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Abstract Perennial grasses, such as switchgrass (Panicum
viragatum) and Miscanthus (Miscanthus × giganteus), are
potential choices for biomass feedstocks with low-input and
high dry matter yield per hectare in the USA and Europe.
However, the biophysical potential to grow bioenergy
grasses varies with time and space due to changes in
environmental conditions. Here, we integrate the dynamic
crop growth processes for Miscanthus and two different
cultivars of switchgrass, Cave-in-Rock and Alamo, into a
land surface model, the Integrated Science Assessment
Model (ISAM), to estimate the spatial and temporal varia-
tions of biomass yields over the period 2001–2012 in the
eastern USA. The validation with observed data from sites
across diverse environmental conditions suggests that the
model is able to simulate the dynamic response of
bioenergy grass growth to changes in environmental con-
ditions in the central and south of the USA. The model is
applied to identify four spatial zones characterized by
their average yield amplitude and temporal yield variance
(or stability) over 2001–2012 in the USA: a high and
stable yield zone (HS), a high and unstable yield
zone (HU), a low and stable yield zone (LS), and a low

and unstable yield zone (LU). The HS zones are mainly
distributed in the regions with precipitation larger than
600 mm, and mean temperature range 292–294 K during
the growing season, including southern Missouri, north-
western Arkansas, southern Illinois, southern Indiana,
southern Ohio, western Kentucky, and parts of northern
Virginia. The LU yield zones are distributed in southern
parts of Great Plains with water stress conditions and
higher temporal variances in precipitation, such as Oklaho-
ma and Kansas. Three bioenergy grasses may not grow in the
LS yield zones, including western parts of Great Plains due to
extreme low precipitation and poor soil texture, and upper part of
north central, northeastern, and northern New England due to
extreme cold conditions.
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Introduction

The USA is the largest producer of biofuels in the world and is
converting nearly 40 % of its corn production into 14 billion
gallons per year of corn ethanol. Further increases in biofuel
production from cellulosic feedstocks are mandated by the
Renewable Fuel Standard (RFS), established by the Energy
Independence and Security Act, 2007, which mandates pro-
duction of at least 16 billion gallons per year of cellulosic
biofuels by 2022 [1].

Although conversion of cellulosic biomass to fuel is not yet
commercially viable, considerable research is underway on
high-yielding feedstock sources that could provide abundant
biomass for large-scale cellulosic biofuel production. Among
all non-grain feedstocks, two perennial crops, switchgrass
(Panicum viragatum) and Miscanthus (Miscanthus ×
giganteus), have been identified as among the best choices
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for low-input and high dry matter yield per hectare in the USA
and Europe [2–4]. Miscanthus is a C4 perennial rhizomatous
grass. It has been extensively grown in Europe for over
20 years and is recently being grown in field trials in the
USA [3]. Switchgrass is also a C4 native warm-season grass
from the USA and has historically been used as forage.
Studies suggest that latitude-of-origin of different
bioenergy grasses determines their varied adaptability
to edaphic conditions, such as winter hardiness, day
length, heat, dry and cold conditions, etc. [5].
Miscanthus × giganteus is more adapt to the region
below the US plant hardiness zone (PHZ) 5 [6]. On
the other hand, switchgrass cultivars are usually divided
into upland and lowland. Upland cultivars, such as
Cave-in-Rock, are more adapted to middle and northern
latitudes (PHZ 4–PHZ 7). Lowland cultivars, such as
Alamo, grow better in lower latitudes (PHZ 6–PHZ 9)
[7, 8]. The detailed physiological differences between
upland and lowland switchgrasses, as well as their dif-
ferences with Miscanthus, have been discussed in pre-
vious studies [4, 8].

While these perennial grasses have potential to help meet
future energy demand, the extent to which this potential can be
realized will depend on the biophysical potential to grow these
grasses while minimizing the diversion of land from food
production. We evaluate this potential by assessing the pro-
ductivity of these perennial grasses under different environ-
mental conditions in the USA. A number of crop productivity
modeling studies have estimated the biomass yields for
Miscanthus and switchgrass in the USA. For example, Jager
et al. [9] have developed empirical models to estimate yield
from factors associated with climate, soils, and management
for both lowland and upland switchgrass cultivars. However,
these model estimates are usually limited by available obser-
vation data from field trials and have limited representation of
diverse climate, soil, and topographical conditions across the
USA [10]. No attempt has been made to evaluate the biomass
yield for Miscanthus using an empirical-based approach,
mainly because field trials for Miscanthus are sparser than
for switchgrass and usually centralized in the Midwest region
[3, 11]. Several attempts have therefore been made using
mechanistic models to estimate the yield and the spatial
and temporal variability in yield of bioenergy grasses,
including ALMANAC [12], MISCANMOD [13, 14],
MISCANFOR [15], EPIC [16], WIMOVAC (BIOCRO)
[17], Agro-IBIS [18], Agro-BGC [19], and TEM [20].
Nair et al. [10] reviewed the differences among these
models. According to Nair et al. [10], the ALMANAC,
MISCANMOD, MISCANFOR, and EPIC models use
relatively simple radiation use efficiency method to sim-
ulate the biomass yields, while other models use a more
mechanistic biophysical approach to simulate the carbon
uptake and assimilation rates. Partitioning of carbon

among leaves, stem, root, and rhizome pools are based
on fixed carbon allocation fraction at each phenology
stage. WIMOVAC (BIOCRO) only accounts for the
water limitation on biomass allocation, whereas the
ALMANC and EPIC models not only account for water
limitation effect on biomass allocation but also temper-
ature, nitrogen, and aeration limitations on plant phenol-
ogy and biomass yield. Moreover, ALMANC and EPIC
are the only two models that account for full hydrolog-
ical cycle processes. Nitrogen cycle dynamics processes
are only considered in the EPIC, ALMANAC, and
Agro-BGC models.

This study builds upon and extends the approaches of
the models discussed above and aims to integrate the
dynamic crop growth processes for Miscanthus and two
cultivars of switchgrass perennial grasses into a land
surface model, the Integrated Science Assessment Model
(ISAM), to estimate the biomass yields for these three
grasses in the USA. The western USA, where bioenergy
grasses could not survive due to drier conditions [7], is
excluded in this study (irrigation is not addressed in this
study). The adaptability of three bioenergy grasses at
different latitudes is determined by accounting various
environmental factors, which vary with day length, the
effect of soil texture, soil slope, bedrock layer depth on
water uptake by the grasses, and tolerance to winter
hardiness, heat, dry, and cold conditions.

While ISAM methodologies to model carbon assimi-
lation, water and energy fluxes, and carbon and nitrogen
dynamics for various plant functional types have been
described elsewhere [21–25], this study extends ISAM
model by accounting additional dynamic structural prop-
erties of vegetation, which are specific to the perennial
bioenergy grasses. These include the following: (1) a
specific phenology development scheme and its varia-
tion with latitude, which is controlled by thermal, pho-
toperiod, and extreme meteorological conditions (e.g.,
frost and drought); (2) a dynamic carbon allocation
process to allocate assimilated carbon among root, rhi-
zome, leaf, and stem based on resource availability
(e.g., light, water, and nutrient); (3) parameterization of
N resorption rate; (4) parameterization of leaf area index
(LAI) growth process, which is sensitive to photoperiod.

The objectives of this study are to (1) calibrate and validate
different parameters of the above parameterization schemes
for three perennial grasses: Miscanthus and two switchgrass
cultivars, Cave-in-Rock and Alamo; (2) evaluate ISAM-
calculated carbon assimilation rate, LAI, and aboveground/
belowground biomass yields for three energy crops using
observational data; (3) estimate spatial and temporal biomass
yield patterns for the period 2001–2012 in the USA; and (4)
compare ISAM-estimated biomass yields with other pub-
lished studies.
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Methods

Model Description

ISAM is a land surface model, which coupled biogeochemical
(carbon and nitrogen) module [25] and biogeophysical (ener-
gy and hydrology) module [26, 27]. The model calculates
carbon, nitrogen, energy, and water fluxes at 0.5×0.5° spatial
resolution and at multiple temporal resolutions ranging from
half-hour to yearly time steps. The details about the model
structure, parameterization, and performance have been intro-
duced in previous studies [21–25]. In the following, we pro-
vide the details of the processes added to the model, which are
specific for this study.

Model Extension

The formulations for dynamic growth processes considered
for bioenergy grasses—such as allocation of assimilated car-
bon among above- and belowground vegetation pools and
development of vegetation structure (LAI, canopy height and
root depth), etc.—are the same as for the row crops described
by Song et al. [24]; here, we describe the calibration of model
parameters and model validation, specific to the model of
energy grasses. However, the phenology for bioenergy grasses
is different than row crops and is described in “Phenology
Development”. In addition, we added a rhizome pool and
implemented the carbon reallocation between root and rhi-
zome for the bioenergy grasses (Carbon Allocation). The
parameterization of N resorption and the sensitivity of LAI
growth to photoperiod are also considered (Parameterization
of N Resorption Rate for Bioenergy Grasses and LAI Calcu-
lation). In the following, we described dynamic processes that
had been implemented in ISAM for the current study.

Phenology Development

Miscanthus is planted through rhizomes and switchgrasses
through seeds. During the growing season, phenology is di-
vided into five stages: emergence period, initial vegetative
period, normal vegetative period, initial reproductive period,
and post reproductive period (Fig. 1). After post reproductive
period, bioenergy grasses go to the winter dormancy stage,
which lasts until the rhizomes emerge next year. The grasses
are harvested each year at the beginning of winter
dormancy time.

The planting date for Miscanthus rhizomes is determined
based on the shallow soil layers’ temperature and air temper-
ature [24]. The seeding dates for switchgrass are determined
by both soil and surface air thermal conditions and accumu-
lated precipitation over a week time just prior to the planting
date. Since switchgrasses may not adapt to the region in the
west of the 100th meridian [7], and Miscanthus may have

difficulty to survive in the region with less than 0.75 m of
annual accumulated precipitation [28], we exclude those re-
gions which experience such environmental conditions—viz.
the western USA. Switchgrass seeds are planted when the
accumulated precipitation over the previous week is greater
than the grass-specific minimum precipitation requirement
(Pcrit) [29] (Table 8). Each year after planting bioenergy
grasses, the transitions of the different phenology stages are
determined by thermal conditions and other factors, which are
dependent on latitude of each grid cell [8, 30].

The thermal condition for each grid cell is expressed as the
heat unit index above 0 °C (HUI0) (Eq. 1).

HUI0 ¼ GDD0

GDD0max
ð1Þ

Here, GDD0 is the accumulated growing degree days
above 0 °C summed from the first day of the year to the
current day. GDD0max is the yearly summation of growing
degree days above 0 °C averaged for the past 33 years (1980–
2012), which represents the climatological thermal conditions
[31]. The threshold values of HUI0 for classifying five phe-
nology stages are listed in Table 8. The total number of days
during each phenology stage does not exceed the maximum
number of growing days of each phenology stage (D), as
prescribed in the Table 8.

Latitudinal variability in the onset of the emergence stage
and the initial reproductive stage (flowering time) is controlled
by the photoperiod [5], which is expressed as the total day
length and civil twilight of each day (Lday) in terms of hours.
The onset of the emergence stage begins when the photoperi-
od value is above the critical photoperiod value for emergence
(Le). At the same time, the past week mean daily air temper-
ature is above the base temperature (Tbase) and soil tempera-
ture is above the critical emergence soil temperature (Tsoil_crit).
The values for Tbase and Tsoil_crit vary with bioenergy grasses
due to their difference in tolerance to temperature (Table 8).
The value for Le varies with the origin of each bioenergy grass
(Table 8). Alamo, which is originally from central Texas, can
emerge at much shorter photoperiod than that for Cave-in-
Rock and Miscanthus, which originally grew in southern
Illinois [8]. In addition, the regression analyses of bioenergy
grass yields on photoperiod [5, 32] indicate that growing
Miscanthus and Cave-in-Rock in the south of its origin
(Southern Illinois) will flower earlier due to exposure to
shorter than normal day length in the summer, while growing
Alamo switchgrass north of its origin (Central Texas) will
cause it to flower late due to exposure to longer than normal
day length in the summer. To parameterize this effect, the
onset of the initial reproductive stage is initialized when the
following two conditions are satisfied: (1) the estimated pho-
toperiod value is less than the grass-specific critical photope-
riod value for flowering (Lf), which is 13 h for Miscanthus and
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Cave-in-Rock, but 12 h for Alamo [33–35]; (2) the minimum
heat required for flowering (GDDv1), which is expressed as
the GDD above Tbase from emergence to flowing time. Here
GDDv1 is defined as a function of latitude (Eq. A1). The
function is attained through regressing observed GDDv1

values from available sites with the latitude values of corre-
sponding observation sites [36, 37]. If above two conditions
are not satisfied, the initial reproductive stage can also be
initiated when LAI values reach the grass-specific maximum
LAI values (LAImax) (Table 8).

Besides the normal phenology development, extreme en-
vironmental conditions can speed up or slow down the devel-
opment of different phenology stages (Fig. 1). For example,
spring frost can delay the onset of initial vegetative stage,
whereas fall frost can trigger the earlier onset of the
dormancy stage.

Alamo has been reported to be high heat tolerant, but
sensitive to extreme cold and dry conditions [32, 38]. In
contrast, Miscanthus is more sensitive to extreme hot and
dry conditions than Cave-in-Rock and Alamo. Relative to
Miscanthus and Alamo, Cave-in-Rock has higher cold and
drought tolerances [32]. In addition, Moser and Vogel [39]
suggest that warm-season grass species generally do not move
more than 500 km north of their origin due to potential stand
and rhizomes losses from over-winter injury. Calser [7] re-
ports that Cave-in-Rock will have difficulty surviving in the

regions above the PHZ 3, whereas the survival rates of Alamo
in the region above the PHZ 6 are low. Heaton et al. [40] finds
that Miscanthus is able to survive with −20 °C of air temper-
ature and −6 °C of soil temperature in Illinois, but experiences
90 % of loss in Wisconsin. Past field experiments have failed
to establish Miscanthus in the PHZ 3 and PHZ 4 [personal
communication with M. Casler].

ISAM accounts for sensitivity of bioenergy grasses to
extreme cold, dry, or hot conditions, as discussed above. The
spring and fall frost are triggered when previous 3 days aver-
age daily minimum temperature (Tmin3) is less than the grass-
specific critical air minimum temperature for frost (Tfrost).
Extreme cold conditions, expressed as previous 6 days (T6)
average daily temperature below Tbase, during the initial veg-
etative stage can force the transition from the initial vegetative
stage to the initial reproductive stage. Extreme cold weather
conditions during the normal vegetative and the initial repro-
ductive stages can induce the onset of the post reproductive
stage with initiation of plant senescence [31]. Cold weather
conditions are triggered when any of the following conditions
are satisfied (Fig. 1): (1) the daily minimum temperature
averaged for previous week (Tmin7) is less than Tbase; (2) the
Tmin3 is less than the annual minimum temperature averaged
for 1980–2012 (Tytmin); (3) the daily soil temperature of root
zone is less than the critical temperature for root zone (Tsoil_s2).
Extreme hot and dry conditions can also make the transition to

Fig. 1 The phenology scheme for bioenergy perennial grasses. The description of each variable is provided in the Table 8
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the post reproductive stage earlier without flowering [37].
Extreme hot conditions are triggered when one of the follow-
ing conditions is met: (1) the mean daily temperature averaged
for the last month is larger than the grass-specific maximum
temperature (Tmax_crit); (2) the previous 3 days average daily
maximum temperature (Tmax3) is larger than the annual max-
imum temperature averaged for 1980–2012 (Tytmax). Dry con-
ditions are activated when the daily mean soil water availabil-
ity for previous week (Wa7) is below the critical values of
water availability for initiation of dry condition (Wacrit). Here,
soil water availability (Wa) is the weighted summation of
water availability over the total number of soil layers
(Eq. A2). The Wa is expressed as an index ranging from 0 to
1, which depends on the combined effects of precipitation,
topography, soil texture, root depth, and its distribution in soil
layers. The closer that Wa is to 1, the more soil water is
available for grass growth. If extreme hot and dry conditions
are met simultaneously, onset of the post reproductive stage is
triggered. The over-winter injury is triggered when the aver-
age annual extreme minimum temperature (Tavg_min) is less
than Tfrost. The values for Tfrost, Tbase, Tytmin, Tsoil_s2, Tmax_crit,
Tytmax, and Wa7 (Table 8) are grass specific. Cave-in-Rock is
parameterized with lower Tfrost, Tsoil_s2, and Wa7 than that for
Miscanthus and Alamo due to high tolerance to cold and dry
condition, whereas Alamo is parameterized with higher T-

max_crit than Miscanthus and Cave-in-Rock due to its high
tolerance to hot condition.

Carbon Allocation

Besides leaves, stem, roots, and production (seeds or flowers)
carbon pools, here we added rhizome pool, which store carbon
and nitrogen for the perennial growth. The emergence from
rhizome and the carbon allocation among leaves, stems, roots,
production, and rhizome are introduced as follows.

The amount of carbon in switchgrass seeds during germi-
nation is simulated as a function of seed weight and hydro and
thermal conditions (Eqs. A3–A5) [41]. The carbon stored in
switchgrasses seeds during the germination is allocated to root
and leaf pools to build the root and initiate leaf development
(Eq. A6). In the establishment year, the growing season starts
with the germination of the seed. In the spring of the following
years, the growing season starts with the emergence of rhi-
zome. During the emergence of rhizomes, a fraction of rhi-
zome carbon is allocated to leaf, stem, and root pools accord-
ing to Eq. A7. After the emergence stage, leaves start assim-
ilating carbon and the assimilated carbon is allocated to stem
and root, as well as production pools. The amounts of the
carbon allocation fractions at each model time step are deter-
mined dynamically based on the availability of water, light,
and nitrogen as described in Song et al. [24].

Initial carbon allocation fractions to leaf (Al), stem (As),
root (Ar), and rhizome (Arh_r) during each phenology stage

(Table 8) are parameterized based on different growth require-
ments of canopy, stem, root, flowers, seeds, and rhizomes at
each phenology stage. The canopy needs to be developed
during the initial vegetative stage by keeping a large fraction
of leaf-assimilated carbon in the leaf pool, but transferring a
small fraction of leaf-assimilated carbon into root and stem.
During the normal vegetative stage, the stem is elongated
through increasing the fraction of assimilated carbon that
allocates to stem. During the initial and post reproductive
stages, leaf-assimilated carbon is transferred entirely to pro-
duction and root pools to develop flowers and roots. Rhi-
zomes grow over time through reallocation of a part of the
root carbon pool to the rhizome pool. The reallocation frac-
tions from root to rhizome are dynamically adjusted as a
function of Wa (Eq. A8). In order to elongate the root to
acquire more water under water stress conditions, the reallo-
cation carbon fractions from root to rhizome pool are reduced
according to Eq. A8. During the post reproductive stage, seed
is produced for switchgrasses through increasing the fraction
of leaf-assimilated carbon given to production pools. Howev-
er, no carbon is allocated to production pools for Miscanthus,
which has no seed production. Finally, the dynamic carbon
allocation factor for each vegetation pool is modified by
examining whether the minimum belowground/aboveground
ratio (RSmin) is sufficient to maintain the structure of each
grass. If this condition is not satisfied, all new assimilated
carbon is allocated to root and rhizome. The senescence
process follows the initiation of flowering. The leaf, stem,
root, and rhizome senesce at fixed turnover rates (rltleaf, rltstem,
rltroot, rltrhizome) (Table 8), while leaf loss can be intensified
due to dry or cold conditions. If the spring frost damage is
triggered, the mortality of rhizomes, roots, and aboveground
biomass increases linearly according to the Eqs. A9–A10. The
fraction of rhizome mortality due to over-winter injury is
assumed to be an exponential function of latitude (Eq. A11).
The function is developed by regressing the reported values of
standing/rhizome fraction loss [5, 42] on Tavg_min.

Parameterization of N Resorption Rate for Bioenergy Grasses

Temperate perennial grasses can mobilize N from actively
growing tissues to rhizomes in response to winter or dry
conditions [43]. This N can be reallocated to actively growing
tissues in the following year and thus is important to maintain
long-term N availability for growth of bioenergy grasses. N
resorption for natural vegetation has been implemented in N
cycle process in ISAM and the N availability on carbon
assimilation is parameterized by linearly adjusting potential
maximum carboxylation rate (Vmax) with N availability [21,
22, 25]. Here, we parameterized N resorption rate (Rcyc) for
bioenergy grasses based on measured seasonal variability in
standing N and biomass for Miscanthus and Cave-in-Rock at
Urbana, IL, site [43] (Table 8). It is assumed that Rcyc is
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uniform across the different region and Alamo has the same
Rcyc value as Cave-in-Rock in this study.

LAI Calculation

LAI is calculated as a function of leaf carbon and
specific leaf area (SLA, defined as a ration of leaf area
to leaf biomass). SLA for bioenergy grasses can vary
with photoperiod. According to Van Esbroeck et al.
[34], variation of leaf area with photoperiod differs
among switchgrass cultivars. They found that the leaf
size and number for Cave-in-Rock increased when the
photoperiod increased from 12 to 16 h, but the reverse
was true for Alamo. These results indicate that SLA
for the northern cultivar (Cave-in-Rock) decreases from
north to south due to exposure to shorter than normal
day length in the summer, while SLA for southern
cultivar (Alamo) decreases from south to north due to
exposure to longer than normal day length in the sum-
mer. To parameterize photoperiod-sensitive SLA, we
take the SLA in the natural origin of each cultivar
(SLA0) (Table 8) as a reference value and calculate
SLA at each grid cell as a function of day length
during the vegetative stage according to Eq. A12. It
is assumed that the function between SLA and day
length for Miscanthus is the same as that for Cave-in-
Rock in this study.

Model Calibration and Evaluation Using Data
from Various Sites

Description of Sites and Database

The field observation data for Miscanthus and Cave-in-Rock
and Alamo switchgrasses from three sites in the USA were
used to calibrate the model (Table 1). The choice of these sites
for calibrations was due to the availability of the comprehen-
sive observation data sets to calibrate the model parameters
and processes. The Champaign-Urbana site 1 (CU1) for
Miscanthus represents the earliest Miscanthus-growing region
in the USA, whereas the CU2 site and Temple, TX (TE), site
are at Cave-in-Rock’s and Alamo’s origin. The detailed soil
and climatic characteristics as well as data available for dif-
ferent variables for each site are listed in Table 1.

The yield data collected at 17 Miscanthus planting sites
(M1–M17), 28 Cave-in-Rock planting sites (C1–C28), and 22
Alamo planting sites (A1–A22) (Table 10) were used to
evaluate the model performance in diverse environmental
conditions. This measurement database aims to include avail-
able field experiments that could represent diverse environ-
mental conditions and different geographical region. Field

experiments with more than one time of harvest frequency
per year and/or irrigation are excluded in this database, since
current model has not considered these management practices.
This database covers a large geospatial area of the USA,
ranging from 26.68°N to 41.17°N for Miscanthus, from
26.22°N to 46.88°N for Cave-in-Rock switchgrass, and from
26.22°N to 39.62°N for Alamo switchgrass (Fig. 3). The soil
texture and climatic characteristics are quite diverse at evalu-
ated sites (Table 10). The annual mean air temperature during
study years varies along the latitude gradient from 8 °C at the
most northern site (Mandan, ND) to 24.5 °C at the most
southern site (Weslaco, TX). The validation sites for
Miscanthus cover five PHZs (PHZ 5–10a) with an average
minimum air temperature of −28.9 to 1.7 °C. The validation
sites for Cave-in-Rock include more northern PHZs ranging
from PHZ 4a to PHZ 9b, with an average minimum temper-
ature of −34.4 to −1.1 °C. Field experiments usually fail to
establish Alamo switchgrass from PHZ 1a–5b due to extreme
cold winter condition [personal communication with M.
Casler]; thus, the validation sites for Alamo switchgrass only
cover the region from PHZ 6a to 9b. The annual total precip-
itation follows the distinct longitude pattern with relatively
less precipitation at the western sites and relative more pre-
cipitation at the eastern sites (Table 10). At most of validation
sites have made efforts to mitigate the edge effect through
excluding sampling from the edge of the plot, adjusting alley
width, subsample size, planting density, harvest length, etc.
[32, 37]. Detailed management information, such as planting
time, seedling/rhizome planting weights, harvest frequency
and time, fertilizer and irrigation, etc., were collected from
references listed in Table 10.

Model Calibration

Hourly climate data for mean surface air temperature, precip-
itation rate, the incoming shortwave radiation, long-wave
radiation, wind speed, and specific humidity are taken from
North American Land Data Assimilation System (NLDAS-2)
climate database (0.5×0.5°) [44]. Soil texture data is taken
from the State Soil Geographic Database (STATSGO2) [45].
Both of these are used to drive the model simulation for each
calibrated and validated site at an hourly time step. We start
the modeling calculations for each site by prescribing current
land cover distribution and atmospheric CO2 concentrations
of 369 ppm, representative of approximate condition in 2000,
to allow soil water and soil temperature to reach an initial
steady state, which takes approximately 200 years of model
runs. Then, we assume that each site is fully covered with the
corresponding bioenergy grasses (Miscanthus/Cave-in-rock
Rock/Alamo) and run the model based on site-specific plant-
ing time, seed weight, and harvest time for each site [40,
46–49].
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The model parameters are calibrated and validated by
minimizing the total sum of the squares of the difference
between simulated and observed data for each bioenergy grass
at each calibrated site [24]. The calibrated processes and
corresponding parameters are listed in the Table 2.

Best Fit Model Results for Carbon Assimilation, LAI,
and Above- and Belowground Biomass

We use the refined Willmott’s index (dr) [50] to quan-
tify the degree to which observed carbon assimilation
rates, LAI, and biomass (aboveground, root, and rhi-
zome biomass) are captured by the model. The dr is
calculated as Eq. 2 and varies from −1 to 1. The value
of 1 indicates perfect agreement between the modeled
and observed values, while a dr of −1 indicates either
lack of agreement between the model and observation
or insufficient variation in observations to adequately
test the model. The dr is calculated as:

dr ¼
1−

X N

i¼1
Pi−Oij j=2

X N

i¼1
Oi−O
��� ��� if

X N

i¼1
Pi−Oij j≤ 2

X N

i¼1
Oi−O
��� ���

2
X N

i¼0
Oi−O
��� ���=X N

i¼1
Pi−Oij j−1 if

X N

i¼1
Pi−Oij j > 2

X N

i¼1
Oi−O
��� ���

8><
>:

ð2Þ

Here, Pi and Oi are the individual modeled and observed
data, respectively. Ō is the mean of observed values. N is the
number of the paired observed and modeled data. Based on
the availability of observed carbon assimilation rate, we com-
pare modeled with measured gross carbon assimilate rates (A)
for Miscanthus and Cave-in-Rock as well as modeled with
measured net carbon assimilation rate (An=A-leaf respiration)
for Alamo switchgrass.

The dr values for A/An vary between 0.73 and 0.76
(Table 3), indicating that the model is able to capture the
measured variations in carbon assimilation rates for all
grasses. Modeled and measured carbon assimilation rates
compare favorably across different growing seasons
(Fig. 2a–c). The measured data is only available for Cave-in-
Rock, and the comparisons between the modeled and
measured hourly gross carbon assimilation rates for
Cave-in-Rock at canopy level show close agreement
(dr=0.75) (Figure S1), suggesting that the model is
not only able to capture the daily assimilation rates for
energy grasses but also the measured diurnal variability
in carbon assimilation. The model also captures the
seasonal development of LAI and its inter-annual varia-
bility for each three of energy grasses (Fig. 2d–f). The
dr values calculated with all available data for three
grasses vary between 0.78 and 0.90 (Table 3).

The modeled aboveground biomass production across two
Miscanthus-growing seasons and three Alamo-growing

seasons is in good agreement with the measured intra-annual
and inter-annual variations (Fig. 2h, j), with an exception for a
slight underestimation of peak biomass for Miscanthus at the
CU1 site. The dr values are 0.83 and 0.87 for Miscanthus
and Alamo grasses (Table 2). Because of the unavailability
of the measured data for Miscanthus, we have not compared
the modeled belowground biomass results with measure-
ments. More importantly, the modeled root biomass for
Alamo grass at the end of two continuous growing seasons
is close to measured values (Fig. 2j), indicating that the
model is able to predict continuous root growth across
multiple years for Alamo grass. The model also accurately
predicts the mean biomass partitioning among above-
ground biomass, root, and rhizome across three continuous
years for Cave-in-Rock (Fig. 2i). The relatively low dr
values of 0.54 for root and 0.51 for rhizome are attributed
to the overestimations of root and rhizome biomass at the
end of growing season. These overestimations are due to
the overestimation of carbon allocation to belowground
pools at the end of growing season, when the minimum
belowground/aboveground ratio (RSmin) is not satisfied to
maintain the grass structure and thus model allocates all
assimilated carbon to root and rhizome. This happens due to
the uncertainty in parameterization of RSmin, which is
attained in this study based on the measurement of a green-
house experiment [51] and is assumed that its value does
not vary spatially. However, the modeled root and rhizome
biomass values still fall within the maximum measured
uncertainty range values (Fig. 2i). Overall, the calibrated
model is able to capture the diurnal and daily carbon as-
similation rate and intra-annual and inter-annual variation
in LAI and biomass production.

Model Evaluation

We evaluate model performance for estimated yields for
each bioenergy grass across all evaluation sites
discussed in Description of Sites and Database. First,
the modeled and observed multi-year yields are aver-
aged over the measured years to calculate the modeled
and observed mean yield for each evaluation site. Then,
the degrees to which observed mean yield across all
sites are captured by modeled values are quantified by
dr as discussed in Best Fit Model Results for Carbon
Assimilation, LAI, and Above- and Belowground Bio-
mass. The averaged tendency of the modeled yields
relative to measured yields for each site is evaluated
by calculating percent bias (PBIAS) (Eq. 3) [52]. Here,
Yi
o and Yi

m are the modeled and measured yearly yields
for the year i at each site. N is numbers of available
data for each site. The closer the value of PBIAS is to
zero, the higher the accuracy of the model results is and
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the smaller the bias in the model results is. Positive
PBIAS indicates the model underestimates the yield,
and negative PBIAS indicates that the model overesti-
mates the yield. The standard deviations (SD) from the
mean for modeled and measured yields are calculated
for each site using Eq. 4. Here, Yiis the yearly yield for

the year i and Y is the mean yield over N numbers of
measured years for each site. The ± SD in mean yield
represents the range of modeled and measured yields at
each site. The comparison between modeled and ob-
served SDs determines whether the model is able to
capture the yearly yield variability at each site.

Table 2 Calibrated parameter values for individual process. The three calibrated parameter values separated by comma (,) are for Miscanthus, Cave-in-
Rock, and Alamo

Calibrated process Equations Calibrated parameters Calibrated parameters values

Carbon assimilation Ball-Berry equation m 8, 3, 3

b 0.03, 0.03, 0.03 [mol m−2 s−1]

Phenology simulation Eqs. A3–A7 in Song et al. [24] HUI0e 0.10, 0.10, 0.10

HUI0v1 0.12, 0.14, 0.14

HUI0v2 0.30, 0.35, 0.22

HUI0s1 0.66, 0.66, 0.41

HUI0s2 0.78, 0.73, 0.73

HUI0d 1.0, 1.0, 1.0

De 8, 10, 10 [days]

Dv1 50, 50, 50 [days]

Dv2 60, 50, 60 [days]

Ds1 60, 50, 50 [days]

Ds2 76, 56, 76 [days]

Leaf carbon allocation and growth process Eqs. A4–6 in this study and Eqs. A22
in Song et al. [24]

Ale1 –, 0.30, 0.30

Ale2 0.45, 0.60, 0.6

Alv1 0.44, 0.50, 0.50

Alv2 0.20, 0.30, 0.30

Alr1 0, 0, 0

Alr2 0, 0, 0

Leaf senescence process Eq. A39 in Song et al. [24] klr1 0.035, 0.03, 0.03

klr2 1.0, 1.0, 1.0

RWmax 0.91, 1.0, 1.0

Stem, root, rhizome and seed carbon
allocation process

Eqs. A4-6 in this study and Eqs. A22
in Song et al. [24]

Ase1 –, 0, 0

Are1 –, 0.70, 0.70

Ahe1 −0.02, −0.02, −0.01
Ase2 0.25, 0.30, 0.30

Are2 0.30, 0.10, 0.10

Asv1 0.20, 0.20, 0.20

Arv1 0.36, 0.30, 0.30

Asv2 0.60, 0.50, 0.60

Arv2 0.20, 0.20, 0.10

Arh_rv2 0.30, 0.30, 0.30

Asr1 0.15, 0.10, 0.10

Apr1 0.20, 0.40, 0.40

Arr1 0.65, 0.50, 0.50

Arh_rr1 0.50, 0.50, 0.50

Asr2 0, 0, 0

Apr2 0, 0.40, 0.40

Arr2 1.0, 0.60, 0.60

Arh_rr2 0.50, 0.50, 0.50
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Evaluation of Model Estimated Yields

Overall, the modeled yields for Miscanthus, Cave-in-Rock,
and Alamo are in good agreement with measured yields at
evaluation sites, with dr values of 0.87, 0.83, and 0.66,
respectively. Except for the sites where the peak yield for
growing season is harvested, the modeled mean harvested
yield is around 30 % lower than the simulated mean peak
yield for each grass (Table 4). This is in agreement with
recommended harvest management, which suggests that
harvest until winter or early spring will induce approxi-
mately 33 % reduction from peak biomass [4]. However,
there are still some specific sites where the model is unable
to accurately capture the observed yields.

The PBIAS values for Miscanthus yield are −66.7 % for
Booneville, AR, site, −35.7 % for Stillwater, OK, site, and
54.6 % for Kingsville, TX, site, respectively (Table 4), indi-
cating the overestimation of Miscanthus yield at Booneville
and Stillwater sites, but the underestimation at the Kingsville
site. The sampling variability (Table 4) is equal to 58, 60, and
66 % of measured mean yields at Booneville, Stillwater, and
Kingsville, respectively. The higher sampling variability at the
three sites suggests that there is a large environmental hetero-
geneity at each site, and ISAM is unable to capture the
heterogeneity effect on spatial yield.

For Cave-in-Rock (Table 4), ISAM underestimates yield at
two TX sites: Weslaco (PBIAS=57.8 %) and Kingsville
(PBIAS=34.2 %). The sampling variability is also high at these
two sites, which is equal to around 50 % of measured mean
yields. This indicates that ISAM fails to capture large environ-
mental heterogeneity at these two sites. The higher model bias
is also observed at the Brownstown, IL, site, where the modeled
yield for Cave-in-Rock is about 31 % higher than observed
yield (Table 4). According to Dohleman [53], this site has a
poor soil quality and weed pressure that might have slowed
down the establishment of Cave-in-Rock and thus produced
relatively low yield. However, ISAM is not able to capture the
poor soil quality effect due to uncertainty in soil data used in our
calculation, nor ISAM accounts for weed pressure effects.

In the case of Alamo yield, the largest model bias is
observed at Jackson, TN, site, where the model overestimates
yield with the bias magnitude of 45.1 % (Table 4). The
Jackson site has a shallow soil depth and thus low water
capacity, which limits the root development and lowers the
yield due to water stress conditions [54]. The model is unable
to simulate shallow soil depth and its effects on soil water
capacity due to lack of high-resolution bedrock data, leading
to overestimation of Alamo yield at this site. Otherwise,
higher PBIAS values (Table 4) at the Kingsville, TX
(PBIAS=41.4 %) and the Weslaco, TX (PBIAS=32.2 %)
sites indicate that the model also underestimates Alamo yields
at two sites due to the same reason discussed above.

The comparisons between modeled and measured SD
values for yields at different sites indicate that the model is
able to capture the measured yearly yield variability at most of
the sites (Table 4), with the following exceptions: at the
Elsberry, MO, site, the measured yearly yield variability for
Miscanthus (16.1 t/ha) is seven times higher than the modeled
yield variability (2.2 t/ha). Kiniry et al. [32] indicates that the
maximum Miscanthus LAI at this site increases from 3.6 in
2010 to 7.6 in 2011 and thus leads to almost two times of
increase in yield from 2010 to 2011. However, the model is
unable to capture this yearly increase in maximum LAI and
thus the yield during the second and the third year after
establishment. For Cave-in-Rock, the measured yield variabil-
ity at the Kingsville, TX, site (1.6 t/ha) is seven times higher

Table 3 The calculated Willmott index, dr, for various variables of
Miscanthus, Cave-in-Rock, and Alamo

Variable Bioenergy grass na dr

Assimilation Rate (A/An)b Miscanthus 29 0.76

Cave-in-Rock 110 0.74

Alamo 29 0.73

LAI Miscanthus 25 0.78

Cave-in-Rock 24 0.90

Alamo 17 0.87

Aboveground biomass Miscanthus 30 0.83

Cave-in-Rock 5 0.82

Alamo 15 0.87

Root biomass Miscanthus – –

Cave-in-Rock 5 0.54

Alamo 2 0.82

Rhizome biomass Miscanthus – –

Cave-in-Rock 5 0.51

Alamo – –

a n is the total number of available data used to calculate dr
b A is gross carbon assimilation rate at Urbana, IL site for Miscanthus
(CU1) and Cave-in-Rock (CU2). An is net carbon assimilation rate at
Temple, TX, site (TE) for Alamo

Bioenerg. Res.



than the modeled yield variability (0.2 t/ha). The mismatch
between modeled and measured yearly yield variability at this
site could be due to the same reasons as discussed above. The
apparent underestimation of modeled yearly variability in
Alamo yield is shown at the Nacogdoches site, the Blacksburg
site, the Jackson site, and the Kingsville site (Table 4). The
underestimation of yearly variability in Alamo yield at the
Nacogdoches site is due to underestimation of yearly maxi-
mum LAI variability during the second and the third year after
establishment, while the disagreement between modeled and
measured yearly yield variation at the Jackson site and Kings-
ville site is due to lack of high-resolution bedrock data or lack
of large spatial heterogeneity of environmental factors within
the site as discussed above. The Blacksburg site is situated on
a steep slope and thus has a low water infiltration [55], which

leads to a strong sensitivity of Alamo yield to precipitation.
ISAM currently fails to capture steep slope conditions and
hence the lower water infiltration. Most of the trial sites
selected for our analysis have multiple years of data sets, with
the exception of three Miscanthus sites in Florida. We include
these three sites in our model analysis because there are not
many sites available in the literature for Miscanthus yield data
in Florida. The statistical analysis suggests that accounting of
these three sits does not skew the statistics for evaluating the
model performance on Miscanthus yield simulation. The re-
calculate dr value without including these three sites was as
high as 0.85, which was not significantly different than with
including case value of 0.87.

In summary, the model is able to capture observed mean
yields and their variations for three energy grasses under

Fig. 2 Measured and model simulated carbon assimilation rates (A/An)
(a–c), LAI (d–f), and biomass (aboveground, root and rhizome) (h–j) for
Miscanthus at Urbana, IL, Cave-in-Rock at Urbana, IL, and Alamo at
Temple, TX, sites. Here A is the daily gross carbon assimilation rate at
leaf level for Miscanthus and the hourly gross carbon assimilation rate at

canopy level for Cave-in-Rock. An is the net carbon assimilation rate for
Alamo at leaf level. The data for Miscanthus is for the time period 2007–
2008, for Cave-in-Rock 2005–2006, and for Alamo 1995–1997. The
biomass data for Cave-in-Rock is only available as the multiyear mean
values over the time period 2005–2006
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Table 4 Mean and standard deviation (SD) from the mean for modeled
and measured yields, modeled peak yield for growing season, sampling
variability in measured yield, relative percent bias (PBIAS) in modeled

yield for each validation site (Miscanthus: M1-M17; Cave-in-Rock: C1-
C28; Alamo: A1-A22). Here N is the number of years for measured data
and mean is calculated for N years

Site
ID

Sites State Latitude
(°)

Longitude
(°)

N Mean and SD(±) for
measured yield (t/ha)

Mean and SD(±) for
modeled yield (t/ha)

Modeled mean
peak yield (t/ha)

Sampling
variability (t/ha)

PBIAS
(%)

M1 Mead NE 41.17 −96.47 2 21.3±5.6 18.3±3.8 26.1 − 14.1

M2 Adelphia NJ 40.23 −74.25 2 12.4±2.9 13.6±2.7 19.7 − −9.7
M3 Champaign IL 40.03 −88.23 2 17.9±4.1 19.8±2.2 31.5 − −10.6
M4 Troy KS 39.77 −95.2 2 8.9±4.9 7.0±2.6 9.7 − 20.9

M5 Manhattan KS 39.18 −96.58 2 7.3±4.6 6.8±2.5 9.3 − 6.9

M6 Elsberrya MO 39.16 −90.79 2 33.7±16.1 27.9±2.2 27.9 4.8 17.2

M7 Columbiaa MO 38.89 −92.19 2 21.6±5.8 24.1±3.7 24.1 7.6 −11.8
M8 Lexington KY 38.13 −84.5 2 17.4±0.9 18.3±0.8 23.9 − −5.5
M9 Mt. Vernona MO 37.07 −93.81 2 13.9±3.2 14.6±1.1 14.6 7.0 −5.0
M10 Stillwater OK 36.12 −96.05 2 3.0±0.5 4.0±1.8 4.0 1.8 −35.6
M11 Fayettevillea AR 36.09 −94.11 2 10.5±1.4 10.9±1.0 10.9 4.4 −3.8
M12 Boonevillea AR 35.08 −93.98 1 4.5 7.5 7.5 2.6 −66.7
M13 Nacogdochesa TX 31.5 −94.6 2 4.0±1.2 4.3±2.2 4.3 3.0 −7.6
M14 Gainesvilleb FL 29.65 −82.33 1 6.2 6.8 8.0 − −9.7
M15 Kingsvillea TX 27.54 −97.85 2 5.4±0.3 2.5±0.7 2.5 3.6 54.6

M16 Onab FL 27.48 −81.92 1 4.5 4.7 7.7 − −4.4
M17 Belle Gladeb FL 26.68 −80.67 1 10.8 11.0 13.6 − −1.9
C1 Dickinson ND 46.88 −102.8 3 4.5±0.9 4.3±0.9 6.4 − 5.1

C2 Mandan ND 46.8 −100.92 3 5.5±2.7 5.9±2.0 7.8 − −8.5
C3 Brookings SD 44.02 −97.09 4 3.9±0.5 3.9±1.2 6.2 − −1.9
C4 Arlington WI 43.33 −89.38 4 14.3±3.2 12.1±1.1 14.2 − 15.4

C5 Dekalb IL 41.85 −88.85 4 8.4±1.8 9.2±2.5 13.9 2.4 −9.6
C6 Champaign IL 40.08 −88.23 2 12.7±2.1 12.3±2.2 17.3 4.3 3.2

C7 Orr IL 39.81 −90.82 3 10.0±1.0 10.7±1.0 16.2 1.2 −7.0
C8 Morgantown WV 39.62 −79.95 3 14.7±0.7 14.2±1.6 18.2 − 3.6

C9 Elsberrya MO 39.16 −90.79 2 13.6±2.2 14.5±2.3 14.5 2.8 −6.2
C10 Brownstown IL 38.95 −88.96 3 8.2±2.4 10.8±1.1 13.8 1.0 −30.8
C11 Columbia MO 38.89 −92.19 2 8.2±0.8 9.5±0.7 11.3 2.6 −16.0
C12 Fairfield IL 38.35 −88.35 3 14.7±0.9 14.0±1.3 18.1 2.1 4.5

C13 Dixon Spring IL 37.45 −88.67 4 10.8±3.4 10.7±2.1 14.7 4.2 0.7

C14 Princeton KY 37.1 −87.82 3 11.8±1.3 10.3±0.6 14.1 − 12.4

C15 Mr. Vernona MO 37.07 −93.81 2 9.9±4.9 12.4±3.4 12.4 3.0 −24.7
C16 Stillwatera OK 36.12 −96.05 2 11.6±1.0 11.9±0.9 11.9 3.0 −2.6
C17 Fayettevillea AR 36.09 −94.11 2 10.1±0.3 11.2±0.4 11.2 5.0 −11.4
C18 Knoxville TN 35.88 −83.95 3 13.6±0.8 12.0±1.8 17.1 − 11.3

C19 Raleigh NC 35.72 −78.67 3 8.2±1.8 8.7±0.5 12.3 − −6.1
C20 Jackson TN 35.62 −88.83 3 8.1±0.3 7.4±0.1 10.7 − 7.9

C21 Chickasha OK 35.03 −97.91 7 7.6±1.8 6.6±1.8 9.7 − 13.9

C22 Dallas TX 32.97 −97.27 4 5.0±2.9 4.2±0.9 5.7 − 15.2

C23 Nacogdochesa TX 31.5 −94.6 2 4.7±1.6 5.4±2.2 5.4 2.6 −14.9
C24 Temple TX 31.06 −97.22 4 3.9±2.1 4.2±0.9 5.7 − −9.1
C25 College

station
TX 30.6 −96.35 3 6.4±3.2 6.0±1.5 6.4 − 6.2

C26 Beeville TX 28.4 −97.7 4 3.7±1.8 2.9±2.5 2.6 − 7.3

C27 Kingsvillea TX 27.54 −97.85 2 3.7±1.6 2.4±0.2 2.4 1.8 34.2

C28 Weslacoa TX 26.22 −98.13 2 4.2±2.2 1.8±0.9 1.8 2.1 57.8

A1 Morgantown MV 39.62 −79.95 6 16.4±1.1 15.1±1.1 20.2 − 7.9
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diverse environmental conditions in the USA. The high model
biases for some sites in extreme southern TX are due to site-level
environmental heterogeneity not captured in the model. The
uncertainty in bedrock and slope data sets also explains the
model biases inAlamo yields and their variations at specific sites.

Estimating Yield Zones Based on Spatial and Temporal
Variations for Biomass Yield for Energy Grasses

Information on potential bioenergy yields in space and time
will be crucial in order to improve estimation of feedstock
supply areas for biorefineries and to reduce biomass producer
risk [56]. However, spatial variations for bioenergy feedstock
could vary with time and space due to changes in environ-
mental conditions, such as temperature and precipitation, and
soil characteristics. Here, we carried out quantitative analysis
of biomass yield of bioenergy grasses to identify the spatial
and temporal trends in the USA using the methodology de-
scribed by Blackmore et al. [57] and later on applied by other
studies [56]. This methodology identifies the regions where
yields could be high or low and stable or unstable in time.

In order to estimate spatial and temporal pattern of biomass
yields over the period 2001–2012, the model is first initialized

with NLDAS-2 climate [44] and STATSGO2 soil database
[45] along with current land cover and atmospheric CO2

concentrations for year 2000 until soil temperature and mois-
ture reach steady state. Energy grasses were then planted with
commonly reported seedling and rhizome planting densities,
which were 4,850 rhizomes/acre (approximately 600 kg/ha)
for Miscanthus [58] and 8.5 kg/ha of seeds for Cave-in-Rock
and Alamo [59]. We follow the agronomic practices to grow
switchgrass and Miscanthus at site level calculations based on
the information provided in the literature for each site. For the
US-scale calculations, we prescribe agronomic practices
based on Lee et al. [60].

Here, we use spatial yield patterns estimated by ISAM at
0.5°×0.5° to assess the regions which continuously produce
higher (or lower) yields due to favorable (or unfavorable)
conditions, such as soil and topography characteristics and
regional climate conditions. A single spatial yield pattern of
each bioenergy grass is presented as the arithmetic mean
(AM) of yearly yield for the period 2001–2012 at each grid
point. Here, we exclude low and unstable yield in the estab-
lishment year at each grid point. The thresholds, which clas-
sify high and low yield zones, are defined as the median value
of the AM of yield over the period 2001–2012 for all grid
cells. To quantify the effects of environmental factors on spatial

Table 4 (continued)

Site
ID

Sites State Latitude
(°)

Longitude
(°)

N Mean and SD(±) for
measured yield (t/ha)

Mean and SD(±) for
modeled yield (t/ha)

Modeled mean
peak yield (t/ha)

Sampling
variability (t/ha)

PBIAS
(%)

A2 Elsberrya MO 39.16 −90.79 2 20.8±0.9 21.1±2.0 21.1 5.5 −1.4
A3 Columbia MO 38.89 −92.19 2 16.4±4.6 19.2±4.6 19.2 6.1 −17.1
A4 Orange VA 38.22 −78.12 6 17.2±1.8 17.4±1.1 22.8 − −1.2
A5 Blacksburg VA 37.18 −80.42 6 14.3±3.0 15.1±0.7 21.9 − −5.4
A6 Princeton KY 37.1 −87.82 6 14.1±1.6 14.8±0.7 22.7 − −5.0
A7 Mt. Vernona MO 37.07 −93.81 2 16.2±1.1 16.7±1.1 16.7 5.6 −3.1
A8 Stillwatera OK 36.12 −96.05 2 13.6±1.5 11.8±3.4 11.8 5.6 12.9

A9 Fayettevillea AR 36.09 −94.11 2 14.9±1.1 16.5±1.0 16.5 4.9 −11.1
A10 Knoxville TN 35.88 −83.95 6 21.7±2.2 19.7±2.2 19.7 − 9.3

A11 Raleigh NC 35.72 −78.67 6 12.3±3.2 12.5±1.0 20.1 − −1.8
A12 Jackson TN 35.62 −88.63 6 9.8±2.0 14.2±0.5 22.1 − −45.1
A13 Hope AR 33.67 −93.58 1 16.8 15.4 23.8 − 8.3

A14 Dallas TX 32.97 −97.27 4 8.1±5.3 9.2±3.9 14.5 − −12.9
A15 Stephenville TX 32.22 −98.2 1 10.9 10.0 15.4 − 8.3

A16 Nacogdochesa TX 31.5 −94.6 2 22.9±10.4 19.5±2.4 19.5 9.9 15.1

A17 Temple TX 31.06 −97.22 4 14.4±2.4 13.9±0.9 19.3 − 3.1

A18 Clinton LA 30.85 −90.05 1 10.7 12.9 20.2 − −21
A19 College

station
TX 30.6 −96.35 4 15.4±3.2 14.3±2.9 20.8 − 7.2

A20 Beeville TX 28.4 −97.7 3 12.7±3.9 11.0±3.6 17.6 − 13.4

A21 Kingsvillea TX 27.54 −97.85 2 22.9±3.9 13.4±1.0 13.4 9.4 41.4

A22 Weslacoa TX 26.22 −98.13 2 22.8±3.3 15.5±6.6 15.5 15.1 32.2

a Yield is harvested at the time of peak biomass
b Based on first year of yield data
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yield pattern, the statistical significance of the differences in
environmental variables between high and low yield zones is
analyzed by rank-sum test [61] and comparing themedian values
of each environmental variable for high and low yield zones. The
environmental variables considered here include the following:
mean air temperature (T), mean short wave radiation (Ra),
accumulated precipitation (P), and meanWa during the growing
season and photoperiod during the vegetative stage (Lday). The
value of each environmental variable at each grid point is
expressed as its multi-year mean values over the time period
2001–2012.

The yearly variations in yield over the period 2001–2012 at
eachmodel grid are used to assess the extent to which yields vary
temporally. The degree of temporal variability in yields is mea-
sured as temporal variance defined as the square of the standard
deviation (SD2) at each grid cell [57]. The lower the variance is,
the lower the extent to which yield varies temporally due to
variation in weather conditions, and thus the greater the temporal
yield stability. The threshold values of temporal variance in yield
are used to define stable (SD2≤threshold) and unstable (SD2>
threshold) yields for each bioenergy grass. The threshold value
for temporal variance in yield can be assigned according to
multiple criteria and could include choosing a fraction of the
coefficient of variation or relating it to potential management
practices [57]. We assign the threshold value of temporal vari-
ance for each bioenergy crop where SD (the square root of the
temporal variance) is about 16 % of the bioenergy’s median crop
yield (values defined above). A sensitivity analysis suggests that
choosing a threshold value based on SD being greater than about
16 % results in an insignificant number of grid points being
identified as unstable.

To quantify how variability in climate variables influences
temporal yield variability, we calculate the coefficient of variation
(CV) for each climate variable over the time period 2001–2012 at
each grid cell. CV defines as the percentage fraction of standard
deviation of each climate variable to its mean value over the time
period 2001–2012, and thus indicates the relative variability of
each climate variable relative to its mean value. The significance
of difference inCVvalues of each climate variable between stable/
unstable yields zone is firstly tested through rank-sum test and
then quantified by comparing estimated median values for CV in
stable/unstable yield zones. Since soil texture can influence the
sensitivity of yield to variability in climate variables, here we also
calculate the CV values forWa over the same period and compare
its difference between stable/unstable yield zones.

After assigning the threshold values for high/low yield
classification and stable/unstable yield classification, the spa-
tial trend and temporal variations are then grouped together
into four yield class zones: high and stable yield zone (HS),
high and unstable yield zone (HU), low and stable yield zone
(LS), and low and unstable yield zone (LU). The HS yield
zone is more appropriate to grow bioenergy grasses with
stable high yields, whereas the yield in HU zone is sensitive

to the variance in weather variables. The LS yield zone is not
appropriate to grow bioenergy grasses due to unfavorable
climate and soil characteristics. Finally, yields in LU zones
are uncertain due to high variance. Future climate change that
may increase precipitation may increase the yield in this zone.

Estimated Spatial Yield Patterns for Energy Grasses

The model simulates no establishment of Miscanthus in the
region above the PHZ 4 (Fig. 3a). This is in agreement with
most field experiments, which fail to establish Miscanthus in
upperMichigan, the northern part of lowerMichigan, as well as
northern Vermont, New Hampshire, and Maine. The extreme
low over-winter temperatures in these regions induce almost
100% rhizomemortality and thus no survival ofMiscanthus. In
addition, the model also simulates no survival of Miscanthus in
the western Great Plains (Fig. 3a) where accumulated precipi-
tation over the growing season is estimated to be less than
400 mm (Figure S2a). Except for region with no survival of
Miscanthus, there are large spatial variations with average
annual yields for the time period 2001–2012 ranging between
2 and 25 t/ha. High-yield zones with yield of more than 15 t/ha
are located in the central Midwest, Kentucky, Tennessee, and
the upper south Atlantic region. The results suggest that there
are significant differences in P, mean Wa, mean Ra, and mean
Tg during the growing season and mean photoperiod during the
vegetative stage (Table 5) between high/low yield zone for
Miscanthus. In addition, the results indicate that high yields
are supported by high precipitation (P>600 mm), moist soil
condition, Tg less than 296 K, and longer mean photoperiod
during the vegetative stage (Figure S2a, g, j). In contrast, low
precipitation amount reduces Wa for the Miscanthus growth in
the eastern Great Plains, leading to less than 10 t/ha of yield
(Fig. 3a), whereas the low Miscanthus yields in the southern
USA are due to too warm conditions (Tg>296 K). High tem-
perature reduces carbon assimilation rates and thus the yield in
this region. Moreover, too warm condition here delays the
senescence process and reduces N translocation, leading to N
limitation for the growth in the following year. In addition,
shorter than normal day length in the southern USA induces
earlier flowering time, which reduces leaf size and number and
thus carbon assimilation [34].

Similar to Miscanthus, the model simulates no survival of
Cave-in-Rock in the western part of Great Plains, mainly the
region located in the west of the 100th meridian. Limited
precipitation together with poor soil texture in the northwest
of Nebraska induces strong water limitation on the establish-
ment of Cave-in-Rock. Cave-in-Rock could survive inmost of
the rest part of the eastern USA, except for region above PHZ
3, where grass may not survive due to too cold winter condi-
tions. The Cave-in-Rock yield in its establishment region has
an estimated range between 2 and 15 t/ha, with the critical
value for classifying high/low yield zone of 9.4 t/ha. Cave-in-
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Rock can share the same high yield zone as that for
Miscanthus (Fig. 3b). In addition, there is also high yield in
Iowa, eastern Nebraska, eastern Kansas, and eastern Oklaho-
ma. Table 5 suggests that the high Cave-in-Rock yield zones
are attributed to high precipitation (P>500 mm), moist soil
condition, and suitable temperature (Tg >296 K) during the
growing season and longer mean photoperiod during the
vegetative stage (Figure S2b, h, k). Yields in central Great
Plains (Fig. 3b) are low due to less than 500 mm of precipi-
tation during the growing season together with poor soil
texture, which limits the water availability for Cave-in-Rock
growth (Figure S2b, k). As discussed for Miscanthus, lower

Cave-in-Rock yields (<6 t/ha) in the southern USA are due to
too hot conditions and shorter than normal day length.

Unlike Miscanthus and Cave-in-Rock, Alamo may not be
established in most of the northern USA. This is agreement
with the field experiments, which suggest that Alamo usually
could not adapt to the region above PHZ 6 because unfavor-
able cold winter conditions, which could induce almost 100%
of rhizome mortality [7]. In addition, Alamo may not survive
in the western Texas due to too dry condition in this region.
Alamo yields in the rest of the eastern USA have the range
between 4 and 17 t/ha, with the critical value for classifying
high/low yield zone of 11 t/ha. The most parts in the bottom of

Fig. 3 The spatial yield patterns (Miscanthus (a), Cave-in-Rock (b), and
Alamo (c)), the temporal yield variance maps (Miscanthus (d), Cave-in-
Rock (e), and Alamo (f)), and the spatial and temporal yield trend maps
(Miscanthus (g), Cave-in-Rock (h), and Alamo (i)) for three energy crops.

In the legend of figures g, h and i the HS represents high and stable yield
zone,HU high and unstable yield zone, LS low and stable yield zone, and
LU low and unstable yield zone
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the Midwest, Atlantic Plains, and most of the southern USA
are identified as high yield zones, except for central Kansas,
central Oklahoma, and central Texas. Table 5 shows thatP and
meanWa during the growing season are significantly higher in
the high Alamo yield zone than that in the low yield zone,
whereas photoperiod during the vegetative stage is significant-
ly lower in the high yield zone than that in the low yield zone.
This analysis suggests that high precipitation (P>600 mm),
moist soil condition during the growing season (Figure S2
c, l), and relatively short photoperiod results in the high Cave-
in-Rock yield. Low yields in central Kansas, central Oklaho-
ma, and central Texas are attributed by low precipitation and
thus low Wa in the region.

Temporal Yield Variations for Energy Grasses

The estimated SD2 range between 0 and 64(t/ha)2 for
Miscanthus, 0–13(t/ha)2 for Cave-in-Rock, and 0–24(t/ha)2

for Alamo over the USA (Fig. 3d–f). Given the median yield
values for three bioenergy crops, the threshold values for
classifying stable/unstable yield zones are therefore
7.0(t/ha)2 for Miscanthus, 2.5(t/ha)2 for Cave-in-Rock, and
3.0(t/ha)2 for Alamo. Figure 4 shows the distribution of SD2

across all grid points, as well as the thresholds for temporally
stable yields. This curve indicates that the percentage of the
total number of grid cells with temporally stable yield appar-
ently increases with increasing level of temporal variance, but

Table 5 Annual median values for various environmental factors averaged over the period 2001–2012. The values are provided for high and low yield
zones for three energy crops

Bioenergy grass Yield zone Environmental factors

Accumulated precipitation
(P) [mm]

Radiation (Ra) [MJ] Temperature
(Tg) [MJ]

Soil water availability
index (Wa)

Photoperiod
(Lday) [h]

Miscanthus High 749a 19a 293a 1.00a 14.6a

Low 704a 22a 297a 0.96a 14.0a

Cave-in-Rock High 669a 20a 293a 1.00a 14.6a

Low 603a 18a 297a 0.95a 14.1a

Alamo High 754a 21 296 1.00a 14.0a

Low 610a 20 296 0.93a 14.6a

a Variable value is statistically significantly different from Low/High yield zone. The statistical test is performed with rank-sum test. The significance
level for statistical analysis, α, is 0.01

Fig. 4 The bar chart shows the
distribution of total number of
grid points falling into the each
bin of variance interval and the
curve shows the variation of the
percentage of total number of grid
points, with increasing values of
the temporal yield variance for
Miscanthus, Cave-in-Rock, and
Alamo yields over the US
domain. The green vertical line
shows the threshold value for
temporal variance for classifying
stable/unstable yield zones
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with gradually decreasing rates, as indicated by the first devi-
ation of the curve in Fig. 4. The total grid cells that have
temporal yield variances lower than or equal to these thresh-
olds are 75 % of Miscanthus, 89 % of Cave-in-Rock, and
84 % of Alamo. However, only 21 % of these stable yield
zones for Miscanthus, 41% of stable yields zones for Cave-in-
Rock, and 16 % of stable yields zones for Alamo can be
considered as high yield zones.

Except for the region in bottom of the Midwest, western
Kentucky, western Tennessee, as well as central Texas, south-
ern Oklahoma, and eastern Nebraska, Miscanthus yields in the
rest of the eastern USA are unstable (Fig. 3d). Table 6 shows
that the CV values for both precipitation and Wa in the
unstable yield zones are significantly higher than that in the
stable yield zone. These results explain unstable Miscanthus
yields in eastern Kansas and northern Oklahoma, where more
than 20 % of relative variability in precipitation together with
poor soil texture induces more than 10% of relative variability
of Wa (Figure S3a, d) and thus drives high yield variations for
Miscanthus. Relative to these regions, similar variability in
precipitation does not induce high variability in soil water
availability in moist southern USA (Figure S3a, d). Table 6
indicates significant difference in radiation and temperature
between stable/unstable Miscanthus yield zones. Our study
indicates that more than 4 % of relative variability in radiation
following variability in precipitation amount (Figure S3g)
drives unstable Miscanthus yields in the southern USA
(Fig. 3d). The higher radiation and temperature variability
(>6 %) in the unstable yield zones mainly control the higher
yield variability in the central Midwest, such as northern
Missouri, northern Illinois, southern Michigan, Ohio, and
the western Pennsylvania in the northeastern USA (Fig. 3d).

Unlike Miscanthus, Cave-in-Rock yield is stable in most of
the easternUSA, except the regions discussed as follows. Table 6
suggests that high variability of precipitation, Wa, radiation, and
temperature induce unstable Cave-in-Rock yield. The unstable
yields in the eastern Great Plains (Fig. 3e) are due to more than
20%of precipitation relative variability and thus high variability
in Wa (Figure S3b, e). In addition, high relative variability in

temperature (CV>7 %) (Figure S3k) also attributes to the un-
stable Cave-in-Rock yield in South Dakota and North Dakota
(Fig. 3e). Cave-in-rock yields in southernArkansas and northern
Mississippi are very sensitive to radiation variation (Figure S3h),
even 3 % of relative variability in radiation could induce more
than 5(t/ha)2 of yield variation in this region.

For Alamo, the unstable yield zones are mainly located in
eastern Kansas, eastern Oklahoma, eastern Texas, and the
connection region between Arkansas and Louisiana
(Fig. 3f). The significant difference in precipitation and Wa
between stable/unstable yield zones (Table 6) indicates that
high Alamo yield variability here is the response to high
precipitation and Wa variability (Figure S3c, f). In addition,
there is also unstable Alamo yield in West Virginia and Mary-
land (Fig. 3f), which is related to high relative variability of
temperature in this region (Figure S3l).

Homogeneous Spatial Zones Based on the Spatial
and Temporal Trends in Yield for Energy Grasses

Figure 3g–i shows that all three zones (HU, LU, LS) are
usually successively distributed, northward, southward, and
westward from HS zones for Miscanthus and Cave-in-Rock,
but northward and westward from HS zones for Alamo.

There are some common trends for three bioenergy grasses
in the distribution of yield zones in the USA. The HS yield
zones for three bioenergy grasses are in southern Missouri,
northwestern Arkansas, southern Illinois, southern Indiana,
southern Ohio, western Kentucky, and part area of northern
Virginia (Fig. 3g–i). The highest Miscanthus yield is almost
1.8 and 1.5 times higher than that for Cave-in-Rock and
Alamo in these regions. The LS yield zones for Miscanthus
and two cultivars of switchgrasses are located in the upper part
of north central, northeastern, and northern New England as
well as western parts of Great Plains (Fig. 3g–i). Three
bioenergy grasses usually could not be established in these
regions (Fig. 3a–c).

Parts of the Midwest region, such as northern Illinois,
Indiana and Ohio, and eastern Kentucky are HU yield zones

Table 6 Annual median values of coefficient of variance (CV) averaged over the period 2001–2012 for various input variables. The values are provided
for stable and unstable yield zones for three energy crops

Bioenergy grass Yield zone CVof accumulated
precipitation [%]

CVof radiation [%] CVof temperature [%] CVof water availability [%]

Miscanthus Stable 20.5a 3.8a 4.1a 4.2a

Unstable 25.0a 4.3a 4.7a 5.1a

Cave-in-Rock Stable 22.9a 3.3a 4.7a 1.7a

Unstable 27.0a 4.4a 5.0a 11.8a

Alamo Stable 24.0a 4.1 3.9a 1.3a

Unstable 29.4a 4.0 4.4a 18.2a

a Variable value is statistically significantly different from Low/High yield zone. The statistical test is performed with rank-sum test. The significance
level for statistical analysis, α, is 0.01
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for Miscanthus (Fig. 3g) and HS zones for Cave-in-Rock
(Fig. 3h), but LS yield zones for Alamo (Fig. 3i). Most of
the areas in Tennessee, southern Virginia, and North Carolina
are HS yield zones for Cave-in-Rock and Alamo, but HU
yield zone for Miscanthus. Most areas of the southern USA
are the HS yield zone for Alamo, but the LU yield zone for
Miscanthus and LS yield zone for Cave-in-Rock. In eastern
parts of Great Plains, both Cave-in-Rock and Alamo show the
transition from HU to LU yield zones along an east-to-west
gradient. However, Miscanthus is usually low and unstable in
this region.

Overall, the HS yield zones for the three bioenergy grasses
discussed here are more suitable to grow bioenergy grasses
with minimum natural resource investment. Extra manage-
ment practices such as irrigation, especially in the dry year,
might help to increase the stability of bioenergy grass yields in
the HU yield zones. Upper part of north central, northeastern,
and northern New England and western parts of Great Plain,
defined as LS yield zones, are not appropriate to grow
Miscanthus and Cave-in-Rock and Alamo switchgrasses.
There could be some other bioenergy crops or other switch-
grasses cultivars that may be grown in this region.

Comparing ISAM Estimated Bioenergy Yields with Other
Studies

We compare ISAM estimated biomass yields for energy crops
with previously published model studies that simulate
bioenergy yields either at a regional or US scale, including
Miguez et al. [17, WIMOVAC (BIOCRO) model], VanLoocke
et al. [18, Agro-IBIS model], Zhuang et al. [20, TEM model],
Jager et al. [9, empirical model], Thomson et al. [16, EPIC
model], and Behrman et al. [12, ALMANAC model]. The
major characteristics and the main results of these models along
with ISAM are listed in Table 7. All models, with the exception
of Jager et al. [9], are process-based models, which simulate
carbon assimilation and allocation processes for Miscanthus
and/or switchgrasses. Among these models, the EPIC and
ALMANAC models use radiation use efficiency to calculate
switchgrass yields [12, 16], while other models use more
detailed biophysical methods to simulate carbon assimilation.
The major distinction between ISAM and other models is that
ISAM is the only model which accounts for dynamic response
of carbon allocation, LAI growth, as well as root growth and
distribution among the soil layers to environmental factors,
such as precipitation, temperature, and radiation. Similar to
EPIC and ALMANAC model, ISAM also parameterizes
Cave-in-Rock and Alamo separately.

In terms of Miscanthus yield, ISAM estimates consistently
higher yields in the central and southern Midwest Corn belt,
which is similar to BIOCRO, Agro-IBIS, and TEM models.
However, the ISAM estimated highest yield in this region,
which is 25 t/ha and similar to TEM estimated highest yield

value of 21.5 t/ha, is almost 38 % lower than the BIOCRO
model estimated highest yield of 40.5 t/ha and 31 % lower than
the Agro-IBIS estimated highest harvested yield of 36 t/ha. This
difference could be due to the fact that these two models use
different sets of observation data to calibrate the model param-
eters. ISAM is calibrated based on the observation data from a
large plot at Champaign-Urbana (plot size 0.2 ha) site, whereas
BIOCRO and Agro-IBIS are calibrated based on observed data
from a small plot at the same site (plot size 0.01 ha). Due to edge
effects, the observed aboveground biomasses for the small plot
for years 2007 and 2008 are as high as 2.9 times as compared to
the observed data for the large plot [53, 62]. In addition, ISAM
and BIOCROmodel estimated spatial yield patterns differ in the
south USA. ISAM estimated Miscanthus yield in the southern
states, including eastern Texas, Louisiana, Mississippi, Ala-
bama, Georgia, and Florida, is lower than 8 t/ha, but BIOCRO
model estimated yield is usually higher than 20 t/ha in this
region. Observed data (Table 4) from sites in Arkansas, Texas,
Oklahoma, and Florida suggests that ISAM estimated
Miscanthus yield in the southern USA is consistent with mea-
sured values at these sites, whereas BIOCRO model may have
overestimated Miscanthus yield in the southern US.

For Cave-in-Rock switchgrass, all models, including
ISAM, estimate higher yield for Illinois, Indiana, Ohio, Iowa,
andMissouri. ISAM estimated highest yield for Cave-in-Rock
in these states is 15 t/ha, which is consistent with ALMANAC
estimated yield of 14 t/ha, but slightly higher than EPIC
estimated highest yield of around 12 t/ha and TEM estimated
highest yield of 10.8 t/ha (Table 7).

For Alamo switchgrass, all models simulate higher yield in
the southern US states, including Louisiana, Mississippi, and
Alabama. ISAM estimated highest yield for Alamo in these
states is 17 t/ha. This estimated yield is consistent with EPIC
estimated highest yield of 16 t/ha in this region and falls in the
range (15–20 t/ha) of BIOCRO model estimated yields in this
region. However, ISAM estimated yield along the Gulf coast
and Florida (15–17 t/ha) is lower than ALMANAC estimated
higher yield (>18 t/ha) for the same region. One of the reasons
for this difference could be due to the fact that the two models
follow different Nmanagement practices. The simulation with
ALMANC applies 100 kg/ha N per year after establishment,
whereas ISAM assumes no N fertilizer applications. This may
have led to N limitation on Alamo growth in the ISAM
simulated yield.

Overall, ISAM is able to simulate yields for bioenergy
grasses under diverse environments conditions in the USA,
especially in central and south of study domain, where model
performances have been widely validated by the observed data.
In north central, northeastern, and northern New England, an
empirical function has been introduced to simulate the rhizome
and stand mortality due to over-winter injury. Our model
estimates less than 8 t/ha of Miscanthus yields in the most
south part of Michigan, which is consistent with reported
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Miscanthus yield range (1.47 to 9.0 t/ha) in this state [63]. This
result suggests that the model is able to capture the effect of
rhizome mortality due to over-winter injury. However, model
estimated yield for Cave-in-Rock in this region is slightly
higher (6.0–10.0 t/ha) as compared to measurements [63] (2.9
to 7.3 t/ha). We suggest that more observed data is needed in
north central, northeastern, and northern New England to fur-
ther validate our model performance. In addition, as discussed
in model validation section, the model underestimates yields of
bioenergy grasses at the bottom of southern Texas due to lack

of large spatial heterogeneity of environmental factors within
specific sites. Thus, the potential yields of bioenergy grasses
need to be further evaluated with high-resolution data for
environmental variables, such as soil slope, soil depth, etc.

Conclusions

The study implements dynamic growth processes, including
dynamic carbon allocation and root distribution, into a land

Table 7 Comparison of simulated yields among different models

Model Model characteristics Maximum yield

ISAM (this study) (1) Process-based biogeochemical model
(2) Hourly time step over 1980–2010 period
(3) 25×25 km spatial resolution
(4) Biophysical approach for carbon assimilation
(5) Dynamic carbon allocation factors, which account for
interaction with environmental factors

(6) Climate forcing: NLDAS data

Miscanthus: 25 t/ha in the USA
Cave-in-Rock: 14 t/ha in the USA
Alamo: 17 t/ha in the USA

BIOCRO model [17] (1) Process-based model
(2) Hourly time step over 1979–2010 period
(3) 32×32 km spatial resolution
(4) Biophysical approach for carbon assimilation
(5) Dynamic carbon allocation factors which interact only
with water availability

(6) Climate forcing: temperature, precipitation, relative humidity,
and wind speed from NCEP dataset, radiation data from
NLDAS dataset

40.5 t/ha in the USA
Switchgrassa: 20 t/ha in the USA

Agro-IBIS model [18] (1) Process-based model
(2) Hourly time step over 1973–2002 period
(3) 0.5×0.5° spatial resolution
(4) Biophysical approach for carbon assimilation
(5) Fixed carbon allocation factors at each phenology stage
(6) Climate forcing data: combination of University of East Anglia
Climate Research Unit climatological datasets and NCEP daily
anomaly dataset

Miscanthus: 36 t/ha in the Midwest USA
Cave-in-Rock: 16 t/ha in the Midwest USA

TEM model [20] (1) Process-based biogeochemical model
(2) Monthly time step over 1990–1999 period
(3) 25×25 km spatial resolution
(4) Biophysical approach for carbon assimilation
(5) Fixed carbon allocation factors
(6) Climate forcing data: CRU dataset

Miscanthus: 21.5 t/ha grown on cropland in the USA
Cave-in-Rock: 10.8 t/ha grown on cropland of
the USA

Empirical model [9] (1) Empirical model regressed with environmental variables
(2) PRISM dataset

Upland switchgrass: 28 t/ha in the USA
Lowland switchgrass: 40 t/ha in the USA

EPIC model [16] (1) Processed-based model
(2) Daily time step over 30 years
(3) Radiation use efficiency method
(4) Dynamic carbon allocation factors, which account for interaction
with environmental factors

Switchgrassa: 16 t/ha in the USA

ALMANACmodel [12] (1) Process-based model with experimental simulation of LAI growth
and biomass partitioning

(2) Daily time step over 13 years
(3) Radiation use efficiency
(4) Calculate competition for water and nutrients among plants,
biomass production, and biomass partitioning

(5) Separate parameterization for upland and lowland switchgrasses
(6) Application of 100 kg/ha nitrogen every year

Switchgrassa: 24.9 t/ha in the USA

a The study does not make distinction between various cultivars of switchgrass. The maximum yield here represents the maximum value among all
switchgrass cultivars
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surface model, ISAM, with specific phenology development
schemes for Miscanthus and Cave-in-Rock and Alamo. The
simulated carbon assimilation rates, LAI, and carbon alloca-
tion among aboveground and belowground biomass for the
three bioenergy grasses are in good agreement with observed
data from Urbana, IL, site for Miscanthus and Cave-in-Rock,
and a Temple, TX, site for Alamo. The modeled mean yield
and its variation over measured years at 43 different evalua-
tion sites are in good agreement with measured yields. The
model calibration and evaluation results indicate that ISAM is
able to capture the spatial and temporal variations in biomass
yields for bioenergy grasses in the US.

Based on simulated mean bioenergy grass yields and their
variances over the period 2001–2012 in the USA, we identify
four yield zones: a high and stable yield zone (HS), a high but
unstable yield zone (HU), a low and stable yield zone (LS),
and a low and unstable yield zone (LU). Our results indicate
that regional precipitation, temperature, soil water availabili-
ty, and day length control the spatial distribution of high and
low yields zones in the USA, whereas relative temporal
variability in precipitation, temperature, and radiation deter-
mines the temporal stability and instability in the USA. The
HS zone for the three bioenergy grasses is mainly located in
the regions with precipitation greater than 600 mm and mean
temperature 292–294 K during the growing season, and
includes southern Missouri, northwestern Arkansas, southern
Illinois, southern Indiana, southern Ohio, western Kentucky,
and parts of northern Virginia. The highest yield for
Miscanthus in these regions is 25 t/ha, which is about 1.8
and 1.5 times higher than the highest yield for Cave-in-Rock
and Alamo in these regions. Besides the HS zones discussed
above, Cave-in-Rock yields are also high and stable in north-
ern Illinois, northern Indiana, and northern Ohio. Alamo
yields are also high and stable in most areas of the southern
USA, except for eastern Texas, the region between Arkansas
and Louisiana, and the connect region among Tennessee,
Georgia, and South Carolina. However, the lower part of
the southern USA is usually a LU yield zone for Miscanthus
and LS yield zone for Cave-in-Rock.

There are certain yield patterns, which are common to all
three bioenergy grasses. These include the following: low and
stable yield for all three grasses in the western Great Plains,
such as western part of South Dakota, western Nebraska,
western Kansas, western Texas, etc., due to poor soil texture
and low precipitation; low and stable biomass yields in upper
part of north central, northeastern, and northern New England
due to cold temperature conditions. These LS yields zones are
not suitable to grow three specific bioenergy grasses consid-
ered in this study, but it is likely possibly that other bioenergy
crops or other switchgrasses cultivars perform better in these
zones. However, the calculations of other bioenergy crops or
switchgrasses cultivars are beyond the scope of this study and
will be implement in the future modeling studies.

Overall, the ISAM-estimated spatial yields patterns for
bioenergy grasses in the USA are in agreement with pre-
vious model studies. In addition, ISAM can simulate the
adaption of different bioenergy grasses across the latitudes
ranging between 26°N and 41°N for Miscanthus and be-
tween 26°N and 46°N for switchgrasses by accounting the
effect of photoperiod on phenology and leaf development
and the effect of extreme environmental conditions on
establishment, carbon assimilation, and phenology. There
are significant differences between the ISAM and other
models estimated highest yields due to differences in the
treatment of environmental stress factors in different
models. With more comprehensive treatment of environ-
mental factors, such as water, temperature, light, and nitro-
gen, on plant phenology and carbon allocation, ISAM
estimated highest yield for bioenergy grasses is lower than
BIOCRO and Agro-IBIS estimated values. For Miscanthus,
these differences are also due to different observational data
that is used for model calibration. ISAM is calibrated by
data from a large plot at the Urbana-Champaign, IL, site,
while BIOCRO and Agro-IBIS model are calibrated by
data from a small plot. The observed aboveground bio-
masses from smaller plots were much higher than that from
the larger plots due to the edge effects, and this effect
should be accounted for if small plots are used for
model calibration. The close agreement between the
ISAM modeled and measured yields at extended evalu-
ation sites (ranging from 26.68°N to 46.88°N) suggests
that ISAM is able to simulate bioenergy grasses across
diverse environments in the USA. Further evaluation of
modeled yields in southern Texas is needed with high-
resolution of soil depth and slope data. More measured
yields data in north central, northeastern, and northern
New England is also needed to further assess the
model’s performance in these areas.

The identification of four yield zones for bioenergy grasses
in the eastern USA indicates that HS yield zones over most of
eastern USA are more suitable to grow bioenergy grasses,
whereas yield instability needs to be considered when
assessing the potential yields of bioenergy grass in the HU
yield zones. The LS yield zones in the upper part of north
central, northeastern, and northern New England usually
could not grow bioenergy grasses due to winter-injury.
Bioenergy grasses also may not survive in western parts of
Great Plains. Climate change may increase the uncertainty in
yield variance in the HU and LU zones by altering the pre-
cipitation amount and frequency.
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Appendix

Table 8 The values for various parameters used in this study. The three values separated by comma (,) the FValues_ column are forMiscanthus, Cave-in-
Rock, and Alamo

Symbol Definition Valuesa Source

Pcrit Critical precipitation over previous week
for switchgrass seed planting

–, 6, 10 [mm] This study

TPsoil_crit Critical soil temperature for switchgrass
seed planting

–, 288, 288 [K] [8]

HUI0 Heat unit index above 0 °C Vary

GDD0 Accumulated growing degree days above
0 °C summed from the first day of the
year to current running day during the simulation

Vary

GDD0max Annual summation of growing degree
days above 0 °C averaged for the 33
years (1980–2012)

Vary Input parameters

HUI0e Minimum heat unit index above 0 °C
during the emergence stage of phenology

0.10, 0.10, 0.10 Calibration parameter

HUI0v1 Minimum heat unit index above 0 °C during the
initial vegetative stage of phenology

0.12, 0.14, 0.14 Calibration parameter

HUI0v2 Minimum heat unit index above 0 °C during the
normal vegetative stage of phenology

0.30, 0.35, 0.22 Calibration parameter

HUI0s1 Minimum heat unit index above 0 °C during the
initial reproductive stage of phenology

0.66, 0.66, 0.41 Calibration parameter

HUI0s2 Minimum heat unit index above 0 °C during the
post reproductive stage of phenology

0.78, 0.73, 0.73 Calibration parameter

HUI0d Minimum heat unit index above 0 °C during the
winter dormancy stage of phenology

1.0, 1.0, 1.0 Calibration parameter

De Total maximum days during the emergence stage
of phenology

8, 10, 10 Calibration parameter

Dv1 Total maximum days during the initial vegetative
stage of phenology

50, 50, 50 Calibration parameter

Dv2 Total maximum days during the normal vegetative
stage of phenology

60, 50, 60 Calibration parameter

Ds1 Total maximum days during the initial reproductive
stage of phenology

60, 50, 50 Calibration parameter

Ds2 Total maximum days during the post reproductive
stage of phenology

76, 56, 76 Calibration parameter

Tbase Base atmospheric temperature for grass planting and
growth

283, 283, 285 [K] [8, 40, 64]

Tsoil_crit Critical soil temperature for rhizome emergence 283, 283, 285 [K] [4]

Lday Day length in each day Vary

Le Critical day length for emergence 12,12,11 [8]

Lf Critical day length for initiation of flowering 13, 13, 12 [h] [33, 34]

LAImax Maximum leaf area index 6.0, 4.5, 6.0 [m2/m2] [3, 46, 49]

LAI Leaf area index Vary

Tfrost Air temperature critical value for frost damage 244, 239, 250 [K] [7, 65]

Tmax_crit Temperature critical value for occurrence of extreme
hot and dry

303, 300, 305 [K] [37, 66]

Tymax Annual maximum air temperature averaged for the
past 33 years (1980–2012)

Vary Input parameter

Tsoil_s2 Critical temperature for root zone 269, 269, 269 [K] [8, 40]

Tytmin Annual minimum air temperature averaged for the
past 33 years (1980–2012)

Vary Input parameter

Wacrit The water availability critical value for extreme
drought

0.50, 0.30, 0.65 Calibration parameter

Tmin3 The previous 3 days average daily minimum
temperature

Vary
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Table 8 (continued)

Symbol Definition Valuesa Source

Tmin7 The daily minimum temperature averaged for
previous 7 days

Vary

Tmax3 The daily maximum temperature averaged for
previous 3 days

Vary

T6 Previous 6 days average daily temperature Vary

P7 The accumulated precipitation of previous week Vary

Wa7 The mean water availability of previous week Vary

Tavg_min Average annual extreme minimum temperature Vary Input parameter

ψb The minimum water potential for switchgrass
seed germination in Eq. A4

−0.3 [MPa] [35]

Topt_g The optimal temperature for switchgrass seed
germination in Eq. A5

–, 298, 303 [K] [35]

Tmax_g The maximum temperature for switchgrass seed
germination in Eq. A5

–, 315, 318 [K] [35]

Tbase_g The base temperature for switchgrass seed
germination in Eq. A5

–, 288, 288 [K] [8]

θH Hydro-condition variable for switchgrass seed
germination in Eq. A3

Vary

θT Thermal condition variable for switchgrass seed
germination in Eq. A3

Vary

ψ Mean water potential above top 3 cm of soil in
Eq. A4

Vary

ω Sensitivity parameter of allocation to changes in
availability of light, water and N

0.95, 0.8, 0.9 Calibration parameter

θt Soil water potential at time step t Vary

θc Soil water potential at the time of fully closing stomata −275,000, −275,000, −275,000 [mm] [27]

θo Soil water potential at the time of fully opening stomata −74,000, −74,000, −74,000 [mm] [27]

φ Soil porosity of the soil Vary

fc The ice fraction of soil Vary

Ale1 Allocation fraction for leaf carbon during seed
germination of switchgrass in the planting
year in Eq. A6

–, 0.30,0.30 Calibration parameter

Are1 Allocation fraction for root carbon during seed
germination of switchgrass in the planting
year in Eq. A6

–, 0.70, 0.70 Calibration parameter

Ahe Allocation fraction for rhizome carbon during
emergence stage in Eq. A7

−0.02, −0.02, −0.01 Calibration parameter

Ale2 Allocation fraction for leaf carbon during the
emergence stage in Eq. A7

0.45, 0.60, 0.60 Calibration parameter

Ase2 Allocation fraction for stem carbon during the
emergence stage in Eq. A7

0.25, 0.30, 0.30 Calibration parameter

Are2 Allocation fraction for root carbon during the
emergence stage in Eq. A7

0.30, 0.10, 0.10 Calibration parameter

Alv1 Initial allocation fraction for leaf carbon during
the initial vegetative stage

0.44, 0.50, 0.50 Calibration parameter

Asv1 Initial allocation fraction for stem carbon during
the initial vegetative stage

0.20, 0.20, 0.20 Calibration parameter

Arv1 Initial allocation fraction for root carbon during
the initial vegetative stage

0.36, 0.30, 0.30 Calibration parameter

Alv2 Initial allocation fraction for leaf carbon during
the normal vegetative stage

0.20, 0.30, 0.30 Calibration parameter

Asv2 Initial allocation fraction for stem carbon during
the normal vegetative stage

0.60, 0.50, 0.60 Calibration parameter

Arv2 Initial allocation fraction for root carbon during
the normal vegetative stage

0.20, 0.20, 0.10 Calibration parameter

Arh_rv2 Initial reallocation fraction from rhizome to root
during the normal vegetative stage in Eq. A8

0.30, 0.30, 0.30 Calibration parameter
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Table 8 (continued)

Symbol Definition Valuesa Source

Alr1 Initial allocation fraction for leaf carbon during the
initial reproductive stage

0, 0, 0 Calibration parameter

Asr1 Initial allocation fraction for stem carbon
during the initial reproductive stage

0,15, 0.10, 0.10 Calibration parameter

Apr1 Initial allocation fraction for carbon in production
pool during the initial reproductive stage

0.20, 0.40, 0.40 Calibration parameter

Arr1 Initial allocation fraction for root carbon during
the initial reproductive stage

0.65, 0.50, 0.50 Calibration parameter

Arh_rr1 Initial reallocation fraction from rhizome to root during
the initial reproductive stage in Eq. A8

0.50, 0.50, 0.50 Calibration parameter

Alr2 Initial allocation fraction for leaf carbon during
the post reproductive stage

0, 0, 0 Calibration parameter

Asr2 Initial allocation fraction for stem carbon during
the post reproductive stage

0, 0, 0 Calibration parameter

Apr2 Initial allocation fraction for carbon in production
pool during the post reproductive stage

0, 0.4, 0.4 Calibration parameter

Arr2 Initial allocation fraction for root carbon during
the post reproductive stage

1.0, 0.6, 0.6 Calibration parameter

Arh_rr2 Initial reallocation fraction from rhizome to root
during the post reproductive stage in Eq. A8

0.50,0.50,0.50 Calibration parameter

SLA0 Specific leaf area 0.028, 0.03, 0.03 [m2 g−1] [47]

Vcmax25 Maximum carboxylation rate at the reference
temperature of 25 before N recycling
adjustment

58, 38, 45 [μmol m−2 s−1] [46, 47, 67]

m The slope of regressing stomatal conductance
on carbon assimilation in Ball-Berry equation

8, 3, 3 Calibrated parameter

b Minimum stomatal conductance in Ball-Berry
equation

0.03, 0.03, 0.03 [mol m−2 s−1] Calibrated parameter

Rwmax Maximum death rate of green leaves due to drought
in leaves senescence simulation

0.035, 0.03, 0.035 Calibration parameter

Tcold Cold temperature threshold for cold-induced death
of green leaves

283, 285, 285 [K] [8, 40, 64]

kl1 Remove fraction of previous produced leaf litter
in leaves senescence simulation

1.0 Calibration parameter

kl2 Remove fraction of new produced leaf litter in
leaves senescence simulation

0.91, 1.0, 1.0 Calibration parameter

rltleaf Leaf turnover rate 0.78, 0.68, 0.68 [year] [47]

rltstem Stem turnover rate 1.0, 1.0, 1.0 [year]

rltroot Root turnover rate 6.0, 6.0, 6.0[year]

rltrhizome Rhizome turnover rate 10.0, 10.0, 10.0 [year] [68]

RSmin Minimum root: shoot ratio of crop 0.19, 0.17, 0.17 [51]

CNleaf C:N ratio of leaf 61.5, 35, 35 [69]

CNstem C:N ratio of stem 112, 112, 112 [69]

CNrhizome C:N ratio of rhizome 65.6, 63, 63 Calculated based on [48]

CNroot C:N ratio of root 112, 138, 138 Calculated based on [48]

kkill Parameter in Eq. A11 0.06, 0.01, 0.26 Calculated based on [13,
40, 42]

mkill Parameter in Eq. A11 −0.03, −0.10, −0.04
Rcyc N recycling rate per unit of Carbon 0.03, 0.01, 0.01 [kg N/kg C] Calculated based on [43]

a The dash sign (−) represent that the parameter value is not needed for the specific bioenergy crop
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Table 9 Additional ISAM model equations used in this study

Function Equations

Heat requirement for flowering GDDv1=maximum (900, 454ln(Latitude)−726) Eq. A1

Soil water availability Wai ¼ θt−θc
θo−θc

� �
φ− f c
φ

� �
Eq. A2

Carbon storage in seed during its
germination

Cstorage=Cseed×(1+1.5×θH×θT) Eq .A3

θH ¼ ψ−ψb if ψ > ψb

θH ¼ 0 if ψ≤ψb

�
Eq. A4

θT ¼ T−Tbase g if T base g < T < Topt g

θT ¼ Topt g−Tbase g

� �ð1− T−Topt g

� �
Tmax g−Topt g

� � if T opt g < T < Tmax g

8<
:

Eq. A5

Carbon allocation The carbon allocation during seed germination of switchgrass in the

planting year
Cleaf i ¼ Cleaf i−1 þ Cstorage � Ale1
Crooti ¼ Crooti−1 þ Cstorage � Are1

� Eq. A6

The carbon allocation during the emergence period

Cleaf i ¼ Cleaf i−1 þ Crhizomei � Ahe � Ale2
Cstemi ¼ Cstemi−1 þ Crhizomei � Ahe � Ase2
Crhizomei ¼ Crhizomei−1 þ Crhizomei � Ahe
Crooti ¼ Crooti−1 þ Crhizomei � Ahe � Are2

8><
>:

Eq. A7

The carbon allocation during the initial and post

reproductive stages
Crooti ¼ Crooti−1 þ Crooti � Ar � Arh r � 1−Wað Þ

Crhizomei ¼Crhizomei−1 þ Crooti � Ar � 1−Arh rð Þ �Wa

� Eq. A8

Spring frost damage The mortality of rhizome, root, leaf, and stem

Lleaf i ¼ Cleaf i � F frost

Lstemi ¼ Cstemi � F frost

Lrooti ¼ Crooti � F frost

Lrhizomei ¼ Crhizomei � F frost

8>><
>>:

Eq. A9

The frost factor for the mortality of rhizome, root, leaf, and stem

F frost ¼ T frost−Tmin3

9
if T frost−Tmin3ð Þ ≤ 9

F frost ¼ 1 if T frost−Tmin3ð Þ > 9

( Eq. A10

Over-winter injury The fraction of the rhizome mortality due to over-winter injury

Fover winter ¼ min 1:0; kkille
mkill� T avg min−273:16ð Þð� �� �

if T avg min≤ T frost

0 if T avg min > T frost

( Eq. A11

Effect of photoperiod on SLA SLA ¼ SLA0 � 1−0:05� 14−Lday
� �� �

For Miscanthus and Cave�in�Rock
SLA ¼ SLA0 � 1−0:05� Lday−12

� �� �
For Alamo

�
Eq. A12

Table 10 The location (latitude and longitude) and climate (annual mean temperature and accumulated precipitation) and soil characteristics of data sites
used for model evaluation

Site ID Site State Latitude
(°)

Longitude
(°)

Soil type Plant
hardiness
zone

Annual mean
temperature ( )

Annual total
precipitation
(mm)

Plot size
(m2),
replicated
number

Reference

M1 Mead NE 41.17 −96.47 Sandy Loam 5a 9 874 100, 12 [37]

M2 Adelphia NJ 40.23 −74.25 Sandy loam 7a 12 1,167 100, 12 [37]

M3 Champaign IL 40.03 −88.23 Flanagan silt loam 5b 10.7 1,041 100, 12 [37]

M4 Troy KS 39.77 −95.20 Kennebec silt loam 6a 12.0 973 65, 4 [11]

M5 Manhattan KS 39.18 −96.58 Iwan, Kennebec and
Kahola silt loam

6a 12.0 943 65, 4 [11]

M6 Elsberry MO 39.16 −90.79 Menfro silt loam 6a 13.0 972 20, 4 [32]

M7 Columbia MO 38.89 −92.19 Mexico silt loam 6a 13.2 1,025 20, 4 [32]

M8 Lexington KY 38.13 −84.50 Silt loam 6a 12.7 1,181 100, 12 [37]

M9 Mt. Vernon MO 37.07 −93.81 Gerald silt loam 6a 14.2 1,171 100, 12 [37]
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Table 10 (continued)

Site ID Site State Latitude
(°)

Longitude
(°)

Soil type Plant
hardiness
zone

Annual mean
temperature ( )

Annual total
precipitation
(mm)

Plot size
(m2),
replicated
number

Reference

M10 Stillwater OK 36.12 −96.05 Kirkland silt loam 7a 16.7 932 20, 4 [32]

M11 Fayetteville AR 36.09 −94.11 Pickwick gravely loam 6b 15.1 1,169 20, 4 [32]

M12 Booneville AR 35.08 −93.98 Leadvale silt loam 7b 16.9 1,197 -, 4 [70]

M13 Nacogdoches TX 31.50 −94.60 Attoyac fine sandy
loam

8b 20.4 1,229 20, 4 [32]

M14 Gainesville FL 29.65 −82.33 Urban land 9a 21.7 1,271 [71]

M15 Kingsville TX 27.54 −97.85 Cranell sandy clay loam 9a 23.3 736 20, 4 [32]

M16 Ona FL 27.48 −81.92 Pomona fine sand 9b 21.9 1,167 – [71]

M17 Belle Glade FL 26.68 −80.67 Terra Ceia muck 10a 24.7 1,188 – [71]

C1 Dickinson ND 46.88 −102.8 Farnuf fine sandy loam 4a 8.7 326 8.5, 4 [72]

C2 Mandan ND 46.80 −100.92 Parshall fine sandy
loam

4a 8.0 314 8.5, 4 [72]

C3 Brookings SD 44.02 −97.09 Omega loamy sand 4b 8.2 608 2.9, 4 [73]

C4 Arlington WI 43.33 −89.38 Plano silt loam 4b 8.5 911 4.8, 5 [73]

C5 Dekalb IL 41.85 −88.85 Flangan silt loam 5b 10.9 821 100, 4 [14]

C6 Champaign IL 40.08 −88.23 Flanagan silt loam 5b 12 1,021 100, 4 [47]

C7 Orr IL 39.81 −90.82 Clarksdale silt 5b 12.9 1,028 100, 4 [14]

C8 Morgantown WV 39.62 −79.95 Dormont silt loam 6b 11.9 1,068 15-20, 1 [55, 74]

C9 Elsberry MO 39.16 −90.79 Menfro silt loam 6a 13.0 972 20, 4 [32]

C10 Brownstown IL 38.95 −88.96 Cisne silt loam 6a 13.9 1,079 100, 4 [14]

C11 Columbia MO 38.89 −92.19 Mexico silt loam 6a 13.2 1,025 20, 4 [32]

C12 Fairfield IL 38.35 −88.35 Cisne silt loam 6a 14.3 1,145 100, 4 [14]

C13 Dixon Spring IL 37.45 −88.67 Granstburg silt loam 6b 13.8 1,150 100, 4 [3]

C14 Princeton KY 37.10 −87.82 Tilsit series 6b 15.1 1,261 20, 4 [55, 74]

C15 Mr. Vernon MO 37.07 −93.81 Gerald silt loam 6a 14.2 1,171 20, 4 [32]

C16 Stillwater OK 36.12 −96.05 Kirkland silt loam 7a 16.7 932 20, 4 [32]

C17 Fayetteville AR 36.09 −94.11 Pickwick gravely loam 6b 15.1 1,169 20, 4 [32]

C18 Knoxville TN 35.88 −83.95 Etowah clay loam 7a 14.0 1,267 15–20, 1 [55, 74]

C19 Raleigh NC 35.72 −78.67 Cecil sandy loam 7b 15.5 1,140 15–20, 1 [55, 74]

C20 Jackson TN 35.62 −88.83 Deanburg silt loam 7a 15.5 1,335 15–20, 1 [55, 74]

C21 Chickasha OK 35.03 −97.91 McLain silt loam 7a 16.0 798 18, 3 [75]

C22 Dallas TX 32.97 −97.27 Houston black clay 8b 18.8 943 18,2 [76]

C23 Nacogdoches TX 31.50 −94.60 Attoyac fine sandy
loam

8b 20.4 1,229 20, 4 [32]

C24 Temple TX 31.06 −97.22 Houston black clay 8b 21 895 18, 2 [76]

C25 College station TX 30.60 −96.35 Weswood silt clay loam 8b 20.5 993 18, 2 [76]

C26 Beeville TX 28.4 −97.7 Parrita sandy clay loam
and a Coy clay

9a 21.2 783 12, 2 [76]

C27 Kingsville TX 27.54 −97.85 Cranell sandy clay loam 9a 23.3 736 20, 4 [32]

C28 Weslaco TX 26.22 −98.13 Hidalgo sandy clay loam 9b 24.5 645 20, 4 [32]

A1 Morgantown WV 39.62 −79.95 Dormont silt loam 6b 11.9 1,068 15–20, 1 [55, 74]

A2 Elsberry MO 39.16 −90.79 Menfro silt loam 6a 13.0 972 20, 4 [32]

A3 Columbia MO 38.89 −92.19 Mexico silt loam 6a 13.2 1,025 20, 4 [32]

A4 Orange VA 38.22 −78.12 Davidson clay 7a 13.2 1,101 15–20, 1 [55, 74]

A5 Blacksburg VA 37.18 −80.42 Shottower loam 6b 11.3 937 15–20, 1 [55, 74]

A6 Princeton KY 37.10 −87.82 Tilsit series 6b 15.1 1,261 15–20, 1 [55, 74]

A7 Mt. Vernon MO 37.07 −93.81 Gerald silt loam 6a 14.2 1,171 20, 4 [32]

A8 Stillwater OK 36.12 −96.05 Kirkland silt lam 7a 23.3 932 20, 4 [32]
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Table 10 (continued)

Site ID Site State Latitude
(°)

Longitude
(°)

Soil type Plant
hardiness
zone

Annual mean
temperature ( )

Annual total
precipitation
(mm)

Plot size
(m2),
replicated
number

Reference

A9 Fayetteville AR 36.09 −94.11 Pickwick gravely loam 6b 15.1 1,169 20, 4 [32]

A10 Knoxville TN 35.88 −83.95 Etowah clay loam 7a 14.0 1,267 15–20, 1 [55, 74]

A11 Raleigh NC 35.72 −78.67 Cecil sandy loam 7b 15.5 1,140 15–20, 1 [55, 74]

A12 Jackson TN 35.62 −88.63 Deanburg silt loam 7a 15.5 1,335 15–20, 1 [55, 74]

A13 Hope AR 33.67 −93.58 Bowie loam sandy loam 8a 18.9 1,285 18, 4 [38]

A14 Dallas TX 32.97 −97.27 Houston black clay 8b 18.8 943 18, 2 [76]

A15 Stephenville TX 32.22 −98.20 Windthorst fine sandy loam 8a 19.8 666 18, 4 [38]

A16 Nacogdoches TX 31.50 −94.60 Attoyac fine sandy loam 8b 20.4 1,229 20, 4 [32]
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The sign (−) in the table means this information about plots size/replicated numbers is not available
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