Announcements:

-Discussion today is review for midterm, no credit. You may attend more than one discussion section.
-Bring 2 sheets of notes and calculator to midterm. We will provide Scantron form.

Homework: (Due Wed)

Chapter 10: \#5, 22, 42

Confidence interval example from Fri lecture

Gallup poll of $n=1018$ adults found 39%
believe in evolution. So $\hat{p}=.39$
A 95\% confidence interval or interval estimate for the proportion (or percent) of all adults who believe in evolution is $\mathbf{. 3 6}$ to $\mathbf{. ~} \mathbf{~} 2$ (or $\mathbf{3 6 \%}$ to $\mathbf{4 2 \%}$).

Confidence interval: an interval of estimates that is likely to capture the population value.

Goal today: Learn to calculate and interpret confidence intervals for p and for $p_{1}-p_{2}$ and learn general format.

Remember population versus sample:

- Population proportion: the fraction of the population that has a certain trait/characteristic or the probability of success in a binomial experiment - denoted by p. The value of the parameter p is not known.
- Sample proportion: the fraction of the sample that has a certain trait/characteristic - denoted by \hat{p}. The statistic \hat{p} is an estimate of p.

The Fundamental Rule for Using Data for Inference: Available data can be used to make inferences about a much larger group if the data can be considered to be representative with regard to the question(s) of interest.

Copyright ©2004 Brooks Cole, a division of Thomson Learning, Inc., updated
Copynght ©2004 Brooks
by Jessica Utts Feb 2010
-

Some Definitions:

Details for proportions:

- Point estimate: A single number used to estimate a population parameter. For our five situations:
point estimate $=$ sample statistic $=$ sample estimate
$=\hat{p}$ for one proportion
$=\hat{p}_{1}-\hat{p}_{2}$ for difference in two proportions
- Interval estimate: An interval of values used to estimate a population parameter. Also called a confidence interval. For our five situations, always:

[^0]
Multiplier and Confidence Level

- The multiplier is determined by the desired confidence level.
- The confidence level is the probability that the procedure used to determine the interval will provide an interval that includes the population parameter. Most common is .95 .
- If we consider all possible randomly selected samples of same size from a population, the confidence level is the fraction or percent of those samples for which the confidence interval includes the population parameter.
See picture on board.
- Often express the confidence level as a percent. Common levels are $90 \%, 95 \%, 98 \%$, and 99%.

More about the Multiplier

Confidence Level	Multiplier	Confidence Interval
90	1.645 or 1.65	$\bar{p} \pm 1.65$ standard errors
95	1.96, often	$\hat{p} \pm 2$ standard errors
	rounded to 2	
98	2.33	$\bar{p} \pm 2.33$ standard errors
99	2.58	$\bar{p} \pm 2.58$ standard errors

Note: Increase confidence level $=>$ larger multiplier.
Multiplier, denoted as z^{*}, is the standardized score such that the area between $-z^{*}$ and z^{*} under the standard normal curve corresponds to the desired confidence level.

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc., updated
by Jessica Uts Feb 2010
by Jessica Utts Feb 2010教

Example of different confidence levels

Poll on belief in evolution
$n=1018$
Sample proportion $=.39$
Standard error $=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=\sqrt{\frac{.39(1-.39)}{1018}}=.0153$
$\mathbf{9 0 \%}$ confidence interval
$.39 \pm 1.65(.0153)$ or $.39 \pm .025$ or .365 to .415
$\mathbf{9 5 \%}$ confidence interval:
$.39 \pm 2(.0153) \quad$ or $.39 \pm .03$ or .36 to .42
99\% confidence interval
$.39 \pm 2.58(.0153)$ or $.39 \pm .04$ or .35 to .43

Interpretation of the confidence interval and confidence level:

- We are 90% confident that the proportion of all adults in the US who believe in evolution is between .365 and .415 .
- We are 95% confident that the proportion of all adults in the US who believe in evolution is between .36 and .42 .
- We are 99% confident that the proportion of all adults in the US who believe in evolution is between .35 and .43 .
Interpreting the confidence level of $\mathbf{9 9 \%}$:
The interval .35 to .43 may or may not capture the true proportion of adult Americans who believe in evolution
But, in the long run this procedure will produce intervals that capture the unknown population values about 99% of the time. So, we are 99% confident that it worked this time.

Notes about interval width

- Higher confidence <=> wider interval
- Larger n (sample size) $<=>$ more narrow interval, because n is in the denominator of the standard error.
- So, if you want a more narrow interval you can either reduce your confidence, or increase your sample size.

Reconciling with Chapter 3 formula for $\mathbf{9 5 \%}$ confidence interval

Sample estimate \pm Margin of error where (conservative) margin of error was $\frac{1}{\sqrt{n}}$

Now, "margin of error" is $2 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
These are the same when $\hat{p}=.5$. The new margin of error is smaller for any other value of \hat{p} So we say the old version is conservative. It will give a wider interval.

Comparing three versions (Details on board)

For the evolution example, $n=1018, \hat{p}=.39$

- Conservative margin of error $=.0313 \approx .03$
- Approximate margin of error using $\mathrm{z}^{*}=2$

$$
2 \times .0153=.0306 \approx .03
$$

- Exact margin of error using $\mathrm{z}^{*}=1.96$

$$
1.96 \times .0153=.029988 \approx .03
$$

All very close to .03 , and it really doesn't make much difference which one we use!

Comparing margin of error

- Conservative margin of error will be okay for sample proportions near .5 .
- For sample proportions far from .5, closer to 0 or 1 , don't use the conservative margin of error. Resulting interval is wider than needed.
- Note that using a multiplier of 2 is called the approximate margin of error; the exact one uses multiplier of 1.96 . It will rarely matter if we use 2 instead of 1.96 .

New example: compare methods

Marist Poll in Oct 2009 asked "How often do you text while driving?" $n=1026$
Nine percent answered "Often" or "sometimes" so and $\hat{p}=.09$

$$
\text { s.e. }(\hat{p})=\sqrt{\frac{.09(.91)}{1026}}=.009
$$

- Conservative margin of error $=.0312$
- Approximate margin of error $=2 \times .009=.018$.

This time, they are quite different!
The conservative one is too conservative, it's double the approximate one!

General Description of the Approximate 95\% CI for a Proportion

Approximate $\mathbf{9 5 \%}$ CI for the population proportion:
$\hat{p} \pm 2$ standard errors
The standard error is s.e. $(\hat{p})=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
Interpretation: For about 95% of all randomly selected samples from the population, the confidence interval computed in this manner captures the population proportion. Necessary Conditions: $n \hat{p}$ and $n(1-\hat{p})$ are both greater than 10 , and the sample is randomly selected.

Finding the formula for a 95\% CI for a Proportion - use Empirical Rule:
For 95% of all samples, \hat{p} is within 2 st.dev. of p
Sampling distribution of \hat{p} tells us for 95% of all samples: -2 standard deviations $<\hat{p}-p<2$ standard deviations

Don't know true standard deviation, so use standard error. For approximately 95% of all samples,
-2 standard errors $<\hat{p}-p<2$ standard errors
which implies for approximately 95% of all samples,
$\hat{p}-2$ standard errors $<p<\hat{p}+2$ standard errors

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc., updated
by Jessica Utts Feb 2010

Same holds for any confidence level; replace 2 with z^{*}

$$
\hat{p} \pm z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

where:

- \hat{p} is the sample proportion
- z^{*} denotes the multiplier.
$\cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ is the standard error of \hat{p}.
Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc., updated
by Jessica Utts Feb 2010

Example 10.3 Intelligent Life Elsewhere?
Poll: Random sample of 935 Americans Do you think there is intelligent life on other planets?
Results: 60% of the sample said "yes", $\hat{p}=.60$

$$
\text { s.e. }(\hat{p})=\sqrt{\frac{.6(1-.6)}{935}}=.016
$$

90% Confidence Interval: . 60 ± 1.65 (.016), or $.60 \pm .026$
.574 to .626 or 57.4% to 62.6%
98% Confidence Interval: . $60 \pm 2.33(.016)$, or $.60 \pm .037$.563 to .637 or 56.3% to 63.7%

Note: entire interval is above $50 \%=>$ high confidence that a majority believe there is intelligent life.

Confidence intervals and "plausible" values

- Remember that a confidence interval is an interval estimate for a population parameter.
- Therefore, any value that is covered by the confidence interval is a plausible value for the parameter.
- Values not covered by the interval are still possible, but not very likely (depending on the confidence level).
\qquad

Example of plausible values

- 98% Confidence interval for proportion who believe intelligent life exists elsewhere is:

$$
.563 \text { to } .637 \text { or } 56.3 \% \text { to } 63.7 \%
$$

- Therefore, 56% is a plausible value for the population percent, but 50% is not very likely to be the population percent.
- Entire interval is above $50 \%=>$ high confidence that a majority believe there is intelligent life.

New multiplier: let's do a confidence level of 50%
Poll: Random sample of 935 Americans "Do you think there is intelligent life on other planets?"
Results: 60% of the sample said "yes", $\hat{p}=.60$
We want a $\mathbf{5 0 \%}$ confidence interval. If the area between $-z^{*}$ and z^{*} is .50 , then the area to the left of z^{*} is .75. From Table A. 1 we have $z^{*} \approx .67$. (See next page for Table A.1)

$\mathbf{5 0 \%}$ Confidence Interval: $.60 \pm .67(.016)$, or $.60 \pm .011$.589 to .611 or 58.9% to 61.1%
Note: Lower confidence level results in a narrower interval.

Remember conditions for using the formula:

1. Sample is randomly selected from the population. Note: Available data can be used to make inferences about a much larger group if the data can be considered to be representative with regard to the question(s) of interest.
2. Normal curve approximation to the distribution of possible sample proportions assumes a "large" sample size. Both $n \hat{p}$ and $n(1-\hat{p})$ should be at least 10 (although some say these need only to be at least 5).

In Summary: Confidence Interval for a Population Proportion p

General CI for $\boldsymbol{p}: \quad \hat{p} \pm z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Approximate $\mathbf{9 5 \%}$ CI for p :
$\hat{p} \pm 2 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Conservative
$\mathbf{9 5 \%}$ CI for p :

$$
\hat{p} \pm \frac{1}{\sqrt{n}}
$$

Case Study 10.3 Comparing proportions

Would you date someone with a great personality even though you did not find them attractive?
Women: . $611(61.1 \%)$ of 131 answered "yes." 95% confidence interval is .527 to .694 .
Men: $.426(42.6 \%)$ of 61 answered "yes."
95% confidence interval is . 302 to .55 .
Conclusions:

- Higher proportion of women would say yes. CIs slightly overlap
- Women CI narrower than men CI due to larger sample size

C.I. for the difference in two population proportions:
Sample estimate \pm multiplier \times standard error
$\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z * \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}$

Compare the two proportions by finding a CI for the difference

Case Study 10.3 Comparing proportions

Would you date someone with a great personality even though you did not find them attractive?
Women: . 611 of 131 answered "yes."
95% confidence interval is .527 to .694 .
Men: . 426 of 61 answered "yes."
95% confidence interval is .302 to .55 .
Confidence interval for the difference in population proportions of women and men who would say yes.
$(.611-.426) \pm z * \sqrt{\frac{.611(1-.611)}{131}+\frac{.426(1-.426)}{61}}$

95\% confidence interval

- A 95% confidence interval for the difference is .035 to .334 or 3.5% to 33.4%.
- We are 95% confident that the population proportions of men and women who would date someone they didn't find attractive differ by between .035 and .334 , with a lower proportion for men than for women.
- We can conclude that the two population proportions differ because 0 is not in the interval.

Section 10.5: Using confidence intervals to guide decisions

- A value not in a confidence interval can be rejected as a likely value for the population parameter.
- When a confidence interval for $p_{1}-p_{2}$ does not cover 0 it is reasonable to conclude that the two population values differ.
- When confidence intervals for p_{1} and p_{2} do not overlap it is reasonable to conclude they differ, but if they do overlap, no conclusion can be made. In that case, find a confidence interval for the difference.

From the Midterm 2 review sheet for Chapter 10 - you should know these now

1. Understand how to interpret the confidence level
2. Understand how to interpret a confidence interval
3. Understand how the sampling distribution for \hat{p} leads to the confidence interval formula (pg. 417-418)
4. Know how to compute a confidence interval for one proportion, including conditions needed.
5. Know how to compute a confidence interval for the difference in two proportions, including conditions needed.
6. Understand how to find the multiplier for desired confidence level.
7. Understand how margin of error from Chapter 3 relates to the 95% confidence interval formula in Chapter 10
8. Know the general format for a confidence interval for the 5 situations defined in Chapter 9 (see summary on page 483).

[^0]: Sample estimate \pm multiplier \times standard error

