
Estimating tumor growth rates in vivo

Anne Talkington and Rick Durrett
Dept. of Math, Duke University, Durham, NC

November 19, 2014

Abstract
In this paper we develop methods for inferring tumor growth rates from the obser-

vation of tumor volumes at two time points. We fit power law, exponential, Gompertz,
and Spratt’s generalized logistic model to five data sets. Though the data sets are small
and there are biases due to the way the samples were ascertained, several interesting
conclusions come from our analyses.

1 Introduction

Finding formulas to predict the growth of tumors has been of interest since the early days
of cancer research. Many models have been proposed, but there is still no consensus about
the growth patterns that solid tumors exhibit [7]. This is an important problem because an
accurate model of tumor growth is needed for evaluating screening strategies [18], optimizing
radiation treatment protocols [27, 2], and making decisions about patient treatment [5, 6].

Recently, Sarapata and de Pillis [29] have examined the effectiveness of a half-dozen
different models in fitting the growth rates of in vitro tumor growth in ten different types of
cancer. While the survey in [29] is impressive for its scope, the behavior of cells grown in a
laboratory setting where they always have an ample supply of nutrients is not the same as
that of tumors in a human body.

One cannot have a very long time series of observations of tumor size in human patients
because, in most cases, soon after the tumor is detected it will be treated, and that will
change the dynamics. However, we have found five studies where tumor sizes of different
types of cancers were measured two times before treatment and the measurements were given
in the paper, [11], [13], [28], [21], and [22]. We describe the data in more detail in Section
4. Another data set gives the time until death of 250 untreated cases observed from 1805 to
1933, see [1]. That data is not useful for us because there is no information on tumor sizes.

In the next section, we review the models that we will consider. Each model has a
growth rate r. Given the volumes V1 and V2 at two time points t1 and t2, there is a unique
value of r that makes the tumor grow from volume V1 to V2 in time t2 − t1. We use the
average of the growth rates that we compute in this way as an estimate for the growth rate.
Chingola and Foroni [3] used this approach to fit the Gompertz model to data on the growth
of multicellular tumor spheroids. Here, we extend their method to other commonly used
growth models.
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A new feature of our analysis is that in order to find the best model we plot the estimated
values of r versus the initial tumor volume V1 and look at trends in the sizes of the rates.
To explain our method, we begin by noting that all of our models have the form

dV

dt
= rV (t)f(V (t))

We call f the correction factor because it gives the deviation from exponential growth. If
the true tumor growth law has f0 < f then the estimated growth rates will tend to decrease
as the tumor volume increases. For example, this will occur if we fit the exponential, f ≡ 1
but the true tumor growth law has f0(v) ↓ 0. Conversely, if the true growth law has f0 > f
then the estimated growth rates will tend to increase as the tumor volume increases. This
will occur if growth follows a power law, which corresponds to f0(v) = vα−1, and we fit a
power law with a value of α that is too small.

2 Tumor growth laws

In writing this section we have relied heavily on the surveys in [7] and [26]. This material
can also be found in Chapter 4 of the excellent recent book by Wodarz and Komarova [40].

1. Exponential growth is the most commonly used tumor growth model. Cells divide at
a constant rate independent of tumor size, so the tumor volume V satisfies

dV

dt
= rV (1)

The solution is V (t) = V0e
rt, where V0 is the size at time 0. This model was first applied

to cancer in 1956 by Collins et al [4]. Their work introduced the tumor doubling time,
DT = (ln 2)/r, to quantify the rate of growth. The exponential growth law has been used to
model leukemia [30]. Friberg and Mattson [6] found exponential growth in a study of more
than 300 untreated lung cancers.

Exponential growth describes the ideal scenario in which cells divide without constraint,
and continue to double indefinitely. This should be a good model of early tumor growth.
However, limitations of the availability of nutrients, oxygen, and space imply that exponential
growth is not appropriate for the long term growth of solid tumors, so we must consider
alternative formulations.

2. The power-law differential equation generalizes the exponential:

dV

dt
= rV (t)α (2)

When α = 1 this reduces to the exponential. The solution when α < 1 is

V (t) = (V 1−α
0 + (1− α)rt)1/(1−α) (3)

If we assume that growth only occurs at the surface of a three dimensional solid tumor then
α = 2/3. This value of α was suggested in 1932 by Mayenord [16]. This choice is supported
by the observation of linear growth of the diameter of 27 glioma patients, see [15] .
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3. The power-law with linear death has the form

dV

dt
= rV (t)α − r

V (t)

K1−α
= rV α

(
1−

(
V

K

)1−α
)

(4)

When α = 2/3 this is van Bertalanffy model [37]. When α = 3/4 this is the universal curve
of West, Brown, and Enquist [39], who used it to fit the growth of 13 different organisms.
Guiot et al [9] used this model to fit the growth of tumor spheroids in vitro and patient data.
Castorina et al. [2] have investigated the implications of this growth law for radiotherapy.
We mention this model here for completeness. We will not fit it to our data.

4. The Gompertz model was put forward by Benjamin Gompertz in 1825 as a means
to explain human mortality curves [8] and hence determine the value of life insurances. A
hundred years later, it was proposed as a model for biologic growth by the geneticist Sewall
Wright. On page 494 of [41], he observes that “the average growth power, as measured by
the percentage rate of increase, tends to fall at a more or less uniform percentage rate.” In
other words, the growth rate of an organism or organ tends to decrease exponentially. This
model became popular in the cancer literature after Anna Laird [14] used it to successfully fit
the growth of 19 tumor cell lines. Larry Norton [23, 24, 25] has for many years championed
the use of the Gompertz in modeling breast cancer growth.

One way of thinking about this model, which is close to Wright’s description, is to write

dV

dt
= α(t)V (t) where

dα

dt
= −rα(t).

This leads to a solution
V (t) = V0 exp

(α0

r
(1− e−rt)

)
(5)

where α0 is the initial growth rate. To bring out the analogy with the logistic, we will take
a second approach. If we start with the differential equation

dV

dt
= rV (t) log(K/V (t)) (6)

where K = V∞ = limt→∞ V (t), then the solution is

V (t) = V0 exp(A(1− exp(−rt)) (7)

with A = log(V∞/V0).
For our method to work, the rate r must be the only parameter in the model, so we will

fix the value of the carrying capacity. In [3] the authors take K = 1012. They use V0 = 10−6

mm3, i.e., one the volume of one cell, so V∞ = 106 mm3 or 103 cm3. Independent of the
units used,

A = log(1012) = 27.631. (8)

Norton [23] took the lethal tumor volume to be NL = 1012 cells, but used a carrying capacity
of 3.1× 1012 cells so the tumor size would actually reach NL. To fit the Gompertz model to
the Bloom data set [1] on mortality from untreated breast cancers, he took the number of
cells at detection to be N(0) = 4.8× 109 and assumed a lognormally distributed growth rate
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with mean ln(r) = −2.9 and standard deviation 0.71. With these choices his survival curve
fit the Bloom data almost perfectly. See Figure 1 in [23].

5. The generalized logistic interpolates between the logistic and the Gompertz:

dV

dt
= rV (t)

(
1− (V (t)/K)β

)
. (9)

If we let β → ∞ we get the exponential. If we take β = 1 we get the logistic, while if we
replace r by r/β and let β → 0 we get the Gompertz, see page 1928 in [27]. The solution is

V (t) = K[1 + Q exp(−βrt)]−1/β (10)

where Q = [(K/V0)
β − 1]. When β = 1 this reduces to the familiar formula for the solution

of the logistic.

V (t) =
KV0e

rt

K + V0(ert − 1)

Spratt et al. [32] took K = 240 ≈ 1012 and found that the best fit of this model to cancer
data came from β = 1/4, see their Table 1. If we set β = 1/4 in (10) we get

V (t) =
V∞

[1 + ((V∞/V0)1/4 − 1) e−0.25rt]
4 ,

which is the formula on page 5 of [38], except that their r is random and has a lognormal
distribution with mean 1.07 and variance 1.37. Spratt et al. [32, 33] give a similar formula

V (t) = (1.1× 106)[1 + 1023e−0.25rt]−4.

To explain the constant in front note that they give 10−6 mm3 as the volume of one cell,
and use a maximum tumor size of V∞/V0 = 240 = 1.0995× 1012 cells. Based on data on 335
women with two mammograms and another 113 with an average of 3.4 mammograms, they
found that this model fit better than the Gompertz and the exponential, and that the rate
r had roughly a lognormal distribution. See page 2016 in [33].

Figure 1 compares the correction factors f(V ) for the different models by plotting them
against log(V ). The fact that the correction factors, which we think of as a modification
of the exponential rate are often > 1 (except for the Spratt model) highlights the fact that
various quantities we have called r have different interpretations. Figure 2 gives a visual
comparison of our growth models by plotting their solutions with V (0) = 10−9 cm3 (one
cell), and r chosen so that V (10) = 10 cm3.

3 Estimating r from two time points

Our data will give the tumor volume at two time points, t1 and t2. In each case this allows
us to solve for the value of r. We will estimate the growth rate by averaging the values of r
computed for all of the tumors in the data.
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3.1 Exponential growth

Since V (t) = V0e
rt, we have

r̂E =
log(V (t2))− log(V (t1))

t2 − t1
. (11)

Note that since we look at the logarithm of the ratio, the rate is independent of the units in
which the volume is measured.

3.2 Power law

The solution in (3) has V (t)1−α = V 1−α
0 + (1− α)rt, so we have

r̂α =
V (t2)

1−α − V (t1)
1−α

(1− α)(t2 − t1)
(12)

The estimate can be rewritten as

r̂α =
exp[(1− α) log(V (t2))]− exp[(1− α) log(V (t1))]

(1− α)(t2 − t1)
.

Using the fact that ex ≈ 1 + x when x is small, we see that as α → 1

r̂α →
log(V (t2))− log(V (t1))

t2 − t1
,

the rate estimate of the exponential.
When we use this estimate on a data set we will get very different values of r̂α for different

α’s. The reason for this is that r̂α has units of (volume)1−α/time. All of the other estimates
described in this section are independent of the units volume is measured in. However, as
we will see in Table 1, the values of those rate estimates can vary considerably.

3.3 Gompertz

To estimate r, Chingola and Foroni [3] start with the solution in (7), and take logs of both
sides

1

A
log(V (t)/V0) = 1− e−rt

Rearranging gives

ti = −1

r
log

(
1− 1

A
log(V (ti)/V0)

)
Using the fact that A = log(V∞/V0), we can rewrite

1− 1

A
log(V (ti)/V0) =

A− log(V (ti)/V0)

A

=
log(V∞/V0)− log(V (ti)/V0)

A
=

1

A
log(V∞/V (ti)).
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If we let Ωi = log(V∞/V (ti)) then we have

ti = −1

r
log(Ωi/A).

Taking the equation for i = 2 and subtracting the one for i = 1 we have we get estimator

r̂G =
log(Ω1)− log(Ω2)

t2 − t1
. (13)

Since Ω1 involves a ratio of two volumes, it is independent of the units in which the volumes
are measured.

To connect with the calculation in the appendix of [3] note that, as in (5), they write the
Gompertz as

V (t) = V0 exp

(
α0

β
[1− exp(−βt)]

)
so r = β, and A = α0/β is what they call K. As t → 0, 1 − exp(−βt) ∼ βt. So α0 is the
exponential growth rate when t is small.

3.4 Generalized Logistic

Changing K to V∞, the start time to t1 and rearranging (10) we have

((V∞/V (t1))
β − 1)e−βr(t2−t1) = (V∞/V (t2))

β − 1.

If we let Γi = (V∞/V (ti))
β − 1 then we can write the above as e−βr(t2−t1) = Γ2/Γ1. Taking

logs and rearranging, we have

r̂GL =
log(Γ1)− log(Γ2)

β(t2 − t1)
(14)

which is similar to the Gompertz estimator in (13). Writing

Γi = eβ log(V∞/V (ti)) − 1 ≈ βΩi

when β is small, we see that letting β → 0 gives the Gompertz estimate.
To summarize and compare our estimates we note that

r̂E = log(V (t2))−log(V (t1))
t2−t1

r̂G = log(Ω1)−log(Ω2)
t2−t1

Ωi = log(V∞/V (ti))

r̂GL = log(Γ1)−log(Γ2)
β(t2−t1)

Γi = (V∞/V (ti))
β − 1

r̂α = V (t2)1−α−V (t1)1−α

(1−α)(t2−t1)
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4 Data sets

Heuser et al. [10] discovered 109 breast cancer tumors in 108 women in a screening population
of 10,120 women receiving over 30,000 mammograms over three years. Forty-five of the
cancers were diagnosed on the initial screening. However, of the remaining 64, there were
32 women who had an earlier mammogram on which the tumor could be seen in retrospect.
Nine of these breast cancers did not grow in size between the two measurements, leaving us
23 data points. For each tumor they reported the size of the major axis b and the minor
axis a measured in mm, e.g., 22× 17.

Three methods were used in [10] to convert a and b to a volume. The fourth given below
is from Nakajiima et al. [21]. Let q = a/2 and r = b/2 be the minor and major radii. Let
s1 = (2/3)q + (1/2)r and s2 = (qr)1/2 be the geometric mean.

Sphere V = (4π/3)s3
1

Cylinder V = πqr2

Spheroid-1 V = (4π/3)qr2

Spheroid-2 V = (4π/3)s3
2

The cylinder and the first spheroid volumes differ by a constant, so the rate estimates will
be the same. We do not expect drastic differences between the other three methods, so we
will work with the first spheroid formula.

Of 79 acoustic neurinomas seen by Laasonen and Troupp [13], no operation was performed
on 21 of these patients or it was delayed for at least six months, so a second CT scan was
available for these patients. The reasons for not operating were as follows: 7 patients had
bilateral tumors so there was a delay on the operation for the other one, 9 patients wanted
more time to decide in favor or against an operation, 4 were too old or too ill with some
other disease, and 1 has a 0.38 cm3 tumor not diagnosed at first in another hospital. Volume
measurements were done with a program built into the scanner. They report the initial and
final volume in cm3.

At the Nordstate Hospital between 1978 and 2000, a total of 1954 patients seen had
meningiomas and 1700 were operated on. Between 1990 and 2001, a total of 80 asymptomatic
patients were diagnosed by computed tomography or MRI. Among them were 7 patients
with associated neurofibromatosis Type 2, 4 patients had multiple meningiomas, 22 patients
underwent surgery immediately after diagnosis, and 6 had surgery later due to significant
tumor growth. Nakamura et al. [22] examined the natural history of the remaining 41
“incidental” meningiomas, which occurred at a wide variety of different locations in the
brain. Again the initial and final volumes were reported in cm3.

Nakajima et al [21] studied 34 hepatocellular carcinomas (HCCs) in patients who initially
refused therapy, giving data, as [10] did, on the major and minor axis. The tumors varied
in their clinical stage: 18 were stage I, 14 stage II and 3 stage III, and histology: 19 were
well-differentiated, 9 moderately differentiated, and 6 poorly differentiated. See the paper
for more on the clinical classification.

Saito et al [28] studied the tumor volume doubling times of 21 HCCs. Patients were only
selected if their tumors were less than 3 cm in diameter at the start of observation, and two
abdominal ultrasounds were available. This occurred because 3 patients refused treatment,
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6 had clinical complications that prevented surgery, and in 12 cases the initial diagnosis was
uncertain. They report only the initial and final diameter in mm. They talk about the major
and minor axes when they discuss the doubling time, but do not give the measurements, so
we have calculated volumes by assuming the tumors are spherical.

5 Rate Estimates

The next table gives the rate estimates for our five data sets first for the various power laws
and the exponential (which corresponds to power 1), then continues with the generalized
logistic (the Logistic β = 1 and Spratt’s model β = 1/4), and the Gompertz (which is the
limit β → 0). In the last case, we give both the rate estimate r̂G and the initial growth rate
α0 = Ar defined in (8). Note that even though Saito and Nakamura both study HCC, all of
the rate estimates differ roughly by a factor of 2.

Nakamura Laasonen Heuser Saito Nakajima
r̂0.5 0.2121 0.7547 1.1488 5.6704 11.324
r̂2/3 0.1518 0.6931 1.0705 3.8570 7.4361
r̂0.8 0.1192 0.6669 1.0399 2.9064 5.4554
r̂0.9 0.1026 0.6593 1.0365 2.3867 4.3904
r̂E 0.0856 0.6618 1.1515 1.9896 3.5837
r̂L 0.0867 0.6275 1.1533 2.0117 3.6329
r̂S 0.1203 0.7731 1.4061 2.8359 5.2360
r̂G 0.0074 0.0936 0.1671 0.4084 0.7713
α0 0.2045 2.5863 4.6171 11.284 21.312

Table 1: Rate estimates for our five data sets.

The polynomial rate estimates decrease as the power increases. The rates for the logistic
are always close to those of the exponential. This should not be surprising. We fit the logistic,
as we do the Gompertz and Spratt models, using a carrying capacity of K = 1000 cm3, while
all the final tumor volumes in all the datasets are < 102.16 cm3, and in the first three data
sets all are smaller than 10 cm3. Because of this, the correction factor 1− V (t1)/K is close
to 1 for t1 ≤ t ≤ t2.

The correction factor 1 − (V (t)/K)1/4 in the Spratt model has a significant effect when
V (t) = 1 cm3, which corresponds to 109 cells, so its rate estimates are larger than the
exponential. The correction factor log(K/V ) in the Gompertz has a much stronger effect,
but compared to the other estimates the Gompertz rate r̂G is much smaller. This can be
traced to the fact that to get from the generalized logistic to the Gompertz we must replace
r by r/β and let β → 0. If we look instead at the initial growth rate α0, it is much larger
than the exponential rate estimate.

6 Comparing the rate estimates

While all of our differential equations have a constant denoted by r, these rates do not all
have the same meaning, e.g., as mentioned in Section 3 the power laws they have different
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units. To try to reconcile the various estimates, we recall that all of our models have

d

dt
log V (t) =

V ′(t)

V (t)
= rf(V (t)) (15)

where f(V ) = V α−1 for power laws, f(V ) = log(K/V ) for the Gompertz, and f(V ) =
1− (V/K)β for the generalized logistic.

If we multiply the rate estimate r by the average value of f(V1) in the data, we get an
estimate for the average exponential growth rate of the tumor at the initial time. If we use
the average value of f(V2) in the data set, we get an estimate for the average exponential
growth rate of the tumor at the final time. Integrating the differential equation

r̂E =
log V (t2)− log V (t1)

t2 − t1
= r · 1

t2 − t1

∫ t2

t1

f(V (s)) ds

From this we see that if we were to multiply our rate estimate by the average value of f(V (s)
over the interval [t1, t2] then we would get exactly the exponential rate. This suggests that
the best correction is to multiply by the average value of (f(V1)+f(V2))/2, which is a simple
approximation of the integral.

As the reader will see in Table 2, when we do this transformation to the estimates from the
Gompertz and generalized logistic, then the result is close to the exponential rate. However,
when we apply the same procedure to the power law estimates the estimates get worse. The
reason for this unfortunate outcome is that in several data sets there are tumors with a
volume of < 1 cm3, and xα−1 is strongly convex there, so the average value (f(V1)+f(V2))/2
is much different from the integral. To avoid this problem, we convert the tumor volumes to
mm3 before we transform them. (Note that the rate estimate in mm3 is 103(1−α) times the
one in cm3, so we don’t have to do any work to compute the new rate.) The rescaling to
mm3 has made the range of values larger by a factor of 103 but the second derivative is now
smaller by a factor of 103(α−3) < 10−6 so vα−1 is now very flat over the range of observed
values. Because of this, the average value of V α−1 over [t1, t2] is close to (V̄ )α−1, where V̄ is
the average of V over [t1, t2].

The next table gives the result of multiplying our earlier estimates by the average value
of (f(V1)+f(V2))/2 to convert them into estimates of the average exponential growth rate of
the tumors in the sample. The translated Gompertz estimates are now similar to the others,
with the striking exception of the Nakamura data set, while the translated Spratt estimates
are very close to the exponentials. Note that the Nakajima and Saito power law estimates
have been reduced by the translation while the Heuser, Laasonen, and Nakamura estimates,
which are based on smaller tumors, have become larger.
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Nakamura Laasonen Heuser Saito Nakajima
r̃0.5 0.1034 0.8592 1.3442 2.6656 4.8215
r̃2/3 0.0833 0.7238 1.0969 2.2387 4.0708
r̃0.8 0.0845 0.6704 0.9948 2.0585 3.7296
r̃0.9 0.0856 0.6593 0.9607 1.9953 3.6074
r̃E 0.0896 0.6617 1.0514 1.9896 3.5957
r̃S 0.0841 0.6700 1.1533 2.0408 3.6888
r̃G 0.0158 0.6588 1.1847 2.1666 3.9164

Table 2: Rate estimates translated to be the average exponential growth rate of the tumor
during the time between observations.

To help understand the trends in the fits, we find the next picture useful.
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The exponential is at the top because for a fixed value of r it grows the fastest. As the power
law α decreases from 1, or the generalized logistic β decreases from infinity, growth slows
down for a fixed r so the rate estimates increase (in most cases).

7 Model Comparisons

As explained in the introduction, if the rate of growth rVtf(Vt) in the model being fitted is
slower than the actual tumor dynamics, we would expect r̂ to increase when plotted against
the initial volume V1, or if we use linear regression to fit a straight line, then the slope would
be positive. Similarly, if the rate of growth rVtf(Vt) in the model being fitted is faster than
the actual tumor dynamics then we would expect r̂ to decrease when plotted against the
initial volume V1, or if we use linear regression to fit a straight line, then the slope would
be negative. To test to see if the linear relationship is not flat we use a t-test to see if the
rate estimate r̂ and the initial tumor volume V1 have a significant correlation. In the tables
below *’s indicate a p-value of < 0.1 and ** one with p < 0.05. When there is a significant
correlation, and the slope of the regression line is positive, we will say informally that the
positive slope is significant. In the tables that follow, we also give R2, the fraction of the
variance explained by the line to provide another perspective on the fit.
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7.1 Heuser et al. [11]

The time between observations for more than half of the women in the data set was close
to one year. The maximum time between observations was 2.02 years with an average of
0.89. We discarded one tumor that was 7 cm in diameter (and not detected!) on the initial
mammogram because its initial volume of 179.6 cm3 was 25 times larger than the second
largest tumor, making it impossible to fit a line to r̂ versus V1. In the results presented
below, we also eliminated one tumor (the square in Figure 3) with an initial volume of 6.28
and final volume of 28.73, which was an outlier compared the average values were 0.89 cm3

and 1.05 cm3. However, including this tumor does not change the results very much.
In the next table, we see that the slopes of r̂ versus V1 are positive for all power law rates,

as well as for the Spratt and Gompertz growth laws, but that the trends are significant only
for the first three power laws. The fact that the slope is the smallest for the exponential
suggests that it may give the best fit to the data. Here, and in other comparisons against
the volume, we must keep in mind that tumors with larger growth rates may be larger when
detected, creating a positive correlation that our analysis would attribute to the growth rate
in the model being slower than that in the tumor.

model signif. R2 slope vs. V1 rmax ss vs. V1

0.5 0.001** 0.4398 0.5945 4.391 0.478
2/3 0.011** 0.2947 0.3751 3.431 0.386
0.8 0.092* 0.1425 0.2186 2.820 0.274
0.9 0.396 0.0382 0.1022 2.435 0.148

Exp 0.915 0.0006 −0.0127 2.397 −0.019
Spratt 0.669 0.0098 0.0627 2.829 0.078

Gompertz 0.206 0.0827 0.0229 0.387 0.209

As we explained in the last section, one problem with comparing the slopes is that the
estimated rates vary considerably in magnitude. To compensate for this, we will scale the
rates by the maximum rate observed and the maximum initial volume to have graphs where
the x and y values range over [0, 1]. Note that now the scaled slopes (ss) versus V1 more
clearly show a minimum at the exponential.

Norton [23] analyzed the Heuser data set using the Gompertz model with the log-normal
r that he got from fitting the Bloom data set, i.e., ln(r) is normal with mean −2.9 and
standard deviation. He plotted the log10 of the 23 rate Gompertz estimates for the Heuser
data along the lognormal density function, see his Figure 2. Norton judges the fit to be
good because “the circles are expected to belong to the lower 23% of the data and indeed
do fall in the lower 15%.” The figure of 23% comes from the fact mentioned in Section 4
that of the 109 tumors (in 108 women), 45 were detected on the initial screening, and 32 of
the remaining 64 tumors were not detectable on the previous mammogram. Discarding the
9 tumors that did not grow, this means that only 23 out of the 100 grew slowly enough to
be visible on two successive mammograms.

Our analysis does not match with his findings. The ln(rG) for our 21 data points range
from −3.56582 to 1.22169. Only two are below his mean −2.9 and 13 are more than 3 of his
standard deviations above the mean. Furthermore the positive slope when the Gompertz
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rate is plotted against the initial volume suggests that the true growth rate is larger than
the Gompertz.

7.2 Saito el al. [28]

In this data set of the largest initial tumor volume was 14.14 cm3 (which corresponds to a
diameter of 3 cm), while the largest final volume was 57.91 cm3. Average values of initial
and final volumes were 5.19 cm3 and 15.47 cm3 respectively. The maximum time between
observations was 2.09 years, with an average value of 0.65 years.

When we consider the slopes versus V1, the four power laws have significant positive
slopes. The minimum slope occurs for the exponential model. Figure 4 shows the rate
estimates for the exponential and Spratt model and the straight line fit.

model rmax signif ss vs. V1 R2

0.5 19.80 0.001** 0.537 0.448
2/3 11.63 0.004** 0.466 0.366
0.8 7.62 0.021** 0.380 0.261
0.9 5.55 0.032** 0.293 0.158

Exp 4.05 0.327 0.170 0.053
Spratt 6.67 0.880 0.291 0.166

Gompertz 1.08 0.379 0.382 0.263

Table 3: Rate estimates for the data set from Saito el al. [28]

7.3 Nakajima et al. [21]

In this data set, four of the tumors, which were stage I but moderately or poorly differentiated
showed much larger growth rates than the others, so we removed them from our analysis.
Their doubling times were from 17–31 days, see the diamonds in Figure 5. Among the
remaining tumors the maximum time between observations was 0.69 years, with an average
of 0.35 years. The largest initial volume was 31.52 cm3 with an average of 6.80 cm3. The
largest final volume was 102.16 cm3 with an average value of 19.28 cm3. When we consider
the slopes versus V1, the power laws 0.5, 2/3, and 0.8 have significant positive slopes as does
the Gompertz. The minimum slope, here as in the Saito data set, occurs for the exponential.
The slopes are not very small (0.170 and 0.107 respectively) but there are not significantly
different from zero.
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Model rmax signif. ss vs. V1 R2

0.5 40.23 0.0005** 0.616 0.354
2/3 22.03 0.0057** 0.522 0.243
0.8 13.65 0.0463** 0.409 0.134
0.9 9.62 0.196 0.286 0.589

Exp 7.96 0.6061 0.107 0.0096
Spratt 11.84 0.1503 0.312 0.073

Gompertz 2.01 0.0324** 0.428 0.153

Table 4: Rate estimates for the data set of Nakajima et al. [21].

7.4 Laasonen and Troupp [13]

We removed the two points from this data set because the second volume was smaller than
the first. The maximum time between observations 2.66 years with an average of 1.24 years.
Two of the tumors had initial volumes of 7.05 cm3 and 7.55 cm3, while all of the others were
smaller than 3 cm3 with an average size of 0.878 cm3. These two outliers had a large effect
on the slope of the fitted linear relationship between r̂ and V1(see Figure 6) so we removed
them in order to compute the regression line. Among the remaining tumors the largest final
volume was 4.52 cm3, with an average size of 1.71 cm3.

Model rmax signif. ss vs. V1 R2

0.5 1.648 0.577 0.155 0.0198
2/3 1.356 0.997 0.00128 1× 10−10

0.8 1.315 0.565 −0.1622 0.0211
1 1.258 0.091* −0.454 0.0776

Spratt 1.550 0.1647 −0.375 0.117
Gompertz 0.188 0.3794 −0.244 0.0486

Table 5: Rate estimates for the Laasonen and Troupp [13] data.

Here, there is some evidence that the exponential fit has negative slope. The 1/2 power
law fit has positive slope, the 2/3’s power law has a slope close to 0, while the other fits have
negative slopes, suggesting that the 2/3’s power gives the best fit. Figure 7 shows how the
rate estimates compare when the powers are 0.5, 2/3, and 0.8, and the three regression lines.

7.5 Nakamura et al. [22]

Five tumors that showed very large growth over a short amount of time were removed from
this data set. The 0.5 power law rate estimates for these five tumors are indicated with
circles in Figure 8. If these points are included then all regression lines will have a negative
slope. The largest time between observations was 8.75 years with an average of 3.82 years.
The largest initial volume 29.31 cm3, with an average of 9.90 cm3. The largest final volume,
which occurred in the same patient. was 35.71 cm3, with an average of 12.67 cm3.
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Model rmax signif. slope vs. V1 R2

0.5 0.516 0.377 0.1582 0.023
2/3 0.395 0.635 −0.074 0.0067
0.8 0.320 0.116 −0.246 0.0712

Exp 0.388 0.009** −0.263 0.1806
Spratt 0.352 0.041** −0.316 0.1164

Gompertz 0.021 0.151 −0.233 0.0595

Table 6: Rate estimates for the Nakamura et al. [22] data set.

When plotted against V1 the exponential line and Spratt lines have significant negative
slopes. Again the 1/2 power law fit has positive slope, the 2/3’s power law has the slope
close to 0, while the other fits have negative slopes, suggesting that the 2/3’s power gives
the best fit.

We are not the only ones to have investigated trends in the exponential rate estimates
r̂E as a function of the volume. Mehrara and Forsell-Aronson [17] did this for seven data
sets including those of Nakamura, Nakajima, and Saito considered here. They plotted r̂E as
a function of log(V1) to see if the observed rate heterogeneity was due to the fact that the
apropriate model was the Gompertz. Of the three data sets that we both have considered,
only Nakamura plot has a significant correlation between r̂E and log(V1), with a p value of
0.0005 and an R2 = 0.2424.

7.6 Variability of the rate estimates

To give an idea of the variability in the rate estimates we have plotted the log of the rate
estimates minus the average value of the logs in Figure 9. Several researchers have suggested
that the rates should be lognormal. Our rate estimates do not show the symmetry charac-
teristic of the normal, but have a skew consistent with the idea that the way the data was
collected creates a bias against tumor with large growth rate. Unfortunately, the number of
observations is not large enough to test this hypothesis.

8 Conclusions

Here we have developed methods to estimate tumor growth rates for observations of the
volume at two different times, and use trends in the values of the rate estimates versus initial
tumor volume to decide which model is the best fit. The breast cancer and hepatocellular
carcinoma data sets show signs of exponential growth, while our analysis of the data for
the neurological tumors (acoustic neurinomas and incidental meningiomas) suggests a 2/3
power law. Due to the small size of the data sets and the large heterogeneity in tumor
characteristics, these conclusions are far from definitive. In particular, given the small sizes
of tumors in some data sets, it would be hard to detect the presence of growth limitations.

The rates that appear in the models have much different interpretations, so one of our
contributions has been to make the rate estimates comparable by transforming them into
estimates of the average exponential growth rate of tumors in the sample. The exponential
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rate estimates and the rescaled 2/3’s power law rates are given in the next table:

Nakamura 0.083
Lasonen 0.724
Heuser 1.052
Saito 1.990
Nakamura 3.584

Our rate estimates are consistent with the observation that acoustic neurinomas grow very
slowly. It is interesting to note that while Saito and Nakamura each studied hepatocellular
carcinoma, the rate estimates differ by a factor of 2. It is somewhat puzzling that the smaller
rate estimate comes from the study where the initial tumor diameters were all < 3 cm, since
one expects tumor growth to decelerate as size increases. However, this may simply reflect the
fact that two measurements were only available for patients who did not undergo treatment
skews the estimates in favor of smaller growth rates.

A similar remark applies to the breast cancer data which only shows tumors that were
detected on two successive mammograms. In addition to these biases our results are also
effected by small sample size. Our estimated doubling time of 365/1.052 = 343 days is 37%
larger than the 250 days found by Spratt et al. [33] based on multiple mammograms in 448
patients, and almost twice the doubling time of 173.6 days found by Kuroshi et al. [12] based
on two mammograms in 122 patients.

Despite the biases introduced by the way the data was ascertained, we believe that the
results reported here show that the method is useful for quantifying tumor growth rates and
comparing different models. The analysis of larger studies should allow our methods to give
important new insights into the long studied question of the growth patterns of solid tumors
in vivo.

Acknowledgements

This work was begun during an REU in the summer of 2013 associated with an NSF Research
Training Grant at Duke University in mathematical biology. Both authors were partially
supported by DMS 1305997 from the probability program at NSF. They would also like to
thank Natalia Komarova and Marc Ryser who read an earlier draft of this paper and made
a number of helpful suggestions.

15



0
1
2
3
4
5
6
7
8
9

10

‐3 ‐2 ‐1 0 1 2 3

co
rr
ec
tio

n 
fa
ct
or
 f(
V)

Log(volume)

Figure 1: Correction factors f(V ) for the models plotted against log(V ). The Gompertz is
the straight line of diamonds, Spratt are the squares, while power laws 2/3, 0.8 and 0.9 are
in decreasing order the curves marked with triangles.
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Figure 3: Heuser data set: Exponential growth rate estimates plotted versus initial volume.
The tumor indicated by the square was not used to compute the regression line.
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Figure 4: Exponential (squares) and Spratt (diamonds) rate estimates for the Saito data
set, and the corresponding regression lines that have slopes 0.0488 and 0.1337. As to be
expected the Spratt rate estimate are larger, and the discrepancy increase with the initial
size of the tumor.

19



0
2
4
6
8
10
12
14
16
18

0 10 20 30 40 50

ra
te
 e
st
im

at
es

initial volume

Figure 5: Nakajima data set. The diamonds are the four points we discarded. Also shown
are the regression line fits for the entire data (slope 0.1131) and reduced data sets (slope
0.0274). The three diamonds with initial volume > 10 cm3 are responsible for the large
increase in slope.
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Figure 6: Exponential rate estimates for the Laasonen and Troupp [13] data, showing the
large influence of the two points with initial volume > 7 cm3.
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Figure 7: Rate estimates for the power laws 0.5 (circle), 2/3 (diamond), and 0.8 (triangle)
for the Laasonen and Troup data plotted versus initial tumor size V1, as well as the three
least squares lines, which have slopes 0.0855, −6 × 10−6, and −0.0711. Note that in most
cases (but not all) the rate estimate decreases as the power increases.
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Figure 8: Rate estimates for the power laws 0.5 (diamond), 2/3 (square), and 0.8 (triangle)
for the Nakamura data plotted versus initial tumor size V1, as well as the three regression
lines, which which have slopes 0.0028, −0.0010, and −0.0027. The circles are the 0.5 rate
estimates for the five tumors we have excluded.
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Figure 9: Variability in the logarithm of the rate estimates centered by subtracting the mean
of the logarithms. From top to bottom we have the exponential rate estimates for Heuser,
Saito, and Nakajima, followed by the 2/3 power law estimates for Laasonen and Tropp, and
Nakamura.
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