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Abstract— The development of reliable abstractions, models,
and characterizations of biochemical communication channels
that propagate information from/to biological cells is one of the
first challenges for the engineering of systems able to pervasively
interface, control, and communicate through these channels, i.e.,
the Internet of Bio-Nano Things. Signal transduction pathways
in eukaryotic cells are important examples of these channels,
especially since their performance is directly linked to organisms’
health, such as in cancer. In this paper, a novel computational
approach is proposed to characterize the communication per-
formance of signal transduction pathways based on chemical
stochastic simulation tools, and the estimation of information-
theoretic parameters from sample distributions. Differently from
previous literature, this approach does not have constraints on
the size of the data, accounts for the information contained
in the dynamic pathway evolution, and estimates not only the
end-to-end information propagation, but also the information
through each component of the pathway. Numerical examples
are provided as a case study focused on the popular JAK-STAT
pathway, linked to immunodeficiency and cancer.

Index Terms—Molecular Communication, Information Theory,
Cell Signal Transduction Pathways, Gillespie Stochastic Simula-
tion, Internet of Bio-Nano Things, Nanonetworks

I. INTRODUCTION

The Internet of Bio-Nano Things (IoBNT) has been recently

proposed by stemming from a direct contamination of the-

ory and tools between cutting-edge branches of biology and

communication engineering, with the promise of developing

systems able to extend the Internet cyberspace to the bio-

chemical domain, and operate a pervasive sensing and control

of the biochemical processes at the basis of life [1]. The

most important and immediate applications of such systems

are in the biomedical field [2], where our ever increasing

understanding of physiological processes involving our cells

is also resulting into a growing awareness of their complexity,

and the need of sophisticated systems to interact with them.

We believe that one of the first challenges in this direction is

to develop reliable abstractions, models, and characterizations

of the biochemical reality underlying these processes with

tools and concepts from communication theory, able to bridge

cultural and technological gaps and enable the engineering of

IoBNT-based devices and systems.

One of the best candidates to study, characterize, and even-

tually control and engineer the communication of information

in the cellular realm is the cell’s natural ability to sense

information from the environment through signal-relaying

biochemical reactions, i.e., signal transduction pathways, [3]

which are at the basis of major cellular functionalities, and

whose performance can affect organisms’ health, such as in

cancer formation and progression [4]. In particular, the com-

munication theoretic study of signal transduction pathways

in eukaryotic cells, which propagate information to the cell’s

nucleus, such as the JAK-STAT pathway [5] considered as a

case study in this paper, is particularly valuable in light of

the latest advancements in mammalian synthetic biology [6],

where novel genetic engineering tools are enabling a precise

and dynamic control of the underlying biochemical processes.

In this paper, we aim at characterizing the performance

of signal transduction pathways in terms of amount of in-

formation that is successfully propagated from the external

environment to the cell’s nucleus, as well as the amount

of information handled by each process along the pathway.

In other words, we estimate the point-to-point information

transfer between chemical nodes along the pathway. For this,

we abstract signal transduction pathways as complex com-

munication channels characterized by non-linear behaviors,

stochastic processes, feedback, and feedforward loops, and

we propose a computational approach based on chemical

stochastic simulation tools, and the estimation of information-

theoretic parameters from sample distributions. This approach

has fundamental differences from previous literature where

mutual information calculation is applied to experimental data

from signal transduction pathways [7], as detailed in Sec. III,

and does not account for the time evolution of the pathway.

In [8], the role of special pathway proteins is elucidated, but

without a quantitative estimation of information flow.

The rest of the paper is organized as follows. In Sec. II we

review the main processes at the basis of signal transduction

pathways and propose our abstraction, in Sec. III we detail the

proposed computational approach, and in Sec. IV we present a

numerical case study based on the computational model of an

important pathway. Finally, in Sec. V we conclude the paper.

II. MOLECULAR-INFORMATION-BASED ABSTRACTION OF

CELL SIGNAL TRANSDUCTION PATHWAYS

A. Overview of the Biochemical Processes

Signal transduction pathways are series of chained bio-

chemical processes where molecules interact with each other

to propagate physical or chemical signals through biologi-

cal cells [3]. In particular, with reference to Fig. 1a, they

most commonly propagate extracellular signals (embedded
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in physical or chemical parameters in the extracellular envi-

ronment) into the cell, where the information they carry is

utilized to accordingly regulate major cellular functionalities,

such as the cell growth rate and cell division (proliferation),

cell differentiation, cell death (apoptosis, anti-apoptosis), and

cell physiological stability (homeostasis). This propagation is

most commonly initiated at the cell membrane by special

proteins (biological macromolecules with specific functions),

called receptors, which are sensitive to extracellular signals by

binding to information-bearing molecules from the extracellu-

lar environment. Upon these binding reactions, the receptors

undergo a conformational change in the intracellular space,

and initiate cascades of chemical reactions, i.e., protein-to-
protein interactions, where specific proteins, the kinases, get

activated through the addition of a phosphate group (phos-

phorylation), and subsequently, possibly after binding to other

protein into complexes, activate other proteins downstream of

the cascade. Other specific proteins, the phosphatases, “reset”

the activated proteins along the cascade by removing the

aforementioned phosphate group (dephosphorylation). These

cascaded reactions triggered by the initial extracellular signal

result in the overall propagation of the information through

reaction chains, which ultimately results into the activation

of transcription factors, which are other proteins that, when

active, are able to regulate the aforementioned cellular func-

tionalities by increasing (induced) or decreasing (repressed)

the expression of one or more downstream DNA genes inside

the cell nucleus [9]. Through these biochemical processes, the

initial information contained in the concentration of extracel-

lular molecules is transduced into the concentration of bound

receptors, which is in turn transduced into the concentration

of activated kinases and protein complexes along the reaction

cascade, and finally into the concentration of activated tran-

scription factors. As depicted in Fig. 1a, these processes result

in an overall flow of this information from the environment,

through the signal transduction pathway, finally reaching the

regulation of gene expression. In this paper, we abstract and

model this flow of molecular information through each of the

aforementioned processes in signal transduction pathways by

utilizing tools from communication and information theory,

and computational biology.
B. Molecular Information Abstraction

In this paper, we abstract the aforementioned biochemical

processes underlying cell signal transduction pathways as

communication channels that propagate the input information
from extracellular signals to each protein of the pathway,

which ultimately relay this information as output information
to the transcription factors in the cell nucleus, as sketched in

Fig. 1b. Our aim is to provide a quantitative characterization

of this information as it flows through the signal transduction

pathway, and we rely on the following assumptions commonly

accepted in computational biology literature:

• The concentrations of all the aforementioned molecular

species are considered homogeneous at any time instant

outside the cell membrane (information-bearing molecules),

at the cell membrane (receptors), inside the cell membrane
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Fig. 1: Pictorial sketch of the biochemical processes in cell

signaling pathways (a). Proposed molecular information flow

abstraction (b).

(phosphorylating proteins), and inside the cell nucleus (pos-

sibly other phosphorylating proteins, transcription factors),

respectively. This assumption corresponds to a compartmen-

talized well-stirred system in chemical modeling [10].

• Each chemical reaction in the pathway, expressed in general

as A+B
kf−−⇀↽−−
kr

C+D, where A,B are the reactant molecule

species, C,D are the product molecule species, and kf and

kr and the forward and reverse reaction rates, respectively

(for irreversible reactions kr = 0 and the backward arrow

is omitted, and B and/or D can be omitted depending

on the reaction), is modeled mathematically through mass

action kinetics as follows [10]:
d[C](t)

dt = kf [A](t)[B](t) −
kr[C](t)[D](t), where [.](t) denotes the concentration of the

molecule species as function of the time t. The same expres-

sion is valid by substituting [D](t) in place of [C](t). In the

pathway picture of Fig. 1b, each circle represents a reactant

or product molecule species, and each arrow corresponds the

molecule specie participation to a chemical reaction. These

molecule species might be subject to degradation reactions,

expressed as A
kd−−→ 0, where kd is the degradation rate,

and action kinetics formulation as
d[A](t)

dt = −kd[A](t).
Chemical reactions are affected by noise according to the

Chemical Master Equation (CME) [10], [11], which can

be computationally implemented through the Gillespie’s

Stochastic Simulation Algorithm (SSA) [12].

• The input concentration of information-bearing molecules in

the extracellular environment Xs(t), where s is a molecular

species out of S extracellular signals, is the result of a



molecule source in the extracellular environment (another

cell or a dose provided to the cell culture during an experi-

ment), which consequently varies the concentration Xs(t0),
where t0 corresponds to an initial state of the system,

by an amount Xs, whose value corresponds to the input

information, which is kept constant during the propagation

of this information through the pathway. This models the

situation where in a lab experiment a chemical reagent is

added to a cell culture in a determinate quantity [7]. The

output concentration of transcription factors Youtk(t), as

well as the concentration of all the proteins involved in the

aforementioned cascaded reactions of the pathway Yj(t),
are in general functions of the time t. We define T as the

time interval necessary for all these concentrations to reach

a steady-state regime (constant or periodic).

In agreement with the aforementioned assumptions, Fig. 1b

captures the abstraction of the information flow in a typi-

cal cell signaling pathway, as we propose in this paper. In

particular, the Input Information is carried by a change at

time t0 in the extracellular concentrations of information-

bearing molecules at the input of the signal transduction path-

way, quantified through the entropy expression H
(
{Xs}Ss=1

)
.

This information is propagated through the signal transduc-

tion pathway by the modulation of the interactions between

the pathway proteins, which result into a time evolution

of the concentration of each of these proteins within the

aforementioned time interval T . Biological noise and other

effects [13] tend to decrease the information content in the

protein interaction modulation by randomization or equivo-

cation [14] during its propagation in the signaling pathway,

resulting in a residual information at each pathway pro-
tein, quantified through the Mutual Information (MI) Ij =

I
(
{Xs}Ss=1 ; {Yj(t), t0 ≤ t ≤ t0 + T}

)
at protein j. Finally,

the protein-protein interaction modulation through the pathway

is transduced into the modulation of the concentration of each

downstream transcription factor k, k = 1, . . . ,K, which is

the Output Information of the pathway, quantified through

the MI Ioutk = I
(
{Xs}Ss=1 ; {Youtk(t), t0 ≤ t ≤ t0 + T}

)
.

In Fig. 1b, and in the rest of the paper, this information flow

is graphically depicted for each pathway protein as a circle

with area proportional to the corresponding MI.

III. ESTIMATING THE MOLECULAR INFORMATION

In this paper, we detail a methodology to estimate the

aforementioned molecular information flow parameters start-

ing from the knowledge of the chemical reactions of the

pathway, and their kinetic rates, as expressed in Sec. II-B. For

this, we take into account that in general the signaling pathway

communication channels as defined above are characterized

by the non-linearity of chemical reactions, and the effect

of feedforward, and feedback loops in the pathway reaction

cascade [15], which, together with the aforementioned CME

noise [10], do no allow for a closed-form analytical expression

of the MI parameters. As a consequence, in this paper we

devise a computational approach based on the stochastic

simulation of chemical reaction kinetics through the afore-

mentioned SSA [12]. Based on this simulation methodology,

we estimate the MI by collecting and analyzing data, inspired

by the procedure in [7], [15] with the following three main

differences: i) we are based on a computational simulation

rather than expensive wet lab experiments, which does not

pose stringent constraints on the size of the data set that

can be collected; ii) we estimate the MI taking into account

the complete time evolution of the output, instead of only

accounting for a single value of the output in a dose-response

characterization, often made in experimental studies, such as

in [7]; iii) we perform the MI estimation not only at the

pathway output, but also at each protein and protein complex.

For simplicity of notation, in the following we will consider

a pathway having only one species of information-bearing

molecules at the input (S = 1), and only one type of output

transcription factors (K = 1). All the following expressions

can be generalized to scenarios with multiple inputs/outputs.

A. Computational Approach
1) Goal: The final goal of our computational approach

is the estimation of the MI Ĩj at each pathway protein j,

expressed as

Ĩj = H̃(X)− H̃(X| {Yj(t), t0 ≤ t ≤ t0 + T}) , (1)

where H(.) and H(.|.) denote the estimated entropy and con-

ditional entropy, respectively, X is the input concentration of

information-bearing molecules, and {Yj(t), t0 ≤ t ≤ t0 + T}
is the time evolution of the concentration of the pathway

protein Yj(t) within a time interval T from t0. The estimation

of the output MI Ĩout is expressed as in (1) and in the

subsequent equations by substituting out in place of j.

2) Details: The necessary data for the MI estimations is

obtained through SSA simulations of the chemical reactions of

the pathway [12]. In particular, for each value xi, i = 0, . . . , I ,

of the input concentration X sampled from the range between

xmin and xmax, defined here as the value below which the

concentrations of any pathway protein do not significantly

change, and the value above which the same concentrations

do not show noticeable changes in their time evolution, we

run a total of R simulations. Each SSA simulation is run

independently, and starts at the same steady state that the

system reaches with an input concentration value X = 0.

The estimated input entropy H̃(X) is computed through the

histogram approach [16] as

H̃(X) = −
I∑

i=1

pX(xi) log2

(
pX(xi)

wX

)
, (2)

where pX(xi) = 1/I , according to the simplifying assumption

of having a uniformly distributed input, in agreement with [7],

and wX is the sampling interval (xmax − xmin)/I .

The estimated conditional entropy H̃(X| {Yj(t),
t0 ≤ t ≤ t0 + T}) of the input concentration X given
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the time evolution of the concentration of the pathway protein

j is computed as

H̃(X| {Yj(t), t0 ≤ t ≤ t0 + T}) =
−

∑
Nj,t0

∑
Nj,t1

· · ·
∑
Nj,tN

pYj

(
{yj,tn}Nn=0

)
S{yj,tn}N

n=0∑
s=1

pX|{yj,tn}N
n=0

(xs)

log2

(
pX|{yj,tn}N

n=0
(xs)

wX,{yj,tn}N
n=0

)
, (3)

where tN = t0 + T , N being the number of time samples

considered when discretizing Yj(t) within the interval T (for

computational processing), {yj,tn}Nn=0 is a set of values of

the protein concentration Yj(t) at time instants t0, t1, . . . , tN ,

Nj,tn is the number of histogram bins considered for the

protein concentration value Yj(tn) to compute the multidimen-

sional histogram pYj
, S{yj,tn}N

n=0
and wX,{yj,tn}N

n=0
are the

number and the size of histogram bins considered for the input

concentration X to compute the histogram pX|{yj,tn}N
n=0

(xs),

where wX,{yj,tn}N
n=0

= (xmax−xmin)/S{yj,tn}N
n=0

and xs is a

value from the concentration input {xi}Ii=0 sampled according

to the histogram. The numbers of histogram bins Nj,tn are

computed from the aforementioned simulation data according

to the Doane’s formula [16] as follows:

Nj,tn = 1 + log2(C) + log2

(
1 +

gYj(tn)

σgYj(tn)

)
. (4)

where C = I ∗ R is the total number of simulation runs,

gYj(tn) is the estimated 3rd-moment-skewness of the dis-

tribution pYj(tn) from the simulation data, and σgYj(tn)
=√

6(C−2)
(C+1)(C+3) . The number of histogram bins S{yj,tn}N

n=0
is

computed with a similar expression as in (4) by substituting

Yj(tn) (and C) with the set of xi values (number of xi values)

that resulted in a concentration evolution for protein j equal to

{yj,tn}Nn=0. Finally, the probabilities pYj
, for all the J pathway

proteins, and pX|{yj,tn}N
n=0

, for all the combination of values

yj,tn at each time instant tn of each of the J pathway proteins,

are computed as histogram distributions of the aforementioned

data according to Algorithm 1. In Fig. 2 we show a graphical

example of the computation of
(
{Zi,r}tn , btn

)
as per Algo-

rithm 1 for a protein in the case study pathway detailed in

Sec. IV, where we consider the results of multiple simulation

runs for different input concentrations, and overlay at tn the

Nj,tn equally-spaced bins between min and max values.

IV. NUMERICAL RESULTS FOR THE JAK-STAT PATHWAY

In the following, we present the results of the computational

approach detailed in Sec. III-A when applied to a specific

signal transduction pathway, i.e., the JAK-STAT pathway.

This pathway was chosen because: i) it is relatively simple

and small with respect to other signal transduction pathways

in eukaryotic cells; ii) its complete kinetic model with the

Fig. 2: Graphical sketch of the computation of Steps 1-4 of

Algorithm 1 for the phosphorylated and dimerized output tran-

scription factor STAT1n*-STAT1n* of the JAK-STAT pathway.

Algorithm 1: Probability Histograms for Equation (3)

Data: R simulation runs for each of I input concentrations containing
values for all N simulation steps

Result: For each protein j, pYj
and p

X|{yj,tn}N
n=0

1 for each simulation time step tn do
2 Create {Zi,r}tn by extracting protein j concentration for each

simulation run r and input concentration i
3 Map each value of {Zi,r}tn in Nj,tn equally-spaced bins (with

index btn ) between min and max values, expressed as(
{Zi,r}tn , btn

)

4 end
5 Obtain matrix M of size C by N by combining all the mapped bin

indices btn for each simulation run (i, r) and each time step tn
6 Compute the multidimensional histogram considering each row of M as

a datapoint: pYj

(
{yj,tn}Nn=0

)

7 for each bin in the multidimensional histogram do
8 Take all the input values corresponding to the values {yj,tn}Nn=0

that define the current multidimensional bin
9 Compute the histogram p

X|{yj,tn}N
n=0

by mapping the input

values found at Step 8 into S{yj,tn}N
n=0

equally space bins

between min and max values
10 If no input value from Step 8, set p

X|{yj,tn}N
n=0

= 0

11 end

chemical reactions of the pathway and each kf , kr, kd,

defined in Sec. II-B, is publicly available in the BioModels

Database [17]; iii) the dysregulation of JAK-STAT pathway

has been linked to immunodeficiencies and cancers.

As shown in Fig. 3, the JAK-STAT kinetic model that we

utilize to compute the numerical results of this paper consists

of J = 34 chemical species (proteins) and 46 reactions, and

its complete description and parameter values can be found

in [17], [18]. In this model, the input is the concentration

of a small signaling protein called interferon gamma (IFN-

γ/IFN-green node) while the output is the phosphorylated

transcription factor STAT1n*-STAT1n* (blue node). In Fig. 3

we show the complete interconnections between different pro-

tein species, and proteins at different phosphorylation (denoted



R(3.69)

JAK(0.56)

Receptor-JAK(4.34)

IFN-Receptor-JAK(4.35)

IFNRJ2(4.35)

 IFN-R-J2*(4.03)
STAT1c(3.92)

IFNRJ2*-STAT1c(3.86)

STAT1c*(3.98)

IFNRJ2*-STAT1c*(0.61)

STAT1c*-STAT1c*(3.82)

SHP2(3.9)

IFNRJ2*-SHP2(2.03)

PPX(3.88)

STAT1c*-PPX(3.86)

STAT1c-STAT1c*(0.73)

STAT1n*-STAT1n*(1.65)

STAT1n*(1.31)

PPN(1.3)

STAT1n*-PPN(1.06)

STAT1n(0.57)

STAT1n-STAT1n*(0.56)

mRNAn(0.56)
mRNAc(0.56)

SOCS1(0.56)
IFNRJ2*-SOCS1(0.56)

IFNRJ2*-SHP2-SOCS1-STAT1c(0.56)

STAT1c*-STAT1c*-PPX(3.45)

STAT1n*-STAT1n*-PPN(1)

IFNRJ2*-SOCS1-STAT1c(0.56)

IFN(4.35)

IFNRJ2*-SHP2-STAT1c(3.84)

IFNRJ2*-SHP2-SOCS1(0.56)

IFNR(4.35)

Fig. 3: Estimated MI of the JAK-STAT pathway (node size

proportional to MI value in [bits]).

with a * when phosphorylated) or binding (dashed or denoted

by their initials) states involved in reactions.

To obtain the data necessary for our computational ap-

proach, we utilized the implementation of the SSA algorithm

in Matlab Simbiology. Through these simulations, the values

of xmin and xmax, defined in Sec. III-A2, were found to be 0

and 20 nmol/litre, respectively. For simplicity, we considered

a number I = 51 different input concentrations, resulting

in a sampling interval wX = 0.4 nmol/litre. For each input

concentration, we arbitrarily run R = 100 independent simu-

lations for a time interval T = 10, 000 seconds, estimated as

defined in Sec. II-B. The time step of each simulation is set

to tn − tn−1 = 1 second (N = 10,000). In Fig. 2 we show

the simulation results for the phosphorylated and dimerized

output transcription factor STAT1n*-STAT1n* at each time

step for only one of the R runs for a restricted number of

input concentrations out of I .

The MI values for each pathway protein estimated from

the simulation data through the computational approach in

Sec III-A is reported in Fig. 3, and graphically shown in a

corresponding proportional size of each graph node (protein).

As expected, the value of MI is decreasing as it propagates

through the reaction cascades, accumulating chemical noise

at each reaction (data processing inequality [14]), from an

estimated input entropy H̃(X) = 4.35 bits to an estimated

output MI Ĩout = 1.65 bits. In Fig. 4 we show a comparison

bar chart between the MI of Fig. 3 estimated by taking into

account the time evolution {Yj(t), t0 ≤ t ≤ t0 + T} of each

protein concentration, and an MI similarly estimated, but only

taking into account the maximum value maxt0≤t≤t0+T Yj(t).
As expected, the latter generally underestimates the MIs.

V. CONCLUSION

In this paper, we proposed a computational approach to

characterize the performance of signal transduction pathways

in terms of amount of information that is successfully propa-

gated from the external environment to the cell’s nucleus, as

well as the amount of information handled by each protein

along the pathway. This approach is a preliminary yet very

important step in understanding how communication theory

tools can be applied to obtain novel information from signal

transduction pathways, such as the importance of a pathway

process in relying information through the pathway, and how

this is correlated in case of diseases (e.g., cancer) to possible

Fig. 4: Comp. MI with time evol. Vs. MI with max values.

impairments to the functionality of the same protein (e.g.,

mutation of the corresponding protein-encoding genes).
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