object is to be written.

The next line creates an Obj ect Qut put Fi | eSt r eamfrom the file output
stream. This is the serialized output stream to which the or der object is
written in the last line of the t r y block.

RemoteServer.java

public void sendOrder(DataOrder order){

val ue += 1;
num = new | nt eger (val ue);
orders = numtoString();
try{
Fi | eQut put Stream fos =
new Fi |l eQut put Strean(orders);
Cbj ect Qut put St ream oos =
new Obj ect Qut put Streamn(fos);
00s.wWiteQbject(order);
}catch (java.io. Fil eNot FoundException e){
Systemout.println(e.toString());
}catch (java.io.lOException e){
Systemout.println(e.toString());
}

}

30f5 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 4: Serialization

40f5

The Renot eSer ver . get Or der method does what the sendCOr der
method does in reverse using the get variable to keep track of which
orders have been viewed.

But first, this method checks the val ue variable. If it is equal to zero,
there are no orders to get from a file and view, and if it is greater than the
value in the get variable, there is at least one order to get from a file and
view. As each order is viewed, the get variable is incremented by 1.

publ i c Dat aOrder getOrder(){
Dat aOrder order = null;

i f(value == 0){
Systemout.println("No Orders To Process");
}

i f(value > get){
get += 1;
num = new | nteger(get);
orders = numtoString();
try{
FilelnputStreamfis =
new Fi |l el nput Strean{orders);
Obj ectl nput Stream oi s =
new Obj ect | nput Stream(fis);
order = (DataOrder)ois.readObject();
}catch (java.io. Fil eNot FoundException e){
Systemout.println(e.toString());
}catch (java.io.|lOexception e){
Systemout.printin(e.toString());
}catch (java.l ang. Cl assNot FoundException e){
Systemout.println(e.toString());

}el sef
Systemout.println("No Orders To Process");

}

return order;

}

Receiving Data

The RMIClient2.actionPerformed method gets an or der object and
references its fields to display data in the user interface.

i f(source == view){
try{

order = send.getOrder();
credi t No. set Text (order. cardnum ;
cust omer No. set Text (order. cust1D);
appl esNo. set Text (or der. appl es) ;
peachesNo. set Text (order. peaches);
pear sNo. set Text (order. pears);

cost = order.icost;

pri ce = new Doubl e(cost);
unit = price.toString();
i cost.setText (unit);

21-04-2000 17:34

http://developer.java.sun.com/developer...ning/Programming/BasicJava2/serial.html

Java (TM) Language Basics, Part 2, Lesson 4: Serialization http://developer.java.sun.com/developer...ning/Programming/BasicJava2/serial.html

items = order.itotal;
itms = new I nteger(itens);
i =itms.toString();
itotal.setText(i);
} catch (Exception e) {
System out. println("Cannot send data to server");

More Information

You can find more information on serialization in the Reading and Writing
(but no 'rithmetic) lesson in The Java™ Tutorial.

[TOP]
Printable Page &
Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies
Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
FAQ | Feedback | Map | A-Z Index
For more information on Java technology
and other software from Sun Microsystems, call: esun
e
(08?03 7tﬁ6 U7238 d Canada. dial ' Copyright © 1995-2000 Sun Microsystems, Inc.
utside the ©.5. and L-anada, dial your country's All Rights Reserved. Terms of Use. Privacy Policy.

AT&T Direct Access Number first.

50f5 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 5: Collections http://developer.java.sun.com/developer...ning/Programming/BasicJava2/collec.html

1of3

&
%

‘SE{;-—L
JAVA
Products & APIs
Developer Connection
Docs & Training
Online Support
Community Discussion
Industry News
Solutions Marketplace

Case Studies

Printable Page &

A-Z Index » | (Search)

EPER JAVA DEVELOPER CONNECTION"
TRAINING

Java™ Programming Language Basics, Part 2
Lesson 5: Collections

[<<BACK] [CONTENTS] [NEXT>>]

A collection is an object that contains other objects and provides methods
for working on the objects it contains. A collection can consist of the same
types of objects, but can contain objects of different types too.

This lesson adapts the RMIClient2 program from Part 2, Lesson 2: User
Interfaces Revisited to use the Collections application programming
interface (API) to maintain and print a list of unique customer IDs. The
customer IDs are all objects of type St ri ng and represent the same type
of information, a customer ID. You could, however, have a collection object
that contains objects of type St ri ng, | nt eger, and Doubl e if it makes
sense in your application.

¢ About Collections
¢ Creating a Set

¢ Printing

¢ More Information

About Collections

The Collection classes available to use in programs implement Collection
interfaces. Interfaces are abstract data types that let collections be
manipulated independently of their representation details. There are three
primary types of collection interfaces: Li st, Set, and Map. This lesson
focuses on the Li st and Set collections.

Set implementations do not permit duplicate elements, but Li st
implementations do. Duplicate elements have the same data type and
value. For example, two customer IDs of type St ri ng containing the value
Zelda are duplicate; whereas, an element of type St r i ng containing the
value 1 and an element of type | nt eger containing the value 1 are not
duplicate.

The API provides two general-purpose Set implementations. HashSet ,
which stores its elements in a hash table, and Tr eeSet , which stores its
elements in a balanced binary tree called a red-black tree. The example
for this lesson uses the HashSet implementation because it currently has
the best performance.

This diagram shows the Collection interfaces on the right and the class

hierarchy for the j ava. uti | . HashSet on the left. You can see that the
HashSet class implements the Set interface.

21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 5: Collections http://developer.java.sun.com/developer...ning/Programming/BasicJava2/collec.html

20f3

java.util.ahstractCollection java.util.Collection
(classes) (interfaces)

implements

java.util.abstractset java.util.set java.util List -

T

java.util HashSet

Creating a Set

This example adapts the RMIClient2.java class to collect customer IDs in a
Set and print the list of customer IDs whenever the Vi ew button is clicked.

The collection object is a Set so if the same customer enters multiple
orders, there is only one element for that customer in the list of customer
IDs. If the program tries to add an element that is the same as an element
already in the set, the second element is simply not added. No error is
thrown and there is nothing you have to do in your code.

The RMIClient2.actionPerformed method calls the addCust omrer method
to add a customer ID to the set when the order processor clicks the Vi ew
button.

The addCust oner method shown below adds the customer ID to the set
and prints a notice that the customer ID has been added.

//Create list of custoner |Ds
public void addCustoner(String custlD){
s.add(custlID);
System out. println("Custoner |ID added");

}
Printing

The pri nt method is called from the RMIClient2.actionPerformed method
when the order processor clicks the Vi ew button. The pri nt method
prints the elements currently in the set to the command line.

Note: A HashSet does not guarantee the order of the elements
in the set. Elements are printed in the order they occur in the set,
but that order is not necessarily the same as the order in which
the elements were placed in the set.

To traverse the set, an object of type | t er at or is returned from the set.

The I t er at or object has a hasNext method that lets you test if there is
another element in the set, a next that lets you move over the elements in
the set, and a r enove method that lets you remove an element.

21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 5: Collections http://developer.java.sun.com/developer...ning/Programming/BasicJava2/collec.html

The example print method shows two ways to print the set. The first way
uses an iterator and the second way simply calls Syst em out . println
on the set. In the iterator approach, the element returned by the next
method is printed to the command line until there are no more elements in
the set.

//Print custoner |Ds
public void print(){
//1terator approach
if(s.size()!=0){
Iterator it = s.iterator();
whi | e(it.hasNext()){
Systemout.printin(it.next());

}
/[l Call Systemout.println on the set
Systemout. println(s);

}el sef
Systemout.println("No custormer |Ds avail able");
}

}

More Information

You can find more information on Collections in the Collections trail in The
Java™ Tutorial.

[TOP]
Printable Page &
Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies
Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
FAQ | Feedback | Map | A-Z Index
For more information on Java technology
and other software from Sun Microsystems, call: 05&?1
Pkl
(800) 786-7638) , Copyright © 1995-2000 Sun Microsystems, Inc.
Outside _the U.S. and Canada,_dlal your country's All Rights Reserved. Terms of Use. Privacy Policy.
AT&T Direct Access Number first.
21-04-2000 17:34

30f3

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

ir’;?f,r A-Z Index = | Gearch)
iesg)
2= sear JAVA DEVELOPER CONNECTION"
JAVA TRAINING
Products & API - .
e JAVA@™ Programming Language Basics, Part 2
Docs & Training Lesson 6: Internationalization
Online Support
Community Discussion [«<<BACK] [CONTENTS] [NEXT>>]

Industry News

solutions Marketplace More and more companies, large and small, are doing business around the

Case Studies world using many different languages. Effective communication is always

printable Page & 00d business, so it follows that adapting an application to a local
language adds to profitability through better communication and increased
satisfaction.

The Java™ 2 platform provides internationalization features that let you
separate culturally dependent data from the application
(internationalization) and adapt it to as many cultures as needed
(localization).

This lesson takes the two client programs from Part 2, Lesson 5:
Collections, internationalizes them and adapts the text to France,
Germany, and the United States.

¢ |dentify Culturally Dependent Data

e Create Keyword and Value Pair Files
¢ [nternationalize Application Text

¢ |nternationalize Numbers

e Compile and Run the Application

* Program Improvements

e More Information

Identify Culturally Dependent Data

The first thing you need to do is identify the culturally dependent data in
your application. Culturally-dependent data is any data that varies from one
culture or country to another. Text is the most obvious and pervasive
example of culturally dependent data, but other things like number formats,
sounds, times, and dates must be considered too.

The RMIClientl.java and RMIClient2.java classes have the following
culturally-dependent data visible to the end user:

1lof12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

¢ Titles and labels (window titles, column

| Fruit $1.25 Each | - | || heads, and left column labels)

Select tems Specify Quantity
Apples 2 ¢ Buttons (Purchase, Reset, View)
Feaches 1
S = * Numbers (values for item and cost totals)

Total ltems:

- ¢ Error messages
Total Cost: :

Gredit card: r2ae-4:1-1224-3(| Although the application has a server
Customer ID: [munchiin program, the server program is not being
i = | rurchase || INternationalized and localized. The only

: : visible culturally-dependent data in the server
program is the error message text.

The server program runs in one place and the assumption is that it is not
seen by anyone other than the system administrator who understands the
language in which the error messages is hard coded. In this example, it is
English.

All error messagesin RM Clientland RM C i ent2 are handledintry
and cat ch blocks, as demonstrated by the pri nt method below. This
way you have access to the error text No data available for translation into
another language.

public void print(){
i f(s!=null){
Iterator it = s.iterator();
whil e(it.hasNext()){

try{
String custonmer = (String)it.next();

System out. println(customer);
}catch (java.util.NoSuchEl ement Exception e){
Systemout.println("No data avail abl e");

}
}
}el se{
Systemout. println("No customer |IDs avail able");

}
}

The pri nt method could have been coded to declare the exception in its
t hr ows clause as shown below, but this way you cannot access the error

message text thrown when the method tries to access unavailable data in
the set.

In this case, the system-provided text for this error message is sent to the
command line regardless of the locale in use for the application. The point
here is it is always better to use t ry and cat ch blocks wherever possible
if there is any chance the application will be internationalized so you can
localize the error message text.

public void print()

throws java. util.NoSuchEl enent Excepti on{
i f(s!=null){

20f12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

30f12

Iterator it = s.iterator();

whi | e(it.hasNext()){
String custoner = (String)it.next();
System out . println(custoner);

}el se{
System out. println("No customer |IDs avail able");
}

}

Here is a list of the title, label, button, number, and error text visible to the
user, and therefore, subject to internationalization and localization. This
data was taken from both RMIClientl.java and RMIClient2.java.

* Labels: Apples, Peaches, Pears, Total Items, Total Cost, Credit
Card, Customer ID

e Titles: Fruit $1.25 Each, Select Items, Specify Quantity
* Buttons: Reset, View, Purchase
* Number Values: Value for total items, Value for total cost

¢ Errors: Invalid Value, Cannot send data to server, Cannot look up
remote server object, No data available, No customer IDs available,
Cannot access data in server

Create Keyword and Value Pair Files

Because all text visible to the user will be moved out of the application and
translated, your application needs a way to access the translated text
during execution. This is done with keyword and value pair files, where this
is a file for each language. The keywords are referenced from the
application instead of the hard-coded text and used to load the appropriate
text from the file for the language in use.

For example, you can map the keyword purchase to Kaufen in the German
file, Achetez in the French file, and Purchase in the United States English
file. In your application, you reference the keyword purchase and indicate
the language to use.

Keyword and value pairs are stored in files called properties files because
they store information about the programs properties or characteristics.
Property files are plain-text format, and you need one file for each
language you intend to use.

In this example, there are three properties files, one each for the English,
French, and German translations. Because this application currently uses
hard-coded English text, the easiest way to begin the internationalization
process is to use the hard-coded text to set up the key and value pairs for
the English properties file.

The properties files follow a naming convention so the application can
locate and load the correct file at run time. The naming convention uses

21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

language and country codes which you should make part of the file name.
The language and country are both included because the same language
can vary between countries. For example, United States English and
Australian English are a little different, and Swiss German and Austrian
German both differ from each other and from the German spoken in
Germany.

These are the names of the properties files for the German (de_DE),
French (f r _FR), and American English (en_US) translations where de,
fr, and en indicate the German (Deutsche), French, and English
lanuages; and DE, FR, and US indicate Germany (Deutschland), France,
and the United States:

* MessagesBundle_de_ DE.properties
¢ MessagesBundle_en_US.properties
¢ MessagesBundle_fr_FR.properties

Here is the English language properties file. Keywords appear to the left of
the equals (=) sign, and text values appear to the right.

MessagesBundle en US.properties

appl es=Appl es:
peaches=Peaches:

pear s=Pear s:
itens=Total Itens:
cost =Total Cost:
card=Credit Card
cust oner =Custoner |D

title=Fruit 1.25 Each
l1col =Sel ect |tens
2col =Specify Quantity

reset =Reset
Vi ew=Vi ew
pur chase=Pur chase

i nval i d=I nvalid Val ue
send=Cannot send data to server
nol ookup=Cannot | ook up renote server object

nodat a=No data avail abl e
nol D=No custoner | Ds avail abl e
noser ver =Cannot access data in server

With this file complete, you can hand it off to your French and German
translators and ask them to provide the French and German equivalents
for the text to the right of th equals (=) sign. Keep a copy for yourself
because you will need the keywords to internationalize your application
text.

The properites file with the German translations produces this user
interface for the fruit order client:

40f12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

50f12

— Friichte 1,25 jede =
B uswahl treffen Menge angehen

Apfel: 12

Birnen: 35

Ffirsiche: 10

Anzahl Frichte:

Sesamtkosten:

Kreditkarte: 123 221-444-6962

Kundenidentifizierung:|heidi

Zuriicksetzen | Kaufen

The properties file with the French translations produces this user interface
for the fruit order client:

| |
—| Fruit 1,25 pidce EE
Icho sisszz 2s €l2ranls Inciguez |z guandie

Fonmes: 1%

Peches %®

Foies 11

Pattia tolal: &

Pryical: P

Gz e de Zrécit 123 327 ddd-6 562

Nimgnecee znl chire

Réinil alisez nchetez

Internationalize Application Text

This section walks through internationalizing the RMIClientl.java program.
The RMIClient2.java code is almost identical so you can apply the same
steps to that program on your own.

Instance Variables

In addition to adding an import statement for the j ava. uti | . * package
where the internationalization classes are, this program needs the following
instance variable declarations for the internationalization process:

//lnitialized in main nethod
static String | anguage, country;
Local e currentLocal e;
static ResourceBundl e nmessages;

//1nitialized in actionPerforned nethod
Nunmber For mat nunfor mat ;

main Method

The program is designed so the user specifies the language to use at the
command line. So, the first change to the mai n method is to add the code

21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

6 0of 12

to check the command line parameters. Specifying the language at the
command line means once the application is internationalized, you can
easily change the language without any recompilation.

The String[] args parameter to the mai n method contains arguments
passed to the program from the command line. This code expects 3
command line arguments when the end user wants a language other than
English. The first argument is the name of the machine on which the
program is running. This value is passed to the program when it starts and
Is needed because this is a networked program using the Remote Method
Invocation (RMI) API.

The other two arguments specify the language and country codes. If the
program is invoked with 1 command line argument (the machine name
only), the country and language are assumed to be United States English.

As an example, here is how the program is started with command line
arguments to specify the machine name and German language (de DE).
Everything goes on one line.

java -Djava.rm .server. codebase=
http://kg6py/ ~zel da/ cl asses/
-Dj ava. security. policy=java. policy
RM Clientl kg6py. eng.sun.com de DE

And here is the mai n method code. The curr ent Local e instance
variable is initialized from the | anguage and count r y information passed
in at the command line, and the nessages instance variable is initialized
from the current Local e.

The nessages object provides access to the translated text for the
language in use. It takes two parameters: the first parameter
"MessagesBundl e" is the prefix of the family of translation files this
aplication uses, and the second parameter is the Local e object that tells
the Resour ceBundl e which translation to use.

Note: This style of programming makes it possible for the same
user to run the program in different languages, but in most cases,
the program will use one language and not rely on command-line
arguments to set the country and language.

If the application is invoked with de DE command line parameters, this
code creates a Resour ceBundl e variable to access the
MessagesBundl e_de DE. properti es file.

public static void main(String[] args){
/I Check for | anguage and country codes
if(args.length '= 3) {
| anguage = new String("en");
country = new String ("US");
Systemout. println("English");
}el sef

21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

| anguage = new String(args[1]);
country = new String(args[2]);
Systemout. println(language + country);

}

/I Create | ocale and resource bundl e
current Local e = new Local e(l anguage, country);
nmessages = ResourceBundl e. get Bundl e(" MessagesBundl| e",
current Local e);

W ndowLi stener | = new W ndowAdapter () {
public void wi ndowCl osi ng(W ndowEvent e) {
Systemexit(0);
}
1

//Create the RM dientl object
RMCientl frane = new RMClient1();

frame. addW ndowLi st ener (1) ;
frame. pack();
frame. setVisible(true);

i f(System get SecurityManager() == null) {
Syst em set Secur it yManager (
new RM SecurityManager());
}

try {
String name = "//" + args[0] + "/Send";
send = ((Send) Nam ng. | ookup(nane));
} catch (java.rm . Not BoundException e) {
System out. printl n(nmessages. get Stri ng(
"nol ookup"));
} catch(java.rm .RenpteException e){
System out . printl n(nmessages. get Stri ng(
"nol ookup"));
} catch(java. net. Mal f ormedURLException e) {
System out. printl n(nessages. get Stri ng(
"nol ookup"));

}

The applicable error text is accessed by calling the get St ri ng method on
the Resour ceBundl e, and passing it the keyword that maps to the
applicable error text.

try {
String name = "//" + args[0] + "/Send";
send = ((Send) Nam ng. | ookup(nane));
} catch (java.rni.Not BoundException e) {
System out. printl n(nessages. get Stri ng(
"nol ookup"));
} catch(java.rm .RenpteException e){
System out. printl n(nessages. get Stri ng(
"nol ookup"));
} catch(java. net. Mal formredURLException e) {
System out. printl n(nessages. get Stri ng(
"nol ookup"));

70f12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization

8of12

Constructor

The window title is set by calling the get St ri ng method on the
Resour ceBundl e, and passing it the keyword that maps to the title text.
You must pass the keyword exactly as it appears in the translation file, or
you will get a runtime error indicating the resource is unavailable.

RMClientl(){

//Set windowtitle
setTitl e(nmessages.getString("title"));

The next thing the constructor does is use the ar gs parameter to look up
the remote server object. If there are any errors in this process, the

cat ch statements get the applicable error text from the

Resour ceBundl e and print it to the command line. User interface objects
that display text, such as JLabel and JButt on, are created in the same
way:

/I Create left and right colum | abels
col 1l = new JLabel (messages. get String("1col"));
col 2 = new JLabel (nmessages. get String("2col"));

// Create buttons and neke action |isteners
pur chase = new JButton(nmessages. get String(
"purchase"));
pur chase. addActi onLi stener (this);

reset = new JButton(messages.getString("reset"));
reset.addActi onLi stener(this);

actionPerformed Method

In the act i onPer f or med method, the | nval i d Val ue error is caught
and translated:

i f(order.apples.length() > 0){
[/ Catch invalid nunmber error

try{
appl esNo = I nteger.val ueC (order. appl es);

order.itotal += appl esNo.intVal ue();
}cat ch(j ava. |l ang. Nunber For mat Excepti on e) {
appl eqnt . set Text (nessages. getString("invalid"));

} else {
order.itotal += O;
}

The act i onPer f or med method calculates item and cost totals,
translates them to the correct format for the language currently in use, and
displays them in the user interface.

Internationalize Numbers

A Nurmber For mat object is used to translate numbers to the correct
format for the language currently in use. To do this, a Nunber For mat

21-04-2000 17:34

http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

object is created from the cur r ent Local e. The information in the
current Local e tells the Nunber For mat object what number format to
use.

Once you have a Nunber For mat object, all you do is pass in the value
you want translated, and you receive a St r i ng that contains the number
in the correct format. The value can be passed in as any data type used
for numbers such as i nt, | nt eger, doubl e, or Doubl e. No code such
as to convert an | nt eger toan i nt and back again is needed.

// Create nunber formatter
nunFor mat = Nunber For mat . get Nunber | nst ance(
current Local e);

/1 Display running tota
text = nunFormat.format (order.itotal);
this.itens. set Text (text);

/1 Cal cul ate and di splay runni ng cost
order.icost = (order.itotal * 1.25);
text2 = nunmFormat. format (order.icost);
this.cost.set Text(text?2);

try{
send. sendOr der (order);

} catch (java.rm . RenoteException e) {
Systemout. println(messages. getString("send"));
}

Compile and Run the Application

Here are the summarized steps for compiling and running the example
program. The important thing to note is that when you start the client
programs, you need to include language and country codes if you want a
language other than United States English.

Compile
These instructions assume development is in the zel da home directory.

Uni x:

cd / hone/ zel da/ cl asses

javac Send.java

javac RenoteServer.java

javac RM Client2.java

javac RM Clientl.java

rmc -d . RenoteServer

cp RenoteServer*.class /hone/zel da/public_htm/cl asses
cp Send. class /honme/zel da/public_htm/classes

cp DataOrder.class /hone/zel da/ public_htm/cl asses

W n32:

cd \ hone\ zel da\ cl asses
javac Send.java

javac RenoteServer.java
javac RM Client2.java
javac RM Clientl.java

9o0of12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

rmc -d . RenoteServer
copy RenoteServer*. cl ass
\ hone\ zel da\ public_htm \cl asses
copy Send. cl ass \ hore\ zel da\ public_htm\cl asses
copy DataOrder.class \hone\zel da\public_htm\classes

Start rmi Registry
Unix:

cd /home/ zel da/ public_htm/classes
unset env CLASSPATH
rmregistry &

Win32:

cd \hone\ zel da\ public_htm\cl asses
set CLASSPATH=
start rmiregistry

Start the Server
Unix:

cd /hone/ zel da/ public_htm /cl asses

java -Djava.rm .server.codebase=
http://kg6py/ ~zel da/ cl asses

-Dtava.rm . server. host name=kg6py. eng. sun. com

-Dj ava. security. policy=java. policy RenoteServer

W n32:
cd \hone\ zel da\ public_htm\cl asses
java -Djava.rm .server. codebase=
file:c:\hone\zel da\public_htn\classes
-Dj ava.rm . server. host name=kg6py. eng. sun. com
-Dj ava. security. policy=java. policy RenoteServer

Start RMIClientl in German

Note the addition of de DE for the German language and country at the
end of the line.

Uni x:
cd /hone/ zel da/ cl asses

java -Djava.rnm .server. codebase=
http://kg6py/ ~zel da/ cl asses/

- Dj ava. security. policy=java. policy
RM Clientl kg6py. eng.sun.com de DE

W n32:
cd \honme\ zel da\ cl asses

java -Djava.rm .server.codebase=
file:c:\hone\zel da\cl asses\

-Dj ava. security. policy=java.policy RMCientl
kg6py. eng. sun. com de DE

10 of 12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

Start RMIClient2 in French

Note the addition of f r FR for the French language and country at the end
of the line.

Uni x:
cd /hone/ zel da/ cl asses

java -Djava.rn .server. codebase=
http://kg6py/ ~zel da/ cl asses
-Dj ava. rm . server. host name=kq6py. eng. sun. com
-D ava. security. policy=java. policy
RM Client2 kg6py. eng.sun.comfr FR

W n32:
cd \hone\ zel da\ cl asses

java -Djava.rm .server. codebase=
file:c:\hone\zel da\public_htm\classes
-Dj ava. rm . server. host name=kg6py. eng. sun. com
-Dj ava. security. policy=java.policy RMClient2
kq6py. eng. sun. conf hone/ zel da/ public_htm fr FR

Program Improvements

A real-world scenario for an ordering application like this might be that
RMIClientl is an applet embedded in a web page. When orders are
submitted, order processing staff run RMIClient2 as applications from their
local machines.

So, an interesting exercise is to convert RM Cl i ent 1. j ava to its applet
equivalent. The translation files would be loaded by the applet from the
same directory from which the browser loads the applet class.

One way is to have a separate applet for each language with the language
and country codes hard coded. Your web page can let them choose the
language by clicking a link that launches the appropriate applet. Here are
the source code files for the English, French, and German applets.

Here is the HTML code to load the French applet on a Web page.

<HTM_>

<BCODY>

<APPLET CODE=RM Fr enchApp. cl ass W DTH=300 HElI GHT=300>
</ APPLET>

</ BODY>

</ HTM_>

Note: To run an applet written with Java™ 2 APIs in a browser,
the browser must be enabled for the Java 2 Platform. If your
browser is not enabled for the Java 2 Platform, you have to use
appletviewer to run the applet or install Java Plug-in. Java Plug-in
lets you run applets on web pages under the 1.2 version of the
Javal virtual machine (VM) instead of the web browser's default
Java VM.

11 of 12 21-04-2000 17:34

Java(TM) Language Basics, Part 2, Lesson 6: Internationalization http://developer.java.sun.com/developer...raining/Programming/BasicJava2/int.html

To use applet viewer, type the following where r mi French. ht ml is the
HTML file for the French applet.

appl etviewer rm French. htm

Another improvement to the program as it currently stands would be
enhancing the error message text. You can locate the errors in the Java
API docs and use the information there to make the error message text
more user friendly by providing more specific information.

You might also want to adapt the client programs to catch and handle the
error thrown when an incorrect keyword is used. Here are the error and
stack trace provided by the system when this type of error occurs:

Exception in thread "nmain"
java. util .M ssi ngResour ceExcepti on:

Can't find resource
at java.util.ResourceBundl e. get Obj ect (Conpi |l ed Code)
at java.util.ResourceBundl e. get String(Conpil ed Code)
at RMCientl.<init>(Conpiled Code)
at RM dientl. mai n(Conpil ed Code)

More Information

You can find more information on Internationalization in the
Internationalization trail in The Java Tutorial.

You can find more informationon applets in the Writing Applets trail in The
Java Tutorial.

1 As used on this web site, the terms "Java virtual machine" or "JVM"
mean a virtual machine for the Java platform

[TOP]

Printable Page &

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies
Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
FAQ | Feedback | Map | A-Z Index

For more information on Java technology

and other software from Sun Microsystems, call: Q'Sﬂﬂ
oo

(800) 786-7638 Copyright © 1995-2000 Sun Microsystems, Inc.

Outside the U.S. and Canada, dial your country's

:) All Rights Reserved. Terms of Use. Privacy Policy.
AT&T Direct Access Number first.

12 of 12 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html

i"’%ﬁ A-Z Index » | (Search)
i)
= Lear JAVA DEVELOPER CONNECTION"
JAVA TRAINING
Products & API M -
D”;j; — Java™ Programming Language Basics, Part
Docs & Training Lesson 7: Packages and Java™ Archive File Forn
Online Support
Community Discussion [<<BACK] [CONTENTS] [NEXT

Industry News

Solutions Marketplace Until now, you have used classes from the Java API library by importing the

Case Studies package containing the class or classes you need. A package is a convenie

Printable Page & way to organize groups of related classes, and in development, you should
organize your application files into packages too. Packages make it easier
locate and use the class files and help you control access to class data at r
time.

When your application is fully tested, debugged, and ready for deployment,
use the Java™ Archive file format to deploy the application. JAR file format
a compression and file packaging format and tool for bundling executable fil
with any other related application files so they can be deployed as one unit.

This lesson shows you how to organize the program files from Part 2, Less
6: Internationalization into packages and deploy the executable and other
related files to production using JAR file format. Normally, you would use
packages from the beginning of development.

¢ Setting up Class Packages
° Create the Directories
o Declare the Packages
o Make Classes and Fields Accessible
Change Client Code to Find the Properties File
e Compile and Run the Example
* Using JAR Files to Deploy
o Server Set of Files
o Fruit Order Client Set of Files
> View Order Client Set of Files
o More Information

[e]

Setting up Class Packages

It is easy to organize class files into packages. All you do is put related clas
files in the same directory, give the directory a name that relates to the
purpose of the classes, and add a line to the top of each class file that
declares the package name, which is the same as the directory name wher
they reside.

For example, the class and other related files for the program files from Pa
2, Lesson 6: Internationalization can be divided into three groups of files: fru
order client, view order client, and server files. Although these three sets of
classes are related to each other, they have different functions and are to

lof9 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html

20f9

deployed separately.

Create the Directories

To organize the internationalization program into three packages, you could
create the following three directories and move the listed source files into

them:

¢ clientl

RMIENglishApp.java
RMIFrenchApp.java
RMIGermanApp.java
MessagesBundle_de DE.properties
MessagesBundle_en_US.properties
MessagesBundle_fr_FR.properties
index.html

rmiFapp.html

rmiGapp.html

rmiEapp.html

java.policy

* client2

o

o

o

o

(<]

RMIClient2.java
MessagesBundle_de DE.properties
MessagesBundle_en_US.properties
MessagesBundle _fr_FR.properties
java.policy

® server

(<]

(<]

o

o

DataOrder.java
RemoteServer.java
Send.java
java.policy

Declare the Packages

Each *. j ava file needs a package delcaration at the top that reflects the

name of the directory. Also, the fruit order (cl i ent 1 and view order

(cl'i ent 2) client class files need an import statement for the server packar

because they have to access the remote server object at runtime.

As an example, the package declaration and import statements for the

RMIClient2.java class file look like this:

/| package decl aration
package client 2;

i nport
i mport
i mport
i nport

i nport
i mport

i mport
i mport

j ava. awmt . Col or;
java.awm . Gri dLayout ;
java. awm . event . *;

j avax. swi ng. *;

java.io.*;
java. net. *;

java.rm . *;
java.rm .server.*;

21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html

30f9

i mport java.util.*,;
import java.text.*;

/1l nmport server package
i nport server. *;

Make Classes and Fields Accessible

With class files organized into packages, you have to declare the server
classes in the ser ver directory publ i ¢ so they can be instantiated by clie
programs, which are created from classes inthe cli ent1 and cl i ent 2
directories. If you do not specify publ i ¢, a class can only be instantiated |
an object created from a class in the same package.

So client programs can access the fruit order data, the fields of the

Dat aOr der class have to be publ i ¢ too. The RemoteServer class and
Send interface need to be publ i ¢ classes, but their fields do not need to t
public because the do not have public data.

Fields and methods without an access specifier such as publ i ¢ can only k
accessed by objects created from classes in the same package.

Here is the new DataOrder class.
package server
i nport java.io.*;

/I Make cl ass public
public class DataOrder inplenents Serializabl ef

// Make fields public
public String appl es, peaches, pears, cardnum custlD;
public doubl e icost;
public int itotal;

}

Change Client Code to Find the Properties Files

In the example, the properties files (Messages_*) are stored in the
directories with the client source files. This makes it easier to package and
deploy the files later. So the programs can field the properties files, you ha\
to make one small change to the client source code.

The code that creates the nessages variable needs to include the director
(package name) as follows:

messages = Resour ceBundl e. get Bundl e(
"client2" +
Fil e. separat or Char +
"MessagesBundl e", currentlLocal e);

Compile and Run the Example

Compiling and running the example organized into packages is a little differe

21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html

from compiling and running the example in previous lessons. First, you have
execute the compiler and interpreter commands from one directory above ti
package directories, and second, you have to specify the package directori
to the compiler and interpreter commands.

Compile
These instructions assume development occurs in the zel da home directot

Uni x:
cd /home/ zel da/ cl asses

javac server/ Send.java
javac server/ RenoteServer.java
javac client2/ RMClient2.java
javac client1/RM FrenchApp.java
javac clientl/RM Ger nenApp. j ava
javac clientl1l/RM EnglishApp.java
rmc -d . server.RenoteServer
cp server/ Renpot eServer*. cl ass
[hone/ zel da/ public_htm /cl asses
cp server/ Send. cl ass
[hone/ zel da/ public_htm /cl asses
cp server/ Dat aOrder. cl ass
[home/ zel da/ publ i c_htm /cl asses

W n32:
cd \ hone\ zel da\ cl asses

javac server\ Send. | ava
javac server\RenpteServer.java
javac client2\RM Cl i ent 2. j ava
javac client1\RM FrenchApp.j ava
javac client1\RM Ger manApp. j ava
javac client1\RM EnglishApp.java
rmc -d . server.RenoteServer
copy server\Renot eServer*. cl ass
\ horne\ zel da\ public_htn\cl asses
copy server\ Send. cl ass
\ hone\ zel da\ public_htm\cl asses
copy server\Dat aOrder. cl ass
\ hone\ zel da\ public_htm\cl asses

Note: Therm ¢ -d . server. Renot eServer line uses
server . Renpt eSer ver instead of ser ver/ Renpt eSer ver so
the st ub and _skel classes are generated properly with the
package.

Start rmi Registry:

Uni x:

cd /hone/ zel da/ public_htm /cl asses
unset env CLASSPATH

rmregistry &

W n32:

40f9 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html

50f9

cd \hone\ zel da\ public_htm\cl asses
set CLASSPATH=
start rmiregistry

Start the Server
uUnix:
cd /hone/ zel da/ public_htm /cl asses

java -Djava.rmn .server.codebase=
http://kg6py/ ~zel da/ cl asses
-Dj ava. rm . server. host nanme=kg6py. eng. sun. com
-Dj ava. security. policy=
server/java. policy server/ RenoteServer

W n32:
cd \ hone\ zel da\ public_htm\cl asses

java -Djava.rm .server.codebase=
file:c:\hone\zel da\public _htn\classes
-Dj ava. rm . server. host name=kq6py. eng. sun. com
-D ava. security. policy=
server\java. policy server\Renot eServer

Start RMIGermanApp Here is the HTML code to load the German applet,
Note the directory/package name prefixed to the applet class name
(cl'i ent 1/ RM Ger manApp. cl ass).

<HTM_>

<BODY>

<APPLET CODE=cl i ent 1/ RM Ger manApp. cl ass W DTH=300 HEI GHT=3C
</ APPLET>

</ BODY>

</ HTML>

To run the applet with appletviewer, invoke the HTML file from the directory
just above cl i ent 1 as follows:

cd /hone/ zel da/ cl asses

appl et vi ewer rni Gapp. ht n
Start RMIClient2 in French

Uni x:
cd /hone/ zel da/ cl asses

java -Djava.rm .server. codebase=
http://kg6py/ ~zel da/ cl asses

-Dj ava. rm . server. host nane=kqg6py. eng. sun. com

-Dj ava. security. policy=client2/java. policy
client2/ RMCient2 kqg6py.eng.sun.comfr FR

W n32;
cd \hone\ zel da\ cl asses

java -Djava.rm .server.codebase=
file:c:\hone\zel da\public_htm\classes

21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html

-Dj ava. rm . server. host name=kq6py. eng. sun. con
-D ava. security. policy=client2\java. policy
client21RM Client2 kg6py. eng. sun.comfr FR

Using JAR Files to Deploy

After testing and debugging, the best way to deploy the two client and serv
files is to bundle the executables and other related application files into thre
separate JAR files, one JAR file for each client program, and one JAR file f
the server program.

JAR files use the ZIP file format to compress and pack files into, and
decompress and unpack files from, the JAR file. JAR files make it easy to
deploy programs that consist of many files. Browsers can easily download
applets bundled into JAR files, and the download goes much more quickly
than if the applet and its related files were not bundled into a JAR file.

Server Set of Files
Here are the server files:

* RemoteServer.class

* RemoteServer_skel.class
* RemoteServer_stub.class
Send.class
DataOrder.class

* java.policy

Compress and Pack Server Files

To compress and pack the server files into one JAR file, type the following
command on one line. This command is executed in the same directory witt
the files. If you execute the command from a directory other than where the
files are, you have to specify the full pathname.

jar cf server.jar
Renot eServer. cl ass
Renot eSer ver _skel . cl ass
Renot eSer ver _st ub. cl ass
Send. cl ass
Dat aOr der. cl ass
java. policy

j ar isthe j ar command. If you type j ar with no options, you get the
following help screen. You can see from the help screen that the cf options
to the j ar command mean create a new JAR file named ser ver. j ar anc
put the list of files that follows into it. The new JAR file is placed in the curre
directory.

kqbpy% j ar

Usage: jar {ctxu}[vinDM [jar-file] [manifest-file]
[-Cdir] files ...

Opti ons:
-Cc create new archive
-t list table of contents for archive

60f9 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html

-x extract nanmed (or all) files from archive
-u update existing archive
-v generate verbose output on standard out put
-f specify archive file nane
-m include manifest information from specified
mani fest file
-0 store only; use no ZIP conpression
-M Do not create a manifest file for the entries
-C change to the specified directory and
i nclude the following file
If any file is a directory then it is processed
recursively.
The manifest file nane and the archive file nane
needs to be specified in the same order the
'm and 'f' flags are specified.

Exanmple 1: to archive two class files into an
archive called classes.jar:
jar cvf classes.jar Foo.class Bar.class
Exanpl e 2: use an existing manifest file 'nynmanifest'’
and archive all the files in the foo/ directory
into 'classes.jar':
jar cvfmclasses.jar nymanifest -C foo/

To deploy the server files, all you have to do is move the server. j ar file
a publicly accessible directory on the server where they are to execute.

Decompress and Unpack Server Files

After moving the JAR file to its final location, the compressed and packed fi
need to be decompressed and unpacked so you can start the server. The
following command means extract (x) all files from the server. j ar file (f

jar xf server.jar
Fruit Order Set of Files

The fruit order set of files (below) consists of applet classes, web pages,

translation files, and the policy file. Because they live on the web, they neec
to be in a directory accessible by the web server. The easiest way to deplc
these files is to bundle them all into a JAR file and copy them to their locatic

* RMIEnNglishApp.class

* RMIFrenchApp.class

* RMIGermanApp.class

¢ index.html (top-level web page where user chooses language)
¢ rmiEapp.html (second-level web page for English)
¢ rmiFapp.html (second-level web page for French)

¢ rmiGapp.html (second-level web page for German)
* MessagesBundle_de_ DE.properties

* MessagesBundle_en_US.properties

* MessagesBundle_fr_FR.properties

* java.policy

Compress and Pack Files

70f9 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html

jar cf applet.jar
RM Engl i shApp. cl ass
RM FrenchApp. cl ass
RM Ger manApp. cl ass
i ndex. ht m
rm Eapp. ht m
rm Fapp. htm
rm Gapp. ht m
MessagesBundl e_de DE. properties
MessagesBundl e_en_US. properties
MessagesBundl e_fr_FR properties
java. policy

To deploy the fruit order client files, copy the appl et . j ar file to its final
location.

Decompress and Unpack Files

An applet in a JAR file can be invoked from an HTML file without being
unpacked. All you do is specify the ARCHI VE option to the APPLET tag in
your web page, which tells appletviewer the name of the JAR file containing
the class file. Be sure to include the package directory when you specify the
applet class to the CODE option.

You can leave the translation files and policy file in the JAR file. When using
appletviewer, the applet invoked from the JAR file will find them in the JAR
file.

<HTM_>

<BODY>

<APPLET CODE=cl i ent 1/ RM FrenchApp. cl ass
ARCHI VE="applet.jar"
W DTH=300
HEI GHT=300>

</ APPLET>

</ BODY>

</ HTM_>

However, you do need to unpack the web pages so you can move them to
their final location. The following command does this. Everything goes on or
line.

jar xv applet.jar index.htn
rm Eapp. ht m
rm Fapp. ht m
rm Gapp. htm

Note: To run the HTML files from a browser, you need to unpack
the JAR file, copy the j ava. pol i cy file to your home directory and
make sure it has the right name (. j ava. pol i cy for Unix and

j ava. pol i cy for Windows), and install Java Plug-In.

View Order Set of Files

80f9 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 7: Packages and Java Archive (JAR) http://developer.java.sun.com/developer...raining/Programming/BasicJava2/jar.html
The view order set of files (below) consists of the application class file and
the policy file.

* RMIClient2.class
¢ java.policy

Compress and Pack Files
jar cf vieworder.jar RMClient2.class java. policy

To deploy the view order client files, copy the vi ewor der . j ar file to its fil
location.

Decompress and Unpack Files
jar xf vieworder.jar
More Information

You can find more information on packages in the Creating and Using
Packages lesson in The Java Tutorial.

You can find more information on these and other JAR file format topics in t
JAR File Format trail in The Java Tutorial.

[rc

Printable Page S

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies
Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
EAQ | Feedback | Map | A-Z Index
For more information on Java technology
and other software from Sun Microsystems, call: osun
bbby
(800) 786-7638 Copyright © 1995-2000 Sun Microsystems, Inc.

Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

All Rights Reserved. Terms of Use. Privacy Policy.

90f9 21-04-2000 17:34

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http:/developer.java.sun.com/developer... Training/Programming/BasicJava2/oo.html

10of9

&
%

‘SE{;‘!-
JAVA
Products & APIs
Developer Connection
Docs & Training
Online Support
Community Discussion
Industry News
Solutions Marketplace

Case Studies

Printable Page &

A-Z Index » | (Search)

EPER JAVA DEVELOPER CONNECTION"
TRAINING

Java™ Programming Language Basics, Part 2
Lesson 8: Object-Oriented Programming

[<<BACK] [CONTENTS] [NEXT>>]

You have probably heard a lot of talk about object-oriented programming.
And, if the Java™ programming language is your first experience with an

object-oriented language, you are probably wondering what all the talk is

about.

You already know a little about object-oriented programming because after
working the example programs in Java Programming Language Basics,
Part 1 and Part 2, you are somewhat familiar with the object-oriented
concepts of class, object, instance, and inheritance plus the access levels
publ i c and pri vat e. But mostly, you have been doing object-oriented
programming without really thinking about it.

And that is one of the great things about the Java programming language.
It is inherently object oriented.

To help you gain a deeper understanding of object-oriented programming
and its benefits, this lesson presents a very brief overview of
object-oriented concepts and terminology as they relate to some of the
example code presented in this tutorial.

¢ Object-Oriented Programming Defined

e Classes

¢ Objects

e Well-Defined Boundaries and Cooperation
¢ |nheritance

¢ Polymorphism

¢ Data Access Levels

* Your Own Classes

¢ Program Improvements

* More Information

Object-Oriented Programming Defined

Object-oriented programming is a method of programming based on a
hierarchy of classes, and well-defined and cooperating objects.

Classes
A class is a structure that defines the data and the methods to work on

that data. When you write programs in the Java language, all program
data is wrapped in a class, whether it is a class you write or a class you

21-04-2000 17:35

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http://developer.java.sun.com/developer... Training/Programming/BasicJava2/oo.html

use from the Java platform API libraries.

The Exanpl ePr ogr amclass from the simple program in the first lesson of
Part 1 is a programmer-written class that uses the j ava. | ang. Syst em
class from the Java platform API libraries to print a character string to the
command line.

cl ass Exanpl eProgram {
public static void main(String[] args){
Systemout.println("l'"ma sinple Program);
}

}

Classes in the Java platform API libraries define a set of objects that share
a common structure and behavior. The j ava. | ang. Syst emclass used in
the example defines such things as standard input, output, and error
streams, and access to system properties. In contrast, the

j ava. | ang. Stri ng class defines character strings.

In the example, you do not see an explicit use of the St ri ng class, but in
the Java language, a character string can be used anywhere a method
expects to receive a St r i ng object. During execution, the Java platform
creates a St ri ng object from the character string passed to the
System out . printl n call, but your program cannot call any of the

St ri ng class methods because it did not instantiate the St ri ng object.

If you want access to the St ri ng methods, you can rewrite the example
program to create a St ri ng object as follows. This way, you can call a
method such as the St ri ng. concat method that adds text to the original
string.

cl ass Exanpl eProgram {
public static void main(String[] args){
String text = new String("l'ma sinple Program™");
Systemout.println(text);
String text2 = text.concat (
"that uses cl asses and objects");
System out. println(text?2);

}
}
The output looks like this:

I'"'ma sinple Program
I'"'ma sinmple Programthat uses classes and objects

Objects

An instance is an executable copy of a class. Another name for instance is
object. There can be any number of objects of a given class in memory at
any one time.

In the last example, four different St r i ng objects are created for the

concatenation operation, t ext object, t ext 2 object, and a Stri ng
object created behind the scenes from the " that uses classes and

20f9 21-04-2000 17:35

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http:/developer.java.sun.com/developer... Training/Programming/BasicJava2/oo.html

objects" character string passed to the St ri ng. concat method.

ExampleProgram
Ohject

v

StringBuffer Text Object System
Object | % (String Object) [™ Object

+

"that uses
classes and
objects" Ohject

\—, Textz Ohject [y %B‘bsjfcrt”

Also, because St ri ng objects cannot be edited, the
java. |l ang. Stri ng. concat method converts the St ri ng objects to
St ri ngBuf f er (editable) string objects to do the concatenation.

StringBuffer
Ohbject

Besides the St ri ng object, there is an instance of the
Exanpl ePr ogram j ava class in memory as well.

The Syst emclass is never instantiated by the Exanpl ePr ogr amclass
because it contains only static variables and methods, and therefore,
cannot be instantiated by a program, but it is instantiated behind the

scenes by the Java™ virtual machinel (VM).

Well-Defined Boundaries and Cooperation

Class definitions must allow objects to cooperate during execution. In the
previous section, you saw how the Syst em St ri ng, and

St ri ngBuf f er objects cooperated to print a concatenated character
string to the command line.

This section changes the example program to display the concatenated
character string in a JLabel component in a user interface to further
illustrate the concepts of well-defined class boundaries and object
cooperation.

The program code to place the text in a label to display it in a user
interface uses a hnumber of cooperating classes. Each class has its own
function and purpose as summarized below, and where appropriate, the
classes are defined to work with objects of another class.

* Exanpl ePr ogr amdefines the program data and methods to work on
that data.

¢ JFr ane defines the top-level window including the window title and
frame menu.

30f9 21-04-2000 17:35

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http:/developer.java.sun.com/developer... Training/Programming/BasicJava2/oo.html

40f9

* W ndowEvent defines behavior for (works with) the Close option on
the frame menu.

e Stri ng defines a character string to create the label.

* JLabel defines a user interface component to display static text.

¢ JPanel defines the background color, contains the label, and uses
the default layout manager (j ava. awt . Fl owlLayout) to position the
label on the display.

While each class has its own specific purpose, they all work together to
create the simple user interface you see here.

= Fruit $1.25 Each | - iJI

glI'masimple Program that uses classes and ohjects

i mport javax.swi ng.*;
i nport java.awt. Col or;
i nport java.aw.event.*;

cl ass Exanpl eProgram ext ends JFrane {

publ i ¢ Exanpl eProgran(){
String text = new String("l'ma sinple Program");
String text2 = text.concat (
"that uses classes and objects");

JLabel |abel = new JLabel (text2);
JPanel panel = new JPanel ();
panel . set Backgr ound(Col or.white);

get Cont ent Pane() . add(panel) ;
panel . add(| abel) ;

}

public static void main(String[] args){
Exanpl eProgram franme = new Exanpl eProgram();

frame.setTitle("Fruit $1.25 Each");
W ndowLi stener | = new W ndowAdapter () {
public void wi ndowCl osi ng(W ndowEvent e) {
Systemexit(0);
}

b

frame. addW ndowLi st ener (1) ;
frame. pack();
frame.setVisible(true);

}
}

Inheritance

One object-oriented concept that helps objects work together is
inheritance. Inheritance defines relationships among classes in an
object-oriented language. In the Java programming language, all classes
descend from j ava. | ang. Qbj ect and implement its methods.

21-04-2000 17:35

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http:/developer.java.sun.com/developer... Training/Programming/BasicJava2/oo.html

50f9

The following diagram shows the class hierarchy as it descends from

j ava. | ang. Qbj ect for the classes in the user interface example above.
The j ava. | ang. Obj ect methods are also shown because they are
inherited and implemented by all of its subclasses, which is every class in
the Java API libraries. j ava. | ang. Qbj ect defines the core set of
behaviors that all classes have in common.

As you move down the hierarchy, each class adds its own set of
class-specific fields and methods to what it inherits from its superclass or
superclasses. The j ava. awt . swi ng. JFr ame class inherits fields and
methods from j ava. awt . Fr ane, which inherits fields and methods from
j ava. awt . Cont ai ner, which inherits fields and methods from

j ava. awt . Conponent , which finally inherits from j ava. | ang. Qbj ect,
and each subclass adds its own fields and methods as needed.

java.lang.Chject
clone)
equalsq
finalizeq)
getClass()
hashCodeq)
natify ()
notify A1)
Ohject()
tostring()
wait()
wait(long timeout)
wait{long timeout, int nanos)

— java.lang.String

— javaawt event Windowadapter

— java.util EventObject java awt AWTEwent
i

L java.awt Component java awt WindowEvent
'I

java.awt.CompanentEvent

java.awt.Container

— java.awt swing. JPanel

I java.awt. swing.JLabel

1 javaawt Window

L java.awt. Frame F— javaawt swing. JFrame

Polymorphism

Another way objects work together is to define methods that take other
objects as parameters. You get even more cooperation and efficiency
when the objects are united by a common superclass. All classes in the
Java programming language have an inheritance relationship.

21-04-2000 17:35

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http:/developer.java.sun.com/developer... Training/Programming/BasicJava2/oo.html

For example, if you define a method that takes a j ava. | ang. Obj ect as
a parameter, it can accept any object in the entire Java platform. If you
define a method that takes a j ava. awt . Conponent as a parameter, it
can accept any component object. This form of cooperation is called
polymorphism.

You saw an example of polymorphism in Part 2, Lesson 5: Collections
where a collection object can contain any type of object as long as it
descends from j ava. | ang. Qbj ect . It is repeated here to show you that
Set collection can add a St ri ng object and an I nt eger object to the
Set because the Set . add method is defined to accept any class instance
that traces back to the j ava. | ang. Obj ect class.

String custlD = "munchkin";
I nteger creditCard = new Integer(25);

Set s = new HashSet();
s.add(custlD);
s. add(creditCard);

Data Access Levels

Another way classes work together is through access level controls.
Classes, and their fields and methods have access levels to specify how
they can be used by other objects during execution, While cooperation
among objects is desirable, there are times when you will want to explicitly
control access, and specifying access levels is the way to gain that
control. When you do not specify an access level, the default access level
Is in effect.

Classes

By default, a class can be used only by instances of other classes in the
same package. A class can be declared publ i ¢ to make it accessible to
all class instances regardless of what package its class is in. You might
recall that in Part 1, Part 1, Lesson 3: Building Applets, the applet class
had to be declared public so it could be accessed by the appletviewer tool
because the appletviewer program is created from classes in another
package.

Here is an applet class declared to have a publ i ¢ access level:

public class DbaAppl extends Appl et
i npl enents ActionLi stener {

Without the publ i ¢ access level (shown below), its access level is
package by default. You get an error when you try to interpret a class
with an access level of package with the appletviewer tool. The same is
true if the access level is pr ot ect ed or pri vat e.

cl ass DbaAppl extends Appl et
i npl ements ActionLi stener {

Also, in Part 2, Lesson 6: Internationalization the server classes are made

60f9 21-04-2000 17:35

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http:/developer.java.sun.com/developer... Training/Programming/BasicJava2/oo.html

70f9

public so client classes can access them.
Fields and Methods

Fields and methods can be declared pri vat e, pr ot ect ed, publ i c, or
package. If no access level is specified, the field or method access level
is package by default.

pri vat e: A private field or method is accessible only to the class in which
it is defined. In Part 1, Lesson 7: Database Access and Permissions the
connection, user name, and password for establishing the database
access are all private. This is to prevent an outside class from accessing
them and jeopardizing the database connection, or compromising the
secret user name and password information.

private Connection c;

pr ot ect ed: A protected field or method is accessible to the class itself,
its subclasses, and classes in the same package.

publ i c: A public field or method is accessible to any class of any
parentage in any package. In Part 2, Lesson 6: Internationalization server
data accessed by client programs is made public.

package: A package field or method is accessible to other classes in the
same package.

Your Own Classes

When you use the Java API library classes, they have already been
designed with the above concepts in mind. They all descend from

j ava. | ang. Obj ect giving them an inheritance relationship; they have
well-defined boundaries; and they are designed to cooperate with each
other where appropriate.

For example, you will not find a St ri ng class that takes an | nt eger
object as input because that goes beyond the well-defined boundary for a
St ri ng. You will, however, find the | nt eger class has a method for
converting its integer value to a St r i ng so its value can be displayed in a
user interface component, which only accepts St r i ng objects.

But what about when you write your own classes? How can you be sure
your classes have well-defined boundaries, cooperate, and make use of
inheritance? One way is to look at the functions you need a program to
perform and separate them into distinct modules where each functional
module is defined by its own class or group of classes.

Well-Defined and Cooperating Classes
Looking at the RMIClient2 class from the Part 2, Lesson 5: Collections

lesson, you can see it performs the following functions: Get data, display
data, store customer IDs, print customer IDs, and reset the display.

21-04-2000 17:35

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http://developer.java.sun.com/developer... Training/Programming/BasicJava2/oo.html

Getting data, displaying the data, and resetting the display are closely
related and easily form a functional module. But in a larger program with
more data processing, the storing and printing of customer IDs could be
expanded to store and print a wider range of data. In such a case, it would
make sense to have a separate class for storing data, and another class
for printing it in various forms.

You could, for example, have a class that defines how to store customer
IDs, and tracks the number of apples, peaches, and pears sold during the
year. You could also have another class that defines report printing. It
could access the stored data to print reports on apples, peaches, and
pears sold by the month, per customer, or throughout a given season.

Making application code modular by separating out functional units makes
it easier to update and maintain the source code. When you change a
class, as long as you did not change any part of its public interface, you
only have to recompile that one class.

Inheritance

Deciding what classes your program needs means separating functions
into modules, but making your code more efficient and easier to maintain
means looking for common functions where you can use inheritance. If you
need to write a class that has functionality similar to a class in the Java
API libraries, it makes sense to extend that API library class and use its
methods rather than write everything from scratch.

The RMIClient2 class from the Part 2, Lesson 5: Collections lesson
extends JFr ame to leverage the ready-made functionality it provides for a
program's top-level window including, frame menu closing behavior,
background color setting, and a customized title.

Likewise, if you want to add customized behavior to an existing class, you
can extend that class and add the functionality you want. For example, you
might want to create your own JBut t on class with a different look. To do
this, you can write your own class that extends JBut t on and implement it
to appear the way you want. Then your program can instantiate your
button class instead of the JBut t on class whenever you need a button
with the new look you created.

Access Levels

You should always keep access levels in mind when you declare classes,
fields, and methods. Consider which objects really need access to the
data, and use packages and access levels to protect your application data
from all other objects executing in the system.

Most object-oriented applications do not allow other objects to access
their fields directly by declaring them private. Then they make their
methods protected, public, or package as needed and allow other objects
to manipulate their private data by calling the methods only. This way, you
can update your class by changing a field definition and the corresponding
method implementation, but other objects that access that data do not

80f9 21-04-2000 17:35

Java (TM) Language Basics, Part 2, Lesson 8: Object-Oriented Programming http:/developer.java.sun.com/developer... Training/Programming/BasicJava2/oo.html

need to be changed because their interface to the data (the method
signature) has not changed.

Program Improvements

It is always best to restrict access as much as possible. Going back to
Part 2, Lesson 7: Packages and JAR Files, the server classes had to be
made publ i ¢ and the Dat aOr der class fields also had to be made
publ i ¢ so the client programs can access them.

At that time, no access level was specified for the other classes and fields
so they are all package by default. All methods have an access level of
public.

A good exercise would be to go back to the client classes and give the
classes, fields, and methods an access level so they are not accessed
inappropriately by other objects.

Here is one possible solution for the RMIClientl.java and RMIClient2.java
client programs. Can you explain why the act i onPer f or med method
cannot be made pri vat e? If not, make it pri vat e, run the j avac
command to compile, and see what the compiler has to say about it.

More Information

You can find more information on Object-oriented programming concepts
files in the Object-Oriented Programming Concepts trail in The Java
Tutorial.

1 As used on this web site, the terms "Java virtual machine” or "JVM"
mean a virtual machine for the Java platform.

[TOP]

Printable Page é

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies
Glossary - Applets - Tutorial - Employment - Business & Licensing - Java Store - Java in the Real World
FAQ | Feedback | Map | A-Z Index

For more information on Java technology

and other software from Sun Microsystems, call: 05”?1
oo

(800) 786-7638 Copyright © 1995-2000 Sun Microsystems. Inc.

Outside the U.S. and Canada, dial your country's

. . All Rights Reserved. Terms of Use. Privacy Policy.
AT&T Direct Access Number first.

90f9 21-04-2000 17:35

