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ANSYS Release 17.0 (January, 2016)
• Among the various enhancements, users may 

now estimate reaction forces directly in 
Mechanical (using the force reaction probe)!

• In the past, users had to be content 
with inserting APDL commands (as 
described in:

http://www.padtinc.com/blog/the-focus/retrieving-accurate-
psd-reaction-forces-in-ansys-mechanical )

• The ability to estimate accurate 
reaction forces for random vibration 
loading has existed in MAPDL since 
release 11 (2007)

• What took so long?

http://www.padtinc.com/blog/the-focus/retrieving-accurate-psd-reaction-forces-in-ansys-mechanical
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• In release 17, Workbench users can still not select 
“Total” displacement in a random vibration 
environment (here again, users can invoke MAPDL 
commands if necessary –or even create a user-
defined result)

• Again, it’s reasonable to ask “why isn’t this 
available?”

Where’s the total 
displacement?
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A Brief (recent) History of Random Vibration Analysis in 
ANSYS

• ANSYS has had random vibration analysis capability for decades. Although PADT doesn’t know precisely 
when it was first offered, the following are some more recent milestones in which PADT played a part:

• August, 2001: ANSYS 5.7. PADT was made aware of ‘incorrect’ von Mises stress and principle stress calculations by 
a large aerospace customer (ANSYS 6.0 was released later that year). Customer also complains about slow solution 
times and large results files

• February, 2002. PADT offers an external software ‘workaround’ to the problems, called x-PSD. Among the 
innovations, x-PSD utilizes a clever method of calculating the one-sigma von Mises stress (which we dub the 
‘Segalman-Reese’ method after authors of the paper)

• February, 2003. PADT stops officially developing and supporting x-PSD. Becomes a free download
• May 2004. ANSYS releases version 8.1. Officially adopts the Segalman-Reese method for calculating one-sigma von 

Mises stress. Makes principle stresses unavailable in a random vibration environment
• March, 2006. Another large aerospace customer alerts PADT that PSD reaction force calculations are ‘wrong’.
• May, 2006. International ANSYS Conference. PADT demonstrates covariance approach to calculating one-sigma 

reaction forces 
• June, 2007. ANSYS releases version 11, which includes new methodology to calculate reaction forces
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Random Vibration Analysis: Background and Simplifications

• Users may review the ‘clever’ Segalman-Reese method first 
introduced in ANSYS 8.1 by reading the ANSYS APDL Theory manual 
(section 15.7.11.1). However, the procedure for estimating the reaction 
forces is a little more mysterious. To understand the basic problems 
involved, some background is necessary

Let’s start with the Theory Manual. The 
displacement response PSD (RPSD) is:

Base participation factors

force participation factors

Base excitation 
PSD

Nodal force 
PSD

eigenvectors
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• In the previous equation, H is the complex frequency response (or 
‘Transfer’) function*:

Background

To keep the discussion simple (without losing anything important), 
let’s assume that we always have a single base excitation, so that 
(15-198) reduces to:

*We’re dropping units and assuming the output PSD units are the same 
as the input PSD units (we’re ignoring PSDUNIT and PSDRES)

Response PSD Input PSD
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Background
• The mean square response (or variance), σ2, is equal to:

• In what follows, it would be very helpful to re-write (15-204) in terms 
of the modal coordinate covariance matrix, C. And since we’re only 
looking at a single base excitation, we’ll eliminate some indices, and 
use the Einstein Summation Convention*:

*

where

(a-1)

j jk keg f=Participation factor, 

https://en.wikipedia.org/wiki/Einstein_notation  
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Background

• It’s important to realize that when creating contour plots for 
a particular result quantity, we are obtaining n-sigma 
quantities, n σ, where:

• MAPDL stores these values on a nodal and element basis in 
the general postprocessor in load steps 3 through 5

• Workbench Mechanical also accesses these values

• Note that (a-1) represents a double-sum over the extracted modes. It also has 
a very flexible structure called a bilinear form. Among other things, the 
quantities φi and φj may be scalars, vectors, or matrices –it doesn’t matter!
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Background
it’s now possible to see what the issue is (was). 

• Prior to ANSYS 8.1, if one wanted the one-sigma von Mises stress, 
ANSYS would first store the component stresses according to 
equation (a-1), where φi and φj correspond to the modal 
eigenstresses (mass-normalized stresses for modes i and j). It would 
then perform a standard von Mises calculation, such as:

• But, since each stress component is calculated according to 
(a-1), it is a root-mean-square quantity. In other words, always 
positive!

• The issue here is that one-sigma quantities are calculated first, 
then the equivalent stress is calculated based on these 
quantities
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Background
So, what to do?

• The answer lies in first realizing that the eigenquantities in (a-1) need 
not be calculated on a component-wise basis, as was originally done

• Segalman and Reese realized that if they could re-write the von 
Mises stress as a vector product (also referred to as a quadratic 
form), then equation (a-1) could easily accommodate it. Thus, the 
variance (mean square) of the von Mises stress of mode j can be re-
caste as:

where
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Background

And so, (a-1) can be directly employed (and stored as a 
one-sigma quantity in the results file):

(a-2)

• This is the solution that ANSYS adopted in 2004, starting 
with release 8.1

• Here I’m mixing vector and indicial notation. Although a bit 
ambiguous, this makes the presentation much more 
palatable.

This is a 
scalar…

This is a 
scalar…

…and this is still 
a double sum 
formula…
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Reaction Forces (and beyond…?)

• So, how does ANSYS calculate the reaction forces?

• For the purpose of discussion, suppose we have nodal 
component of size N, and we want a vector sum of its nodal 
forces. The reaction force for each node in a particular direction 
(x, say), can be expressed as a vector in nodal coordinates:

• Following Segalman and Reese, the mean square of this 
vector can be calculated according to:

(a-3)
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Reaction Forces (and beyond…?)

• But notice this is not the same thing as the mean-
square of the SUM of the components of f (which is 
what we’re after)! 

• As we’ll see shortly, prior to ANSYS release 11, FSUM 
produced an even worse estimate of the sum of f than 
would be obtained by (a-3): it simply computed each 
component of f according to (a-1), took the square root and 
summed the resulting (one-sigma) values!
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Reaction Forces (and beyond…?)

• Recall what we’re after. We want the total (one-sigma) vector 
sum (in the x-direction in this case) of the nodal forces of the 
component.  The mean square quantity of (a-3) does not 
produce this. By adding the square of each nodal force, we 
lose the sign, and produce a result which, in general, is way 
too high!

• To find the solution to this, let’s do a thought experiment. 
Let’s define a new quantity, called ‘cov’:

• The quantity to the left of C is a symmetric N x N matrix 
(the outer product of fi and fj instead of the dot product).

(a-4)

This is an 
N x N 
matrix

Still a double sum over 
number of modes

We’ll explain what ‘cov’ 
stands for shortly…
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Reaction Forces (and beyond…?)

• To see how (a-4 ) is useful, let’s expand it…

• Note first that off-diagonal terms retain their sign relative to 
the square-root of that row’s diagonal member!
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Reaction Forces (and beyond…?)

• Now, let’s focus on a single row. We’ll pick an arbitrary row of 
this matrix and divide by the square root of its diagonal term 
(first making sure that’s not zero!). For illustration, let’s take 
row 2. We divide each component of row 2 by f2x (since that’s 
the square roof of the diagonal term)

• This gives us back the original terms! Note that it doesn’t matter 
which row we pick. We’ll always get result (a-5) as long as we 
divide by the square root of the diagonal term.

• But what have we got exactly? Well, note that the diagonal 
values of (a-4) are simply the mean square values (variances) 
of each member of f. It turns out that the quantity (a-4) is the 
covariance of f

(a-5)
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Reaction Forces (and beyond…?)
• Dividing any row by the square root of its diagonal member should 

produce components whose magnitudes are each equal to their 
one-sigma value (by the definition of the covariance matrix), and 
whose sign is relative to the divisor. This allows us to produce a 
correct one-sigma vector SUM.

• This can be made more efficient. For example, knowing that every 
row of the covariance matrix will produce the same result, the 
calculation (a-4) thru (a-5) (and then taking the resulting sum) can 
be carried out on just one row. We can write this as:

Where eN
T is a unit vector containing the index of the row (N) to be 

kept, and 1 is an N x 1 matrix of ones*
https://en.wikipedia.org/wiki/Matrix_of_ones*

(a-6)

https://en.wikipedia.org/wiki/Matrix_of_ones
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Reaction Forces (and beyond…?)

• So, the main trick to finding accurate one-sigma vector 
sums in a random vibration environment is to first 
calculate the covariance matrix of the vector in question, 
as in (a-4)

• For instance: Suppose one needs signed one-sigma 
stresses (for a principle stress calculation, for example). 
All one needs is the covariance of the stress vector, η

…and then extract the signed one-sigma η:

(a-7)

(a-8)

One-Sigma 
stress vector

This is a 6 x 6 matrix Still a double-sum over the 
number of modes…
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Validation by Example

• The relations (a-4) thru (a-8) are new to most engineers, but they can 
be easily proven from the definition of covariance matrix and 
arithmetic properties of the expectation operator

• Verifying these calculations numerically on complex model problems 
is a bit harder. In principle, this would require comparing results of 
these calculations to statistical properties of equivalent time histories

• However, for simple systems, we can compare these results to single 
DoF approximations. There are two basic techniques*:

1. Miles’ Equation
2. Single Mode Coefficient

*We might mention in passing a third technique: One could constrain a group of 
nodes on which a reaction force is required to a single mass element. The node of 
this element will contain the correct force value
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Validation by Example: Miles’ Equation

http://femci.gsfc.nasa.gov/random/MilesEqn.html

F = Me*Grms*386.4

Modal effective mass

http://femci.gsfc.nasa.gov/random/MilesEqn.html
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Validation by Example: Scale mode by ANSYS Mode Coefficient

• After a random vibration analysis has been successfully 
performed, ANSYS allows one to extract a ‘Mode 
Coefficient’, MC. These values are simply the diagonals 
of the Modal Coordinate Covariance Matrix, C:

No summation implied by 
repeated indices…

*get,mci,mode,i,mcoef

• To a single-DoF approximation, the ith-mode one-
sigma response is given by:

• In APDL, this can be easily achieved by scaling the 
ith mode by the mode coefficient:

APDL for getting mode 
coefficient i

set,1,i,sqrt(mc) APDL for scaling ith mode by 
mode coefficient.

• FSUM will now produce accurate reaction force values
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Validation by Example: Reaction Force For A Simple Valve Body

Volume = 7.8 in3

Material = Steel

1.1 lb 
added 
with shell 
elements

Total Weight 
= 3.3 lbm

This face (the 
base) fixed. We 
want the 
reaction force 
here
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Validation by Example: Reaction Force For A Simple Valve Body
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Validation by Example: A Simple Valve Body

Base excited in X-direction

5% constant 
damping 
ratio

Validation by Example: Reaction Force For A Simple Valve Body
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Validation by Example: Reaction Force For A Simple Valve Body

Mode 1: 1565 Hz

Effective mass in 
X-direction = 
.00617
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Validation by Example: Reaction Force For A Simple Valve Body

Mode 2: 1634 Hz

Effective Mass in X-
direction = 6.449E-10
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Validation by Example: Reaction Force For A Simple Valve Body

Solution 1: FSUM on Load Step 3 Prior to Release 11

Fsum Results 
For Base:

FX  =   278.594    

FY  =   194.053   

FZ  =   616.79    

MX  =  -89.102 

MY  =  0.1197

MZ  =  0.7650
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Validation by Example: Reaction Force For A Simple Valve Body

Solution 2: Miles’ Equation

Grms = sqrt(pi/2*f1*Q*A)

Grms = sqrt(3.14159/2*1570*10*.1378

Grms = 58.295g

Fbase = Me*Grms*386.4

Fbase = 0.00617*58.295*386.4

Fbase = 138.98 lbf
About ½ the value 
calculated by legacy 
versions (<8.1)
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Validation by Example: Reaction Force For A Simple Valve Body
Solution 3: Scale Mode 1 by Mode Coefficient

Fbase = 144.87 lbf

MC(1) = 3.58753644E-10 …Using *get,mc1,mode,1,mcoef

Sqrt(MC(1)) = 1.894079313E-5

cmsel,s,nbase
set,1,1,sqrt(mc1)
FSUM
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Validation by Example: Reaction Force For A Simple Valve Body
Solution 4: FSUM in ANSYS releases > 11

cmsel,s,nbase
set,3,1
FSUM

…And at release 
17.0, this agrees 
(more or less) with 
the reaction probe in 
ANSYS Mechanical
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Conclusions and Summary

• For scalar engineering quantities of interest, one-sigma random quantities were 
always calculated according to (15-204) and (a-1)

• Historically, confusion arose over the difficulty of performing arithmetic operations on 
quantities calculated this way (the sign is lost, etc.). If Equations (15-204) and (a-1) 
were all that there was to random vibration, that would be the end of the story. 
However…

• This confusion evaporates once one realizes that (15-204) and (a-1) calculate the 
variance ONLY!

• Calculating the full covariance matrix of any result quantity allows us to recover 
arithmetic operations on all engineering quantities –resulting in correct one-sigma 
results for those quantities. ANSYS currently utilizes this epiphany for reaction forces, 
but no other quantities of interest (there’s room for improvement)
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