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Day-ahead predictions of solar insolation are useful for forecasting the energy production of photovoltaic (PV) systems attached
to buildings, and accurate forecasts are essential for operational efficiency and trading markets. In this study, a multilayer feed-
forward neural network-based model that predicts the next day’s solar insolation by taking into consideration the weather
conditions of the present day was proposed. (e proposed insolation model was employed to estimate the energy production of a
real PV system located in South Korea. Validation research was performed by comparing themodel’s estimated energy production
with the measured energy production data collected during the PV system operation.(e accuracy indices for the optimal model,
which included the root mean squared error, mean bias error, and mean absolute error, were 1.43 kWh/m2/day, − 0.09 kWh/m2/
day, and 1.15 kWh/m2/day, respectively. (ese values indicate that the proposed model is capable of producing reasonable
insolation predictions; however, additional work is needed to achieve accurate estimates for energy trading.

1. Introduction

Electricity consumption has been rapidly increasing around
the world despite efforts to improve energy conservation. In
2013, in Korea, the electricity consumption in the commercial
and public sectors increased by 10% to 65.8% compared to
values in 2001. Moreover, the electrification of energy con-
sumption has further intensified [1]. Since natural gas and
electricity have emerged as primary energy sources in the
household sector, this share of electricity consumption has
been steadily increasing. (is is because households prefer
clean energy sources to maintain comfort and the convenience
of living. (e Korean government is promoting buildings in
which renewable energy systems are used, to save on primary
energy consumption and to realize energy independence.

Solar energy is known to be a good substitute for fossil
fuels, which currently account for more than 80% of the
primary energy supply [2]. Photovoltaic (PV) systems are the
most suitable replacements for fossil fuels because they do not
produce CO2 emissions and do not pose the same risks as
those associated with other alternative energy supplies such as
nuclear power generation. It may be more desirable to install

PV systems in the city rather than in the rural or forested areas
because of land conservation concerns. Indeed, PV systems
are more likely than other types of renewable energy systems,
to be constructed in urban built environments.

(e Korean government intends to introduce a smart
grid to promote the embracement of renewable energy [3].
As part of these efforts, the government announced a second
basic plan for an intelligent power grid in 2018. Accordingly,
the government has set up policies on smart grid complex
construction, infrastructure, and facility expansion. It was
reported that, in 2019, a distributed energy resource market
would be allowed in Korea. As a result, significant changes
are expected in the electric trading market, which has been
focused on centralized power generation companies. (e
expansion of distributed generation will accelerate direct
energy trading among individuals and groups that can
produce and consume energy simultaneously [3, 4]. Such
peer-to-peer (P2P) energy trading has been demonstrated in
various forms in the United States, United Kingdom,
Netherlands, and Germany [5–7]. P2P energy trading is
beneficial because it reduces the need for expensive and
inefficient energy transportation with substantial losses [8],
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thus improving the reliability of energy supply [9] and al-
leviating transmission and distribution congestion problems
[10]. Forecasting solar insolation in advance is essential in
the management of the PV system’s generated output in a
distributed grid. It is necessary to provide information on
the energy production through the system to the prosumer,
who conducts the small-scale electricity trading as a weather
forecast in advance. Time-based predictions may need to be
provided according to the individual’s characteristics.
However, it is necessary to provide daily production forecast
information to a large number of prosumers. In small-scale
energy trading, the provision of daily energy production
forecast information is more effective than providing de-
tailed hourly energy generation forecast information. Daily
energy production by PV systems can be predicted simply
based on daily irradiation.

Many researchers are presently directing their efforts on
solar insolation forecasting techniques. Soares et al. [11]
examined the intrahour solar insolation predictions based
on hourly weather data for a period of 4 years. (ey esti-
mated the hourly values of the diffuse solar radiation by
using multilayer perceptron neural networks. However,
their model could not reflect the present-day weather
change. Mathiesen and Kleissl [12] compared five fore-
casting models for the intraday solar insolation by using
ground-based weather measurement data, and these efforts
resulted in the production of an accurate database to validate
numerical weather predictions. (e accuracy of each model
in predicting insolation varied in accordance with the
weather conditions. However, it was difficult to consider
multiple models simultaneously. Sun et al. [13] proposed a
random forest algorithm for estimating the daily solar ra-
diation based on meteorological data, solar radiation, and
three air pollution indexes for SO2, NO2, and PM10. (ey
optimized the proposed estimation model depending on the
input variables. In a city with a high degree of air pollution,
this model can be used to estimate the exact amount of solar
radiation; however, the number of input variables increases.
Sharma and Kakkar [14] also proposed an hourly global solar
irradiance model for different forecasting horizons ranging
from a few hours ahead to 48 hours ahead by using machine
learning. (e model with 1 hour ahead predictions was the
most accurate; however, there was not enough time to
provide information to users. Gutierrez-Corea et al. [15]
modeled the spatial-temporal short-term global solar in-
solation by using artificial neural networks. (is model gave
accurate data predictions over time but increased the
complexity of the prediction model with more than 900
input parameters. Huang and Davy [16] proposed a linear
regression model for the intrahour solar irradiance that uses
the hourly clear sky index and geopotential thickness. (e
model predicted hourly solar irradiance only for summer.
(erefore, there were limitations in applying this model to
other seasons. Vakili et al. [17] designed a prediction model
for the total daily solar insolation for Iran by using a
multilayer perceptron artificial neural network. (e limi-
tation of this model was that the solar insolation was esti-
mated based on the weather observation information, rather
than the future value. Qing and Niu [18] presented a novel

solar irradiance prediction method for hourly day-ahead
forecasts by using hourly weather forecast data. (e pro-
posed model contained structured long- and short-term
memory networks, and it was compared with other algo-
rithms. By using weather forecasting data as input variables,
it is possible to reflect the change in solar radiation in ac-
cordance with the weather changes. However, the accuracy
of the solar radiation prediction changes based on the
prediction accuracy of the weather forecast data. Amrouche
and Le Pivert [19] proposed a solar radiation forecasting
model using artificial neural networks (ANNs) and special
modelling. In cases where there were no meteorological data
from the predicted area, the solar radiation was estimated
using meteorological data from the nearby areas. (is model
predicted daily values, which were used to estimate power
generation by PV systems. Long et al. [20] proposed a
prediction model for the daily PV energy production by
meteorological parameters. (e efficiency of the prediction
algorithm was improved by classifying the weather data
based on importance and with reduced input variables used
as input data.

(e prediction accuracy varied in accordance with the
accuracy of the weather forecasts. In addition, there have
been many studies on various solar insolation prediction
models with different prediction horizons and different
prediction methods. (e previous solar forecasting models
made predictions based on the time or day. However, a large
amount of input data was needed for accuracy within the
predicted time scale. (e limitation of the prediction model
is that the training and prediction time increases as the
number of input variables increases. (is study aims to
develop a simple solar insolation prediction model by using
fewer weather data variables, which make it easy to acquire
information. Typically, weather forecast data may be used to
predict the next day’s solar insolation. However, predicting
the next day’s solar insolation using weather forecast data is
characterized by a lot of uncertainty due to the uncertainty
in the weather forecast data.

(e objective of this paper is to propose a simple pre-
diction model for day-ahead solar insolation using weather
observation data. (e predicted solar insolation would be
used for estimating energy production in advance. (e es-
timated energy production would give information for the
determination of optimal operating conditions, such as self-
consumption or feed-in into the grid mode for PV systems
located in a distributed grid. (e day-ahead solar insolation
prediction model forecasts the solar radiation of the next day
based on the weather data of the current day. It is assumed
that the predicted model cannot be applied to systems in-
stalled in a specific condition; however, it can predict in-
formation applicable to a wide range of conditions.
(erefore, the weather difference due to the differences in
the meteorological observation site and the installation lo-
cation of the PV system was ignored. (e input variables use
meteorological data that can be easily obtained from the
meteorological administration. (e prediction model could
provide building users with useful information to plan their
energy use in advance. (is paper is organized as follows. In
Section 2, the data used for training and checking the
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prediction model are described. Section 3 explains the
predictionmodel and the verificationmethod.(emeasured
energy production for a PV system located in South Korea
was compared to the energy production prediction obtained
through the solar insolation prediction model. Section 4
presents the results, and Section 5 presents the conclusions.

2. Meteorological Data

(emeteorological data used in this study were provided by
the Korea Meteorological Administration. Ground obser-
vations were carried out by manual and automatic obser-
vations for the automated synoptic observing system. (e
temperature, humidity, wind direction, wind velocity, air
pressure, precipitation, sunshine, solar radiation, surface
temperature, grass temperature, and ground temperature
were automatically obtained by the use of synoptic weather
observation equipment, which report atmospheric condi-
tions near the ground in real-time. Snowfall, clouds, and
other daily phenomena were observed manually every hour
or every three hours.

(e air temperature, which varied with the measured
height, was measured at a height of about 1.2 to 1.5m above
the ground. (e wind direction was represented by a vector
quantity with a direction and magnitude. However, since the
horizontal component was much larger than the vertical
component, generally only the horizontal component was
observed. Air flow at a height of 10m from the ground was
also observed. Precipitation refers to rain, snow, and hail,
i.e., liquid and solid precipitation. In the case of solid
precipitation, the depth of the precipitation was measured.
Solar insolation was automatically observed by a pyran-
ometer every hour. Data on sunshine hours and sunshine
duration were collected. (ese data were then used to
compute the continued sunshine duration, which is a
measure of the duration of continuous reflection of sunshine
on the ground surface without blockage by clouds or fog.
Clouds were manually observed in terms of their shape,
height, and cover. Other meteorological phenomena such as
the visibility, ground surface, minimum grass surface, and
ground temperatures were observed. (e solar insolation
was determined by the Sun’s altitude and azimuth with
respect to the season and time. However, the solar insolation
reaching the Earth’s surface varied depending on the at-
mospheric weather conditions.

(e weather data for the prediction model were recorded
in Seoul, South Korea, and the station specifications are
given in Table 1. (e dataset collection period lasted for 4
years (2014–2017). Data that had some elements missing
were excluded from the dataset. (e dataset was divided into
training and testing datasets. For the training dataset, data
ranging from 2014 to 2016 were used. For testing, the 2017
data were used. (e total training and testing datasets
consisted of 1084 and 357 days, respectively. (e variables
were selected based on the results of a previous study [21],
which analyzed the correlation between solar insolation and
weather data. Temperature, humidity, precipitation, pre-
cipitation duration, wind speed, sunshine duration, con-
tinued sunshine duration, and cloud cover were selected as

initial input variables that could affect the solar radiation, as
depicted in Table 2. Visibility can especially be influenced by
aerosols in the air. According to Chung [22], there is a low
correlation between the ratio of the horizontal global ra-
diation to the extraterrestrial radiation and particulate
matter in Korea. In this study, the effects of wind direction,
cloud shapes, heights of clouds, visibility, ground temper-
atures, and surface ground temperature were excluded.

In the next step, all the data were normalized to a scale
between zero and one based on equation (1); normalization
of the input reduces estimation errors and makes learning
fast and efficient [23]:

yi �
xi − MIN(x)

MAX(x) − MIN(x)
, (1)

where xi is the observed data at time i, yi is the normalized
data at time i, and MIN(x) and MAX(x) are the minimum
and maximum values during the observation period,
respectively.

3. Model Methods and Evaluation Indices

A forecast model based on the weather data is presented in
this section, along with the model verification procedures.
(e solar insolation presented through the predictive model
is the value of the horizontal plane insolation; therefore, the
insolation on the inclined PV module is calculated. (is
solar insolation of the inclined plane will be used to calculate
the energy output of the PV system and compare it with the
energy output of the PV system beingmonitored. Finally, the
error verification method used in this paper is presented.

3.1. Forecast Method. (is study used a type of artificial
neural network (ANN) architecture known as a multilayer
feed-forward neural network (MLF) for the modelling. (e
multilayer feed-forward neural network is also referred to as
a multilayer perceptron (MLP). (is model is similar to the
persistence model in that the previous day’s data are used as
the input variables. (e persistence model assumes that the
conditions are unchanged between the current time and the
future time [24]. However, because the sun’s position and
weather conditions change from day to day, it cannot be
assumed that data on weather conditions are the same as
those of the previous day. In particular, it is difficult to apply
a persistence model in the case of a 1-day forecast horizon.
For ANN models, the magnitudes of weights and biases are
changed in a time series, which makes them more appro-
priate [25]. Diagne et al. suggested an appropriate model by

Table 1: Station specifications.

Item Specification
Location Seoul, South Korea
Latitude 37.5714°N
Longitude 126.9658°E
Elevation 85.67m
Climate type Humid continental
Observed period 2014–2017

Advances in Civil Engineering 3



forecasting the horizon [26]. (e persistence model is ap-
propriate when the forecasting horizon is within an hour,
but the ANNmodel is suitable when the forecasting horizon
is longer than an hour. Trained with a backpropagation
learning algorithm, MLF is one of the most popular types of
ANN architectures used to forecast solar insolation
[15, 27–30]. (e MLF was implemented in MATLAB. (e
MLF consists of activation functions, bias, and neurons [31].
(e neurons were ordered into input and hidden and output
layers, as shown in Figure 1. (e number of hidden layers
(NHLs) was set to be between 1 and 5.(is was done because
the forecast model was supposed to forecast the output of
nonlinear relationships between input data. Moreover, the
model was complicated. (e range of the number of hidden
neurons was determined by the initial number of hidden
neurons, which was calculated based on equation (2) by
using the number of input neurons [32]. Each layer consists
of the same number of neurons:

NHN � 2NIN + 1, (2)

where NHN is the number of hidden neurons and NIN is the
number of input neurons.

(e Levenberg–Marquardt method for training was used
in this study. (e Levenberg–Marquardt method is the most
representative method for solving nonlinear least squares
problems [33, 34].(e sliding-windowmethod that provides
a higher accuracy was used for controlling the training
dataset [32, 35, 36].

(e initial input variables were obtained by predicting the
solar radiation using the nine input variables presented in the
previous study and then refining the predicted values by
adjusting the number of input variables. (is prediction pre-
vented a fitting problem by using normalized data and drop-
out method. (e training parameters are as shown in Table 3.

3.2. Insolation on an Inclined Plane. (e inclined insolation
was calculated by Lid and Jordan’s equation [37]:

KT �
H

Ho

Ho �
24
π

· Isc 1 + 0.033 cos
360n

365
􏼒 􏼓

· cosϕ cos δ sinωs +
πωs

180
sinϕ sin δ􏼒 􏼓,

(3)

where Isc is the solar constant (1367W/m2), n is the day
number of year, ϕ is the latitude, δ is the solar declination, and
ωs is the sunset hour angle. (e values of δ and ωs can be
approximately expressed by equations (4) and (5), respectively:

δ � 23.45 sin
360(n + 284)

365
􏼢 􏼣, (4)

ωs � arccos(− tan δ tanϕ). (5)

(e daily solar insolation on an inclined plane, Ht, can
be expressed as

Ht � R · H, (6)

where R is defined to be the ratio of the daily mean insolation
on an inclined plane to the mean insolation in a horizontal
plane.

R � 1 −
Hd

H
􏼒 􏼓Rb + Hd

1 + cos(s)

2H
􏼠 􏼡 + ρ

1 − cos(s)

d
􏼠 􏼡,

(7)

where Rb is the ratio of the average beam insolation on the
inclined plane to that on a horizontal surface, s is the tilted
angle, and ρ is the ground reflectance. Rb is a function of the
atmosphere’s transmittance and is calculated by

Rb �
cos(ϕ − s)cos(δ)sin ωs′( 􏼁 + ωs′(π/180)sin(ϕ − s)sin(δ)

cos(ϕ)cos(δ)sin ωs( 􏼁 + ωs(π/180)sin(ϕ)sin(δ)
,

(8)

where ωs′ is the sunset hour angle for the inclined plane and
is estimated by equation (9). Hd is the daily diffuse solar
insolation given by Page [38], as equation (10):

1

2

3

N

SI

Input layer One or more hidden layer Output layer

Figure 1: MLF architecture.

Table 2: (e weather variables at initial time.

Variables Min Max
Lowest temperature (Tlow, °C) − 18.0 28.7
Highest temperature (Thigh, °C) − 10.5 36.6
Precipitation (PR, mm) 0 144.5
Precipitation duration (PD, hr) 0 24
Minimum humidity (RH, %) 7 94
Daily wind speed (DWS, m/s) 0.9 6.4
Sunshine duration (SD, hr) 9.6 14.8
Continued sunshine duration (CSD, hr) 0 13.7
Cloud cover (CC, − ) 0 10

Table 3: Training parameters.

Parameters Value
Maximum number of epochs to train 1000
Performance goal 0.01
Minimum performance gradient 1e − 7
Initial mu 0.001
Maximum mu 1e+ 10
Maximum validation failures 6
Epochs between displays 50
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ωs′ � min ωs, arccons[− tan(ϕ − s)tan(δ)]􏼈 􏼉, (9)

Hd � H 1.00 − 1.13KT( 􏼁. (10)

3.3. Estimation Model and Monitoring the Photovoltaic
System Energy Production. For the evaluation of the ap-
plicability of the proposed solar radiation prediction
model, the PV production obtained by using the estimated
solar insolation was compared to the actual energy pro-
duction. (e PV system was assumed to be of the grid-
connected type for the distributed generation. (e gen-
erated energy was not stored in batteries. Energy pro-
duction by the photovoltaic system was obtained by
applying equations (11) and (12) [39–42]:

EPV � Aa · Ht · ηcon, (11)

ηcon � ηSTC 1 − β Tc − TSTC( 􏼁( 􏼁 · ηinv, (12)

Tc � Ta +
SI

SINOCT
TNOCT − Ta.NOCT( 􏼁, (13)

where EPV is the energy delivered by photovoltaics (kWh),
Aa is the area of the array (m2), Ht is the insolation on the
plane for the photovoltaics array (kWh/m2), ηcon represents
the conversion efficiency (%), ηSTC is themodule efficiency at
STC (%), β is the temperature coefficient at the maximal
power of the module (%/°C), Tc is the PV cell temperature
(°C), TSTC is the standard test condition temperature (25°C),
ηinv is the inverter efficiency (%), Ta is the ambient tem-
perature (°C), SI is the incident solar irradiance on the PV
plane PV (W/m2), SINOCT is the incident solar irradiance of
800W/m2, TNOCT is the nominal operating cell temperature
(°C), and Ta.NOCT is the ambient temperature for the nominal
operating cell temperature (20°C).

(e PV system was installed in Seoul, South Korea. (e
PV system was connected to the electrical system of a
building with a grid connected type inverter. Values such
as the current, voltage, and produced power measured by
the inverter were sent to the monitoring system by the
sensor box. And the produced energy was monitored on a
personal computer (PC), as displayed in Figure 2. (e
capacity of the PV system was 1750W, and the efficiencies
of the modules and the inverter at standard test conditions
were 15.34% and 96%, respectively. (e generated PV
outputs were monitored from August 2018 to July 2019.
(e actual generated PV system specifications are listed in
Table 4.

3.4. ErrorMetrics. In this study, the mean bias error (MBE),
mean absolute error (MAE), root mean square error
(RMSE), and NASH-Sutcliffe efficiency (NSE) were
employed to evaluate the performance of the model. (e
MBE, MAE, RMSE, and NSE were calculated using equa-
tions (14)–(17), respectively. (e verification values of each
MBE, MAE, and RMSE were close to zero, which means that
the observed values were similar to the predicted values. (e

MBE was used to measure the typical average model de-
viation. (e MBE can provide useful information including
whether the predictive model overestimated or under-
estimated the real values. However, the MBE should be
interpreted carefully because positive and negative errors
will cancel out. (erefore, the MAE and MBE must be
evaluated together. Willmott and Matsuura [43] pointed out
that the MAE is a more natural and unambiguous measure
of the average error magnitude. (e RMSE is often used to
determine the success of a prediction model, and it is
suitable for determining model precision [44]. If the per-
formance of the prediction model is improved based on the
RMSE when evaluating the accuracy of the prediction
model, where the RMSE is based on the standard deviation,
learning can be used to reduce large errors. (eMAE, on the
contrary, is sensitive to small errors. Hence, in this study, the
RMSE was used during the evaluation of the prediction
model to reduce the maximum error of the predicted solar
insolation. NSE, on the contrary, is a normalized measure
that compares the mean square error estimated by a par-
ticular model simulation to the variance of the observed
value during the period under investigation [45]. (e range
of NSE is between 1 and − ∞. An NSE value of 1 represents a
complete match between the observations and the forecasts,
while a smaller NSE value implies that there is less con-
sistency between the measured value and the model value.
Additionally, the MAE, MBE, and NSE were evaluated
together:

Utility grid

Sensor box

Grid connected 
type inverter

PC monitoring 

PV module

~
Building

load

I V
Solar 
insolation

Module
temperature

Air 
temperature

~

Power

Figure 2: Schematic of the PV and monitoring systems.

Table 4: PV system specifications.

Parameters Specification
Site location Seoul, South Korea
Site longitude 37°30′12.8″N
Site latitude 126°57′25.3″E
Type of installation Rooftop installation (elevated)
Orientation and tilt South, 35°
Module type Multicrystalline silicon
Module size 1640× 992mm
Number of modules 7
Maximum power 250W
Type of PV system Grid connected
Efficiency of module at STC 15.43%
Efficiency of inverter (EU) 96%
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MBE �
1
n

􏽘

n

i�1
( 􏽢H − H), (14)

MAE �
1
n

􏽘

n

i�1
| 􏽢H − H|, (15)

RMSE �

������������

1
n

􏽘

n

i�1
( 􏽢H − H)

2

􏽶
􏽴

, (16)

NSE � 1 −
Σ(H − 􏽢H)2

􏽐(H − H)2
, (17)

where 􏽢H, H, and H are the predicted, actual, and average
actual solar insolation values, respectively.

(e error ranges of the daily prediction models pre-
sented in the previous studies were RMSE 2.304–3.624 kWh/
m2/day, MBE 0.120–2.400 kWh/m2/day, and MAE
1.488–2.592 kWh/m2/day [12, 46, 47].

4. Results and Discussion

4.1. Prediction Performance of the Solar Insolation Model.
(e solar insolation on any day can be predicted by the
weather data of the previous day. (e prediction model used
in this research was an MLF. (e initial number of hidden
neurons for the initial 9 inputs in the hidden layer was
determined to be 19, based on equation (2). In order to
increase the accuracy of the prediction model, the number of
hidden neurons was extended from 10 to 20 with reference
to the initial number of neurons, considering the reduction
of inputs. (e initial model was predicted using the fol-
lowing initial input valuables: highest and lowest temper-
ature, minimum humidity, precipitation, precipitation
duration, wind speed, sunshine duration, continued sun-
shine duration, and cloud cover. In the second model,
precipitation and precipitation duration, which were poor
predictors, were removed. (en, the less correlated cloud
cover was excluded from the input variables. Cloud cover is
the weather factor that has the most significant influence on
the solar insolation in the present or near future; however, it
has a low effect on the next day’s solar insolation.

(e accuracy of the predicted model with various NHN
and NHL is shown in Table 5. (e range of predicted results
varied according to the range of input variables. A higher
number of input variables does not increase the accuracy of
predictions. In particular, when the input variables were
reduced from 8 to 7, the prediction accuracy decreased.
However, the prediction accuracy was at its highest when the
input variables were further reduced to six highly correlated
input variables. (is can be attributed to the correlation
between the predicted value and the input value and the
relationship between the input variables.

(e optimal prediction model was that with the smallest
RMSE among the 55 prediction result values with 6 input
variables, namely, highest and lowest temperature, mini-
mum humidity, wind speed, sunshine duration, and

continued sunshine duration. (e calculated RMSE values
ranged from a minimum of 1.421 kWh/m2/day to a maxi-
mum of 1.720 kWh/m2/day depending on the number of
hidden neurons and hidden layers. (e optimal model from
the RMSE consisted of 3 hidden layers and 11 hidden
neurons. (e RMSE, MBE, and MAE of the optimal pre-
diction model were 1.421 kWh/m2/day, − 0.227 kWh/m2/
day, and 1.133 kWh/m2/day, respectively. For this model, the
average of the errors and the predicted values with large
errors were smaller than those of the other models
[11, 20, 46]. (e RMSE limit presented in this model was
lower than the RMSE mentioned in Section 3.4, which is
better than the existing model. According to the MBE, the
predicted values tended to be underestimated. In Table 6, the
optimal prediction model of 3 hidden layers and 11 hidden
neurons was compared to the regression model derived in
the previous study [21]. Similar results were obtained from
the RMSE, MBE, and MAE of the predicted values derived
by these two models; however, the NSE values showed better
predictive models by the optimal MLF model. (is means
that the MLF with fewer input variables reflects the daily
fluctuation better than the regression model.

Figure 3 presents the daily solar insolation over a year,
which was predicted and observed by the meteorological
administration. (e number of days when the predicted
value was lesser than the observed value was 198 in total, and
the number of days when the predicted value was higher
than the observed value was 159 in total. Generally, the
predicted value is lesser than the observed value in spring
when the solar insolation increases. (is is because the
weather data do not reflect the solar insolation increase due
to the movement of the Sun and the Earth. (e sunshine
duration was used to reflect the change in the orbits of the
Sun and the Earth. (e average solar insolation change
pattern was reflected. According to Sun et al [48], a non-
linear approach to a prediction model should be considered
due to the nonlinear variation in meteorological variables.
However, the daily fluctuation was not reflected fully be-
cause a nonlinear approach was not utilized in this model.

With regard to the monthly accuracy of the optimal
prediction model (see Table 7), the error from April to
September was larger than that of the other months. (ese
months’ RMSE andMAE values were greater than the yearly
RMSE and MAE. As shown in Table 7, the standard devi-
ation of the measured solar insolation was greater than that
of the other months. In particular, from April to September,
the solar insolation was abundant, but it varied greatly in
response to sudden changes in the weather, such as heavy
rainfall. Table 8 and Figure 4 show the range of measured
solar insolation in each month. (e difference in the
maximum and minimum measured insolation for a month
was at least 5.7 kWh/m2/day during the spring and summer
seasons. (ere were 29 days out of 357 days when the
difference between the predicted and measured values was
over 2.5 kWh/m2/day. (ese days occurred between March
and October but mostly between May and September. As a
result of analyzing the changes in meteorological factors on
the day before and days with a large error, the change in
continued sunshine duration and average cloud cover was
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found to be largely as a result of rainfall, humidity variations,
and changes in suspended matter concentrations. In 24 out
of the 29 days, the previous day’s rain came to a halt or it
rained on the estimation day.

(e RMSE and MAE patterns exhibited similar ten-
dencies to the patterns of the monthly solar insolation
according to the Sun’s trajectory. (e RMSE and MAE
values were smallest in December during the winter solstice.
(e RMSE and MAE values then increased with the increase
in solar radiation until June.(e solar insolation, RMSE, and
MAE values decreased after June. (e predicted values for
the period between October and December, where the MBE
values showed positive values, were overestimated. On the
contrary, the predicted values for January to March were
underestimated compared to the measured values. (e
predicted values between October and December were
overestimated because of the learning effect of the summer
data. Conversely, the predicted values between January and
March did not reflect the increase in solar insolation because
of the influence of the winter data.

4.2. Application of the Optimal Prediction Model to
PV Output Estimations. In order to compare the PV
production forecast, the energy production of the 1.75 kW
PV system was monitored for 364 days from August 2018 to
July 2019. (e weather conditions during the monitoring
period are listed in Table 9. Conditions were generally clear;
however, there were some rainy days due to the effects of
typhoons.(ere was a precipitation period of 97 days in total
during the entire monitoring period. During this period, the
average daily cloud cover fluctuated greatly. As a result, the
variation in solar insolation was larger than that for the other
periods. (e power generation range for the PV system was
0.1–10.8 kWh/day depending on the weather conditions.

(e predicted solar insolation was estimated by using the
optimal solar insolation prediction model. (e predicted
solar insolation was then used to calculate the PV

production by using equation (11). To check the validity of
the approach, the energy production was calculated from the
measured insolation and compared with the actual energy
produced by the PV system. Table 10 presents the accuracy
results for the energy production estimations. (e predicted
power generation calculated from the measured insolation
was similar to the actual power generation, as shown in
Figure 5. (ere was a difference between the power gen-
eration calculated by the measured insolation and the actual
production values. Detailed meteorological observations
cannot be performed at all PV installation sites. As a result, it
is determined that an error occurred due to the positional
difference. It is also possible that a difference occurred due to
the limitation of the numerical calculations. However, the
RMSE, MAE, and MBE of the energy generation calculated
from the measured insolation and the actual production
were 0.85 kWh/day, 0.38 kWh/day, and 0.66 kWh/day, re-
spectively, indicating that the calculation procedure could be
used for estimating the energy production of a PV system.
(e energy production was calculated using the estimated
solar insolation using the proposed procedure. (e power
generation obtained by the predicted insolation fluctuated
less than the actual energy production. Some errors were due
to the insufficient predictions of the daily weather condition
changes. Although the forecast model reflected the daily
variation, it did not predict the actual magnitude of the
change. In the spring and summer observation, there was a
wide variation in the day to day solar radiation. (is was
because, unlike previous studies in which the prediction was
by hours, the forecast horizon was long and did not reflect all
of the variability during that forecast periods. (e prediction
model proposed in this study predicts the next day’s solar
insolation by using the weather conditions of the previous
day. However, the weather conditions of the monitoring
period changed extensively each day, which made it difficult
to predict the insolation. (e energy production error was
especially significant on days when the solar radiation
suddenly changed due to rain or snow. In order to provide

Table 5: Accuracies of predicted value ranges according to the input variables, NHN, and NHL.

Input variables Number of hidden layers∗ RMSE
(kWh/m2/day)

MBE
(kWh/m2/day)

MAE
(kWh/m2/day) NSE

Thigh, Tlow, RH, DWS, PR,
PD, SD, CSD, CC

1 1.764–2.000 − 0.891 to − 0.787 1.368–1.529 − 0.503 to − 0.169
2 1.763–2.023 − 0.811 to − 0.649 1.355–1.552 − 0.920 to − 0.210
3 1.760–2.015 − 0.840 to − 0.568 1.373–1.506 − 1.092 to − 0.164
4 1.799–2.015 − 0.903 to − 0.711 1.382–1.559 − 0.937 to − 0.216
5 1.793–2.102 − 0.853 to − 0.589 1.366–1.631 − 1.068 to − 0.207

Thigh, Tlow, RH, DWS,
SD, CSD, CC

1 1.975–2.227 − 1.301 to − 0.969 1.515–1.692 − 0.292 to − 0.016
2 1.975–2.138 − 1.076 to − 0.714 1.550–1.635 − 0.162 to − 0.016
3 1.792–2.318 − 1.221 to − 0.567 1.432–1.773 − 0.391 to 0.164
4 1.889–2.187 − 1.005 to − 0.547 1.436–1.632 − 0.245 to 0.071
5 1.807–2.338 − 1.227 to − 0.419 1.444–1.773 − 0.423 to 0.150

Thigh, Tlow, RH, DWS, SD, CSD

1 1.425–1.506 − 0.272 to − 0.129 1.157–1.204 0.411–0.473
2 1.423–1.597 − 0.400 to − 0.090 1.131–1.297 0.337–0.474
3 1.421–1.660 − 0.376 to − 0.114 1.131–1.342 0.284–0.482
4 1.444–1.692 − 0.464 to − 0.121 1.148–1.372 0.256–0.458
5 1.450–1.720 − 0.291 to − 0.118 1.153–1.405 − 0.338 to 0.454

∗(e NHN for each layer was conducted by changing both to 10–20.a
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Table 6: Comparison of the regression and optimal models of MLF.

Model RMSE (kWh/m2/day) MBE (kWh/m2/day) MAE (kWh/m2/day) NSE
Regression model 1.428 − 0.074 1.179 − 0.771
Optimal model of MLF 1.421 − 0.227 1.133 0.482
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Figure 3: Comparison between the predicted and observed values of daily solar insolation: (a) over one year; (b) spring; (c) summer; (d) fall;
(e) winter.
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accurate forecasts of the energy production according to
weather condition changes as basic information for energy
trading, it will be necessary to compensate for dramatic
fluctuations in weather conditions. (e error magnitude was
smaller in the fall and winter periods with less precipitation,
but these seasons were predicted to be less than the actual
energy production. In regions with distinct characteristics of
seasons, it is necessary to present the solar insolation pre-
diction model by season.

P2P energy trading should also take into account the
energy price and the energy consumption of buildings

according to weather conditions and operating schedules. In
general, the summer and winter energy consumption in
buildings is related to the external weather conditions. On
days where energy consumption is expected to be high in
buildings, the energy produced by PV systems will be
consumed preferentially in buildings, even if less or more
energy is produced through PV systems. On the contrary, if
the prosumer is planning to sell the produced energy to the
grid because the projected energy consumption is low in the
building, the energy trade profits may be less than expected if
the system actually produces less power than expected. In
order to propose the optimal operations for P2P energy
trading, it is necessary to predict the energy consumption of
the building, the price of energy, and the amount of energy

Table 7: Accuracies of the optimal predicted values as compared to the measured values.

Month Number of valid days RMSE (kWh/m2/day) MBE (kWh/m2/day) MAE (kWh/m2/day)
January 31 0.717 − 0.376 0.580
February 28 1.133 − 0.246 1.003
March 31 1.112 − 0.356 0.917
April 28 1.742 − 0.595 1.581
May 31 1.753 − 0.797 1.536
June 30 2.034 − 0.901 1.744
July 31 1.760 0.029 1.485
August 31 1.753 − 0.439 1.491
September 29 1.650 − 0.432 1.455
October 30 0.925 0.559 0.643
November 26 0.668 0.609 0.481
December 31 0.767 0.521 0.595

Table 8: Range of measured solar insolation (unit: kWh/m2/day).

Month Maximum value Minimum value Mean value Difference between maximum and minimum values Standard deviation
January 3.34 0.54 2.37 2.80 0.70
February 4.42 0.61 3.04 3.80 1.20
March 5.05 1.35 4.07 3.70 0.97
April 7.10 0.91 4.94 6.19 1.87
May 7.70 1.55 5.77 6.15 1.65
June 7.93 0.96 5.72 6.97 1.81
July 6.29 0.56 3.42 5.73 1.76
August 6.79 0.83 3.73 5.96 1.74
September 6.00 0.01 3.95 6.00 1.72
October 3.11 0.62 2.14 2.49 0.70
November 2.31 0.34 1.59 1.96 0.60
December 1.95 0.19 1.36 1.75 0.58
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Figure 4: Range of monthly solar insolation bymeasured data from
the meteorological administration.

Table 9: Weather conditions during the monitoring period.

Weather elements Value

Monitoring period 2 August 2018 to 31 July 2019 (364
days)

(e day’s highest
temperature − 6.6–39.6°C

Minimum humidity 10–91%
Daily wind speed 0.8–3.8m/s
Number of rainy days 97 days
Sunshine duration 9.6–14.8 hours
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Table 10: Accuracies of the energy production estimations.

RMSE (kWh/day) MBE (kWh/day) MAE (kWh/day)
Energy production by measured insolation 0.85 0.38 0.66
Energy production by predicted insolation
Year 2.70 − 0.36 2.28
Spring (Mar, Apr, and May) 3.25 0.05 2.60
Summer (Jun, Jul, and Aug) 2.57 0.42 2.17
Fall (Sep, Oct, and Nov) 2.43 − 0.08 2.14
Winter (Dec, Jan, and Feb) 2.45 − 1.13 2.20
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Figure 5: Continued.
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to be produced by PV systems together to suggest the op-
timal use method.

5. Conclusions

(e recent energy-saving building policies enacted in South
Korea are expected to lead to the realization of distributed
energy generation in a smart grid. P2P trading of the energy
produced in buildings will soon take place. Predicting energy
production is essential for P2P energy trading planning, and
the energy produced through PV systems will be mainly
traded. In this study, the potential applicability of the energy
production prediction of PV systems was investigated by
using the predicted solar insolation derived from a simple
model to provide information to prosumers engaging in
small-scale electricity trading. (e predictive model pro-
posed by the existing researchers attempted to accurately
predict the hourly or daily radiation by using a large amount
of information. However, in this study, the amount of solar
radiation the next day was predicted by using a small
amount of weather information.(e results are summarized
as follows:

(1) (e prediction model for solar insolation was built
by using an MLF, and the proposed model uses the
daily weather conditions. (e predicted solar inso-
lation was based on the estimated weather conditions
on the day before the prediction. To find the optimal
architecture, the number of input variables, the
number of hidden neurons, and the number of
hidden layers were changed.

(2) (e input variables of the optimal model included
the highest and lowest temperature, minimum hu-
midity, wind speed, sunshine duration, and con-
tinued sunshine duration. (e optimal model
consisted of 3 hidden layers and 11 hidden neurons.

(3) (e energy output of the PV system was calculated
from the solar insolation estimated by the optimal
model. (e calculated energy output was compared

to the actual PV system’s output. (e accuracy in-
dexes for the PV system’s energy output using the
optimal model, which included the root mean
squared error, mean bias error, and mean absolute
error, were 2.70 kWh/m2/day, − 0.36 kWh/m2/day,
and 2.28 kWh/m2/day, respectively.

(e error of the predicted values for solar insolation
varied from season to season. For instance, in the summer
when the difference between the maximum and minimum
insolation was large, results did not fully reflect insolation
changes in response to weather changes. (e predicted values
tended to represent the median value. Although this provides
stable values, data were less predictable in the summer when
energy production was high. On the contrary, in winter, the
accuracy of the forecasted insolation was high for high solar
insolation days. However, the predictions were higher than
the actual solar insolation for the low solar insolation days.
(e proposed model did not reflect sudden weather changes
on any day because it used the daily weather conditions of the
day before the forecast. To further improve the prediction
model, it is necessary to execute the prediction model in the
morning or on an hourly basis rather than the day before the
forecast and to further optimize the prediction model in
accordance with the variations in seasonal characteristics.

(e prediction of the PV system energy production
through solar insolation predictions showed a pattern similar
to the solar insolation prediction results. (e energy pro-
duction estimation by the predicted insolation tended to yield
underestimates compared to the real produced energy. (e
monitoring period was characterized by severe weather
fluctuations. To accommodate such weather fluctuations in
the future, it may be necessary to compensate for climate
change. (e accuracy of the prediction model presented in
this study is much lower on sunny days or cloudy days with
precipitation.(ere was a limit to predicting the exact amount
of solar radiation, including various weather variables, in the
relationship between the weather conditions of the previous
day and the weather conditions of the next day. (ere was no
uncertainty about this change in weather. In this research, the
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Figure 5: Comparison of the predicted and measured energy production insolations: (a) over one year; (b) spring; (c) summer; (d) fall; (e)
winter.
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solar insolation of the horizontal plane was predicted, while
that of the inclined insolation was calculated by the equations
and added to the solar power generation equation. In this
process, there was a difference between the actual value and
the predicted value obtained using the equation. In the future,
it may be necessary to distinguish the predictionmodel results
according to weather conditions or to increase the accuracy by
shortening the prediction horizon.

If P2P energy trading becomes active in the future, it will
be necessary to predict the energy production based on the
weather conditions of the forecast day. (erefore, an ac-
curate insolation prediction model will be needed to predict
the energy production of the PV systems involved in P2P
energy trading. (e model described here represents a good
potential model for such purposes, and future optimization
work will be forthcoming.
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[5] E. Mengelkamp, J. Gärttner, K. Rock, S. Kessler, L. Orsini, and
C. Weinhardt, “Designing microgrid energy markets,” Ap-
plied Energy, vol. 210, pp. 870–880, 2018.

[6] C. Park and T. Yong, “Comparative review and discussion on
P2P electricity trading,” Energy Procedia, vol. 128, no. 3–9,
2017.

[7] C. Zhang, J. Wu, C. Long, and M. Cheng, “Review of existing
peer-to-peer energy trading projects,” Energy Procedia,
vol. 105, pp. 2563–2568, 2017.

[8] J. Jimeno, J. Anduaga, J. Oyarzabal, and A. G. de Muro,
“Architecture of a microgrid energy management system,”
European Transactions on Electrical Power, vol. 21, no. 2,
pp. 1142–1158, 2011.

[9] K. Alanne and A. Saari, “Distributed energy generation and
sustainable development,” Renewable and Sustainable Energy
Reviews, vol. 10, no. 6, pp. 539–558, 2006.

[10] J. (omsen, N. S. Hussein, C. Senkpiel, N. Hartmann, and
T. Schlegl, “An optimized energy system planning and op-
eration on distribution grid level—the decentralized market
agent as a novel approach,” Sustainable Energy, Grids and
Networks, vol. 12, pp. 40–56, 2017.

[11] J. Soares, A. P. Oliveira, M. Z. Božnar, P. Mlakar,
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