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Many spatial analysis tasks call for the use of travel time between multiple origins and destinations, that is, O–D travel
time matrix. Commercial geographical information systems (GIS) software requires the input of a well-defined road network
dataset and significant efforts in implementing the task. However, road network data are often outdated, miss critical road
condition details, or are expensive to acquire; and skillful usage of related software is a major obstacle for researchers
without advanced training in GIS. This research develops a desktop tool for implementing the task by calling the Google
Maps Application Programming Interface (API). By doing so, we are able to tap into the dynamically updated transportation
network data and the routing rules maintained by Google and obtain a reliable estimate of O–D travel time matrix. The results
are compared with those computed by the ArcGIS Network Analyst module to demonstrate its advantages. A case study in
accessibility analysis is presented to illustrate the implications.

Keywords: O–D travel time matrix; Google Maps API; network analysis; spatial analysis

1. Introduction

Estimation of travel time between a set of origins and a
set of destinations (i.e., O–D travel time matrix) through a
transportation network is a common task in spatial analy-
sis. To list a few, spatial interaction modeling uses travel
time between any pair of interacting places (Fotheringham
and O’Kelly 1989); traffic demand forecasting relies on
an accurate estimation of travel time among locations in
various land uses (Black 2003); trade area analysis needs
the travel time between each store and each residential
area to define a store’s customer base (Huff 2003); and
accessibility measurement requires the travel time data
between supply and demand locations (Luo and Wang
2003). In the absence of data of a transportation network
or the computational power of geographical information
systems (GIS), one has to resort to simple distance mea-
sures such as Euclidean distance or Manhattan distance
(Wang 2006, pp. 19–20). These simple distance mea-
sures only need the input of geographic coordinates of
origins and destinations and use simple mathematical for-
mulas to calibrate, but are primitive indices of travel
impedance.

Travel time estimation is based on a transportation net-
work. A transportation network consists of a set of nodes
(or vertices) and a set of arcs (or edges or links) that
connect the nodes. An arc may also be directed (e.g., one-
way street). Travel time estimation is usually performed to

*Corresponding author. Email: fwang@lsu.edu

find the shortest time from a specific origin to a specific
destination through a series of nodes and arcs connecting
them (route) on the network, often referred to as the short-
est route problem. Among various methods for solving
the problem (Papadias et al. 2007), the label-setting algo-
rithm (Dijkstra 1959) remains the most popular. Given the
speed on each arc, turning restrictions, and time penalty of
each turn, the algorithm seeks the route that minimizes the
total travel time. Therefore, data requirements for defining
a transportation network include many network elements
such as link impedances, turn impedances, one-way streets,
overpasses, and underpasses (Chang 2004, p. 351). Putting
together such a network dataset requires extensive data col-
lection and processing, which can be very expensive or
infeasible for some applications. For example, a road layer
extracted from the US Census Topologically Integrated
Geographic Encoding and Referencing (TIGER)/Line files
does not contain nodes on the roads, turning parameters, or
speed information. When such information is not available,
one has to make various assumptions to prepare the net-
work dataset. For example, Luo and Wang (2003) assigned
speeds to different roads according to the census feature
class codes (CFCC) and whether in urban, suburban, or
rural areas; and Wang (2003) used regression models to
adjust travel speeds by land use intensity (business and
residential densities) and other factors. All these attempts
are by approximation and compromise the accuracy and
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reliability of travel time estimation. Furthermore, learning
the related GIS software is no trivial task.

On the other hand, some online sources such as
Google Maps (maps.google.com), Map Quest (www.
mapquest.com), and Rand McNally (www.randmcnally.
com) provide a convenient stop for solving the shortest
route problem for the public. However, the task of common
users is to find the travel time (and directions) of one route
(perhaps several routes). The challenge for researchers,
as outlined above, is to obtain a travel time matrix from
many origins to many destinations, sometimes a sizeable
matrix of thousands of routes or more. The purpose of
this research is to develop a tool to automate the process.
Specifically, a desktop tool is developed to implement the
task by calling the Google Maps Application Programming
Interface (API). By doing so, we are able to utilize the
transportation network data as well the routing algorithm
by Google behind the scene and obtain a reliable estimate
of O–D travel time matrix with minimal data preparation
and GIS software knowledge.

Section 2 explains how the Google Maps API tool
is developed. Section 3 compares the results with those
by ArcGIS Network Analyst module to demonstrate its
advantages.Section 4 uses a case study on hospital accessi-
bility analysis to illustrate the implications of various travel
time estimates. A brief summary concludes this article and
discusses some limitations of the developed tool.

2. Using the Google Maps API to calibrate O–D
travel time matrix

Google Maps is a popular web-based mapping service
launched by Google in early 2005 to provide a highly
responsive visual interface using AJAX technologies.
Shortly after that, Google launched the Google Maps API,
a JavaScript API, to allow the customization of online maps
(Taylor 2005). The Google Maps API enables one to embed
the Google Maps site into an external website and overlay

specific data on to the site (Mercurio 2008). In the follow-
ing, we will discuss how to use the Google Maps API to
estimate the travel time between origins and destinations
without reloading the web page or displaying portions of
the map.

As shown in Figure 1, the process begins with data
preparation. As explained later in this section, the loca-
tion information as geographic coordinates is fed into the
Google Maps for geocoding. Therefore, both the origin
and destination layers need to be point features in a pro-
jection of geographic coordinates. The data are fed into
a tool in Python that automates the following process. In
each round, travel time is estimated between one origin and
one destination by calling the Google Directions API. The
iterations stop when the program reaches the last combina-
tion of origins and destinations. The result is saved in an
ASCII file listing each origin, each destination, and travel
time between them. The core of the process is the Python
program as discussed below.

The Python programming language is chosen here
since many GIS datasets are in ArcGIS format and ArcGIS
10 has adopted Python as its native scripting language
(ESRI 2010). Python is a free, open-source, and cross-
platform programming language with efficient high-level
data structures and a simple yet effective approach to
object-oriented programming. The Environment Systems
Research Institute (ESRI) has created the ArcPy mod-
ule for Python to provide access to geoprocessing envi-
ronment settings. The Python program traveltime.py,
shown in the Appendix, is written to implement the
tool.

The program begins by calling the ArcPy module. It
then calls the urllib module that provides a high-level inter-
face for fetching data across the World Wide Web. The
urllib module enables us to access the Google server and
use its Directions API. The program also calls for the
time module in order to define time.sleep. In our case, we
set it to 3 seconds as the time to pause the computation

True True

Data preparation Define origins
and destinations

Point feature layers
in geographic coordinates

Python processing ArcPy and Urlib
modules

Origin is not
empty

Destination is
not empty

Calling Google
Maps API Server

Result ASCII File

Figure 1. Travel time estimation process by Google Maps API.
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process after each request (i.e., completing one route com-
putation). Google also has its internal limit for ‘sleep
time’ (unknown to users) so that the server would not
be accessed too frequently in a short time. The 3-second
setting is a rule of thumb that helps pace the requests
and reduces the chances of receiving the error message
‘OVER_QUERY_LIMIT’. On rare occasions, if the user
does get the error message, the program skips the request,
flags the record with ‘NA’ in the result table, and moves
on to complete the rest of the requests. The user can revisit
the problem record(s) later, complete the missed request(s),
and update the final travel time table. This is likely caused
by the limitation of Google, particularly when the O–D
matrix gets large, for users without a paid license to Google
Maps API Premier. ‘Use of the Google Geocoding API
is subject to a query limit of 2,500 geolocation requests
per day’ to prevent abuse (http://code.google.com/

apis/maps/documentation/geocoding/). A licensed Prem-
ier user may perform up to 100,000 requests per
day (http://code.google.com/apis/maps/documentation/

distancematrix/).
The program then defines two input files (fromFile and

toFile) and one output file (ResultFile). The From param-
eter means the origins and the To parameter means the
destinations, both of which are point feature layers. Both
input features need to be in a projection of geographic
coordinates. The Result parameter means the output file
of travel time matrix as a text file. The program uses the
function SearchCursor to move from one request of route
computation to next and control the iteration. The function
SearchCursor establishes a read-only cursor on a feature
class or table and extracts the information such as id and
coordinates from the input files. The function continues to
read the information of origins and destinations through
row objects and completes the task until it reaches the end
of the files.

The major component of the program is to use the
Google Directions API to calculate the best route between
two locations by a hypertext transfer protocol (HTTP)
request. Directions specify origins and destinations as
latitude/longitude coordinates or text strings. Our program
uses geographic coordinates that are simple, accurate, and
fast for geocoding. As long as the input features are in
geographic coordinates, there is no need to have the coordi-
nates physically residing in their attribute tables. The ArcPy
module automatically extracts the location information
from the input features. In the uniform resource locators
(URLs) of the request, three parameters are required: ori-
gin, destination, and sensor. The parameters origin and
destination are, respectively, the trip origins and destina-
tions defined by latitude/longitude values. The parameter
sensor indicates whether the direction request comes from
a device with a location sensor and takes a value ‘true’ or
‘false’. In our case and for the purpose of most research, its
value is set to ‘false’.

The tool is added to ArcToolbox in ArcGIS. A user
interface is shown in Figure 2. A user only needs to define
two point features in geographic coordinates (‘From’ and
‘To’) as inputs and name the resulting text file under
‘Result’ and click ‘OK’ to execute it. The total computa-
tion time depends on the size of O–D travel time matrix,
the preset pause time between requests, and the Internet
connection speed. In our test with 2314 records, the total
computation time was less than 15 minutes.

3. Advantages of travel time estimation by Google
Maps API

The ArcGIS Network Analyst, in particular its OD Cost
Matrix function, is often used by researchers to calibrate
the O–D travel time matrix (http://www.esri.com/

software/arcgis/extensions/networkanalyst/). Figure 3

Figure 2. The Google Maps API tool user interface.
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Open Network
Analyst window

Build the network dataset in
ArcCatalog

Check Network
Analyst in ArcMap

Load network
dataset

Click New OD
Cost Matrix

Define the parameters for
the network analysis

Define the origins
and destinations

Compute the O–D
travel time matrix

Figure 3. Travel time estimation process by ArcGIS Network Analyst.

illustrates the process for implementing the task in
ArcGIS. The process begins with building the network
dataset in ArcCatalog, where a user chooses the settings for
connectivity, modeling turns, and others and specifies the
network attributes such as length, travel time, and others.
Then, in ArcMap, the user activates the Network Analyst
extension and its OD Cost Matrix function. After loading
the predefined network dataset to the active project, various
network parameters (impedance, distance unit, etc.) need
to be defined. In the Network Analyst window, one can use
the origins feature to define ‘Facilities’ and the destinations
feature to define ‘Incidents’ and then choose the OD Cost
Matrix tool to solve the problem and save the result.

As in most applications, ‘modeling is as good as the
data get’. The key to quality travel time estimation is the
network data. The following uses a study area in East
Baton Rouge Parish of Louisiana (Figure 4) to examine
how the results by ArcGIS and Google Maps API differ.
Parish is the county unit in Louisiana. The study area is
simply referred to as Baton Rouge hereafter. The network
data used by ArcGIS are extracted from the data DVDs
that came with the ArcGIS 10.0 release, more specifi-
cally, StreetMap North America. The road network data
are based on the TomTom (TeleAtlas) 2005 version 7.2 data
(according to personal communication with James Shimota
of ESRI on 28 June 2011). On the other side, data used
in the Google Maps are fairly updated. Most of this study
was conducted in the summer of 2011. In the case study
reported here, we used the data generated by the Google
Maps API tool on 8 June 2011.

In comparison to the ArcGIS Network Analyst
approach, at least four advantages are identified in using
the Google Maps API. Note that our discussion below
is limited to our experiment of using the aforementioned
dataset in ArcGIS 10.0. It does not apply to one with access
to more recent and extensive datasets such as those from

TeleAtlas (www.teleatlas.com) that contain data of ‘speed
profiles’ to capture congestion effects.

(1) The Google Maps API approach does not need the
preparation of a network dataset.
An important step in modeling the OD cost matrix
in ArcGIS is to prepare the network dataset includ-
ing the extraction of data for the study area and
defining network settings and attributes. In addition
to the time investment, this requires the users to
be knowledgeable about the transportation network
analysis and familiar with the road network data
structure. The API approach taps into the network
data residing in a Google server.

(2) The Google Maps API approach uses more updated
road data.
As explained above, the road network dataset that
came with ArcGIS 10 was based on the data in
2005. Google updates its data more frequently,
usually twice a month (www.gearthblog.com/

blog/archives/2010/10/how_often_does_google_
update_the_im.html). Figure 5(a) and (b) show
an example where the Ben Hur Road near
the Louisiana State University (LSU) Fireman
Training Center in the study area changed recently.
The road was straight on the ArcGIS StreetMap
(Figure 5(a)), but a recent development project led
to the curved road, captured by the Google Maps
(Figure 5(b)).

(3) The Google Maps API approach accounts for road
congestion.
The road network data used in ArcGIS 10 con-
tain the speed limit for each road segment, which
is assumed to be the travel speed by the Network
Analyst module. For illustration, we choose the
route from the GSRI Avenue (at geographic
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Figure 4. Population density in census tracts and hospitals in Baton Rouge.

coordinates 30.363512, −91.150997) to the Earl
K. Long Medical Center (at geographic coordi-
nates 30.5783, −90.9942) as an example. Figure
6(a) shows the path by ArcGIS on the StreetMap,
and Figure 6(b) shows the path on the Google
Maps. The two routes are similar. However, the
travel time is 30 minutes by ArcGIS, but 40 min-
utes by Google. The difference is significant. A
close examination of travel speed on each road seg-
ment shows that the travel speeds on roads around
the LSU and the downtown area were much slower
than the posted speed limits.

(4) The Google Maps API approach considers the
difference between peak hours and off-peak hours.
It is known that Google now enables one to
estimate travel time in rush-hour traffic in a
limited set of metropolitan areas (http://google-lat
long.blogspot.com/2007/08/how-long-will-it-take-
at-rush-hour.html). Google also attempts to predict
traffic conditions on a certain day and time based
on the live traffic data collected on a daily basis

(Schwartz 2010). Our experiments in the study
area indicated that travel time reported by Google
Maps differed according to the time of the day
when the computation requests were issued.
Figure 7 shows the traffic condition along a route
in Baton Rouge.

To further highlight the differences of travel time estimated
by the two methods, we have computed the travel time from
each census tract centroid to the city center (commonly
recognized as the State Capitol Building) (see Figure 4).
Figure 8 shows that travel time by the Google Maps API
approach is consistently longer than that by the ArcGIS
Network Analyst approach. The estimated travel time by
either method correlates well with the (Euclidean) distance
from the city center (with a R2= 0.91 for both methods).
However, the regression model of travel time against corre-
sponding distances by Google has a significant intercept of
4.68 minutes (vs. a negligible 0.79-minute intercept in the
model of travel time by ArcGIS). The 4.68-minute inter-
cept by Google probably reflects the elements of starting
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(a) (b)

Figure 5. Road network near LSU: (a) ArcGIS StreetMap and (b) Google Maps.

(a) (b)

Figure 6. A O–D route on (a) ArcGIS StreetMap and (b) Google Maps.
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Figure 7. Traffic condition in Baton Rouge.
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Figure 8. Estimated travel time from the city center by ArcGIS and Google.

and ending time on a trip (getting on and off a street on the
road network). This is consistent with our daily travel expe-
rience and also empirical data. According to Wang (2003,
p. 258), this ‘inertia’ time (also considered as ‘intrazonal
travel time’) was reported as high as 11 minutes based on
the Census Transportation Planning Package (CTPP) data
in urban areas. The regression model for the travel time

by Google also has a slightly steeper slope (1.06) than the
slope in the model for the travel time by ArcGIS (0.96),
but this difference is minor. Figure 9 displays how the dif-
ference, measured as [(travel time by Google – travel time
by ArcGIS)/travel time by ArcGIS] in percentage, varies
with distance from the city center. Clearly, the difference
declines exponentially with distance from the city center.
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Figure 9. Spatial pattern of differences in estimated travel time by ArcGIS and Google.

It is possibly attributable to a combination of two effects:
the extra ‘inertia’ time discussed above and slower speeds
in the downtown area, both captured by the Google Maps
API approach.

4. Case study in applying estimated travel time in
assessment of hospital accessibility

This section presents a case study illustrating the applica-
tion of estimating O–D travel time matrix in accessibility
analysis. Accessibility refers to the relative ease by which
the locations of activities, such as work, school, shopping,
recreation, and health care, can be reached from a given
location. It is a classic issue in geography. For the pur-
pose of emphasizing the impact of travel time estimation,
this case study does not consider issues such as the match
ratio between supply and demand or the distance decay
effect in spatial interaction. Readers who are interested in
more advanced models of accessibility may refer to some
recent work such as McGrail and Humphreys (2009) and
Dai and Wang (2011). When the capacity of supply (i.e.,
hospital sizes in terms of numbers of beds or physicians) is
unknown or of less concern, the main concern of accessi-
bility is the travel time from residents to hospitals (Brabyn
and Gower 2003). Here, accessibility is measured as the
average travel time by automobile between a residential
location and all hospitals in the study area, that is, Baton
Rouge.

The study area has 89 census tracts with total
population close to a half million and 26 hospitals.
Locations of the census tracts are represented by their
population-weighted centroids (based on the block-level

population), and the hospitals are geocoded according to
their addresses (see Figure 4). The 89 census tract cen-
troids serve as origins, and the 26 hospitals are destinations.
Therefore, the number of O–D trips is 89 × 26 = 2314.

We used both the Google Maps API and the ArcGIS
Network Analyst methods to estimate the O–D matrix,
as discussed in the previous two sections. One techni-
cal issue merits some discussion. In executing the Google
Maps API tool, we noticed that the Google server skipped
a couple of requests due to the system error discussed
in Section 2. The problem persisted in numerous exper-
iments, and the skipped requests varied each time. Even
though our number of requests (i.e., 2314) is less than
the daily cap of 2500 requests set by Google, we suspect
that this is a common problem for users without a paid
premier license to Google Maps API. Our strategy was
to divide the requests into several blocks, implement the
tool piece by piece, and eventually integrate the results
together.

Similar to the results discussed in Section 3, the results
by the two methods are overall consistent with each other,
and most (2269 out of 2314) travel time results estimated
by the Google Maps API are larger than those by the
ArcGIS Network Analyst. The average travel time between
census tract centroids and hospitals is 17.9 minutes by
Google and 13.3 minutes by ArcGIS. However, such a dis-
crepancy is not uniform or proportional across the study
area. The following examines the impact on the spatial
pattern of accessibility.

As stated earlier, accessibility in this case is simply
the average time between a census tract centroid and all
26 hospitals. Since the time by Google is systematically
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longer than the time by ArcGIS, the comparison based on
the time itself is less meaningful. Accessibility is to mea-
sure relative ease of reaching an activity or opportunity.
Therefore, each series of average travel time to hospitals
needs to be standardized (with a zero mean and standard
deviation of 1) to be comparable. The resulting (standard-
ized) Z value reflects the relative accessibility. A higher Z
value corresponds to more travel time to hospitals and thus
a poorer accessibility.

Figure 10(a) and (b) shows the accessibility Z scores by
the ArcGIS and Google methods, respectively. Darker col-
ors correspond to lower and negative Z scores, that is, aver-
age travel time to hospitals below the areawide mean, and
better accessibility. The accessibility is the highest around
the Essen medical campus with several hospitals (southeast
of the city center) and declines outwards. The patterns are
generally consistent on the two maps. However, there are
differences, particularly in the middle-range-distance areas
from the city center. Figure 11 maps the difference (i.e., Z
score by Google – Z score by ArcGIS). Cold colors corre-
spond to negative values (lower Z scores by Google than
by ArcGIS) and indicate that the accessibility in the area
based on the Google time is better than that suggested by

the ArcGIS time. Warm colors indicate otherwise. From
Figure 10, most areas toward northeast are in cold colors
and thus indicate that Google time tends to suggest better
accessibility than ArcGIS time does. The opposite can be
said on the southwest corner.

In summary, the travel time estimated by different
methods may lead to somehow different assessments of
accessibility patterns.

5. Concluding remarks

Estimation of travel time between a set of origins and a
set of destinations through a transportation network is a
common task in spatial analysis. Calibrating the O–D travel
time matrix in a commercial GIS package requires exten-
sive data collection and processing to prepare the road
network and also adequate knowledge of the software to
implement related tools. Both are no trivial efforts. This
research has developed a desktop tool to complete the
task by calling the Google Maps API. The Python pro-
gram automates the process by reading the layers of origins
and destinations in geographic coordinates, executing a
HTTP request to access the Google Maps and calibrate the
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Figure 10. Accessibility standardized Z score (a) by ArcGIS and (b) by Google Maps API.
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Figure 11. Difference in accessibility scores.

travel time between each O–D pair, and saving the results
in an external ASCII file. By comparing the approach
with the commonly used ArcGIS Network Analyst mod-
ule, several advantages are identified: no need of preparing
a road network, using a more updated road network, and
accounting for congestion in high-traffic areas and peak
hours. Our case study in accessibility analysis indicates that
an accurate estimate of travel time is essential in spatial
analysis.

The Google Maps API approach is not free of concerns.
Our experiments have revealed some limitations. First of
all, an ordinary user without a paid license to Google Maps
API Premier is subject to a daily query limit of 2500 geolo-
cation requests and is likely to experience some ‘hiccups’
in executing the tool. We welcome feedbacks from users
with a Google Maps API Premier license. Second, all data
used in the computation are maintained by Google, and
thus a user has neither control over its quality nor any
editing rights. While the Google’s road network has a repu-
tation of good quality, no data are completely free of errors.
Most users may not care about any modification rights of

network data, but the lack of data transparency is neverthe-
less a drawback for many advanced researchers in spatial
analysis. Furthermore, the tool can only generate the con-
temporary travel time by accessing the most updated road
network data in Google. In some cases, researchers need
the travel time in the past. Such a task is only feasible by
using a historical road network. Finally, the tool is currently
implemented in a desktop GIS environment. It is our plan
to develop an online version in the near future.
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Appendix. Program traveltime.py for calibrating O–D
travel time matrix by Google Maps API
import arcpy
import urllib
import time

from xml.etree.ElementTree import XML,
fromstring, tostring
fromFile = arcpy.GetParameter(0)
toFile = arcpy.GetParameter(1)
Resultfile = arcpy.GetParameterAsText(2)
Result = open(Resultfile,”w”)
Result.write(“FromFID,toFID,TravelTime”)
Result.write(“\n”)
fromCursor = arcpy.SearchCursor(fromFile)
toCursor = arcpy.SearchCursor(toFile)
fromRow = fromCursor.reset()
fromRow = fromCursor.next()
while (fromRow!=None):
fromX = fromRow.shape.centroid.X
fromY = fromRow.shape.centroid.Y
fromFID = fromRow.FID
arcpy.AddMessage(str(fromFID))
toCursor = arcpy.SearchCursor(toFile)
toRow = toCursor.reset()
toRow = toCursor.next()
while (toRow!=None):
toX = toRow.shape.centroid.X
toY = toRow.shape.centroid.Y
toFID = toRow.FID
arcpy.AddMessage(str(toFID))
googletext = “http://maps.googleapis.com/
maps/api/directions/
xml?origin=(“ + str(fromY) + “,” +
str(fromX) + “) &destination=(“ + str(toY)
+ “,” + str(toX) + “) &sensor=false”
time.sleep(3)
xmlfile = urllib.urlopen(googletext)
xml = xmlfile.read()
value = “NA”
dom = fromstring(xml)
nodelist = dom.getchildren()
if (nodelist[0].text == “OK”):
arcpy.AddMessage(nodelist[0].text)
route=nodelist[1]
leg=route.getchildren()[1]
duration = leg.find(“duration”)
value = duration.getchildren()[0].text
else:
arcpy.AddError(nodelist[0].text)
Result.write(str(fromFID))
Result.write(“,”)
Result.write(str(toFID))
Result.write(“,”)
Result.write(value)
Result.write(“|n”)
toRow = toCursor.next()
fromRow = fromCursor.next()
Result.close()
del fromCursor
del toCursor
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