Estimating bed shear stress distribution from numerically modeled tides and wind waves on estuarine mudflats

By Salme Cook and Tom Lippmann University of New Hampshire

Estuaries

Ecosystem Services

♦ "buffer zone" that removes nutrients, sediment, and pollutants

- \diamond Nitrogen/Phosphorus Cycling
- \diamond Habitats ~ "Nursery of the sea"
- ♦ Shore stabilization/Flood regulation
- ♦ High primary productivity Carbon Sequestration

Economic Value

- ♦ 22 of the 32 largest cities in the world are located on estuaries
- ♦ 14% of coastal communities in the United States produce 45% of the nations GDP
- ♦ 76% of trade involves some form of marine transportation
- Coastal recreation brings in \$8-12
 Billion dollars to the United States
 every year

Ecosystem Services

♦ "buffer zone" that removes nutrients, sediment, and pollutants

- \diamond Nitrogen/Phosphorus Cycling
- \diamond Habitats ~ "Nursery of the sea"
- ♦ Shore stabilization/Flood regulation
- High primary productivity Carbon Sequestration

Economic Value

- 22 of the 32 largest cities in the world are located on estuaries
- 14% of coastal communities in the United States produce 45% of the nations GDP
- Coastal recreation brings in \$8-12
 Billion dollars to the United States
 every year

Ecosystem Services

♦ "buffer zone" that removes nutrients, sediment, and pollutants

- ♦ Nitrogen/Phosphorus Cycling
- \diamond Habitats ~ "Nursery of the sea"
- ♦ Shore stabilization/Flood regulation
- ♦ High primary productivity Carbon Sequestration

Economic Value

- 22 of the 32 largest cities in the world are located on estuaries
- 14% of coastal communities in the United States produce 45% of the nations GDP
- ♦ 76% of trade involves some form of marine transportation
- Coastal recreation brings in \$8-12
 Billion dollars to the United States
 every year

Major Threat: Eutrophication

Eutrophication is induced by excess nutrients (mainly nitrogen and phosphorus) from increased human activity

It is one of the most widespread, costly, and challenging environmental problems.

The Nutrient Problem

Non-Point Source Point Source Transportation Wastewater Treatment Storm water Runoff: Fertilizer and Outfall Animal Waste Industrial operations **Does sediment resuspension contribute to nutrient loading?** River Ocean

Does sediment resuspension contribute to nutrient loading?

Shear stress and nutrient loading

Research Goal: estimate the distribution of shear stress from tides and waves using a verified numerical model.

current and a drag coefficient

Study Site: Great Bay estuary, New Hampshire, US

Modeling System

- C Coupled
- O Ocean (<u>ROMS</u>)
- A Atmosphere (WRF)
- W Wave (SWAN)
- ST Sediment Transport

COAWST Modeling System

Regional Ocean Modeling System (<u>ROMS</u>)

- 3-D, free surface, topography following numerical model
- Solves finite difference approximations of RANS equations
- Written in F90/95, uses C-preprocessing to activate different options. Output data is written into NetCDF files for post-processing.

Shchepetkin and McWilliams (2005), Shchepetkin et al., (2009a), Shchepetkin et al (2009b), and Haidvogel et al.,(2008)

Model Grid

Horizontal: 30 meter (and 10 meter) Vertical: 8 vertical sigma layers

Grid Development

- Islands (LIDAR or Coastline file)
- Great Bay/Little Bay 2016 Survey
- Rivers (USACE surveys)
- Western Gulf of Maine (WGOM) 8m
 survey (CCOM Paul Johnson)
- Low lying land (LIDAR NOAA, FEMA, USGS)

Gridding routines in Matlab to create a netcdf formatted file

Model Grid

Visualization using ParaView

Model Grid

Visualization using ParaView

5 km x 5 km

Estimates of Shear Stress based on a Numerical Model

Estimates of Shear Stress based on Observations

Kara Koetje, Diane Foster, Tom Lippmann

Flood Shear Stress Estimate: 0.41 N/m² Ebb Shear Stress Estimate: 0.23 N/m²

Note: these observational estimates are preliminary

TIDAL SIGNAL

VELOCITY MAGNITUDE/DIRECTION

SHEAR STRESS

Field Estimates

Flood Tide ~ 0.41

Ebb Tide ~ 0.23

Lab Estimates

Nutrient Release ~ 0.35

Nutrient release over 5-day simulation

Nutrient Estimate:

Step 1: Area with > 50% mud fraction Step 2: Area with shear stress > 0.35 N/m2 Step 3: Calculate Nutrient Load Step 1: Area with > 50% mud fraction

Nutrient Load :

Step 2: Area with shear stress > 0.35 N/m2
 Step 3: Calculate Nutrient Load

	Dissolved Inorganic Nitrogen (DIN)	Phosphorus (P)
	(kg/month)	(kg/month)
River ^A (Fall, Sept-Nov)	1,200	70
(Winter, Dec-Feb)	3,700	92
(Spring, Mar-May)	17,000	720
(Summer, June-Aug)	1,300	120
Sediments (modeled)	2880	1020*
	(kg/event)	(kg/event)
Event (Storm-Irene) ^B	220	80*
One Tidal Cycle (Average)	96	34*
Neap Tide (Minimum)	13	5*
Spring Tide (Maximum)	123	44*

^A Oczkowski (2002)

^B Wengrove (2014)

* Based on results from Percuoco (2013). Uptake not considered for Phosphorus.

Summary of Work

Research Goal: estimate the distribution of shear stress from tides and waves using a verified numerical model.

Conclusion: Sediment resuspension due to tides has been shown to be a **potentially significant source of nutrient release** during a typical tidal cycle

- Using a verified a numerical model for tidal/subtidal forcing
 - (Cook et.al., Submitted May 2018/In Review Ocean Modeling)
- Estimate was based on observational estimates of shear stress during tidal cycle and lab studies
- Observations were of one location in the bay.
 - Need more observation-based estimates of shear stress on mudflats across the bay (~1-2 masters students)

Future Work... sneak peak

Is there a model resolution that can accurately represent bed shear stress? If so, what is it?

10 meter grid can only run on Blue Waters....

... future work

Sediment Transport

Mud Fraction from Observations 1974-Present

- (us) solution 4776 4768 4764 345 350 355 360 365 Eastings (km)
- More vertical levels (10? 15?)
- Relationship between horizontal resolution and z_o
- Waves!

Future Work - Waves (Summer 2018)

Jim Irish Jamie Pringle (UNH) Chris Sherwood (USGS) Karl Kammerer (NOAA) Kara Koetje Diane Foster Mark Van Moer Jaehyuk Quak and many others...

Thank you!

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.

Computations were performed on Trillian, a Cray XE6m-200 supercomputer at UNH supported by the NSF MRI program under grant PHY-1229408. (Jim Raeder)

Estuaries distributed across the World

Seattle,WA

Portland, OR

Sunriver Resort, Oregon

San Francisco, CA

Los Angeles, C.

National Estuary Program (NEP) *"Estuaries of National Significance"*

Blue Waters

New Orleans, LA

Great Bay Estuary Boston, MA

New York City, NY Philadelphia, PA Washington DC

Houston, TX

Google Earth

Image Landsat / Copernicus © 2018 Google Data SIO, NOAA, U.S. Navy, NGA, GEBCO US Dept of State Geographer

MOTIVATION

SHEAR STRESS

Future Application

- Oyster larval transport
- Nutrient budgets
- Sediment transport studies
- Eelgrass studies

How does the model perform?

- Tidal dissipation and nonlinear growth of the tides
- Vertical current structure follows observations
- Good for tides!
- Submitted a paper two weeks ago describing results

TIDAL DISSIPATION

Task #1: Implement and verify model

Vertical Structure of the Currents

Some Blue Waters Stats...

- 30 meter run for 30 days
- 10 meter run for 30 days
- Run duration
- File size