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Abstract9

Large spatial time-series data with complex structures collected at irregularly spaced sam-
pling locations are prevalent in a wide range of applications. However, econometric and
statistical methodology for nonlinear modeling and analysis of such data remains rare. A
semiparametric nonlinear regression is thus proposed for modelling nonlinear relationship be-
tween response and covariates, which is location-based and considers both temporal-lag and
spatial-neighbouring effects, allowing data-generating process nonstationary over space (but
turned into stationary series along time) while the sampling spatial grids can be irregular.
A semiparametric method for estimation is also developed that is computationally feasible
and thus enables application in practice. Asymptotic properties of the proposed estimators
are established while numerical simulations are carried for comparisons between estimates
before and after spatial smoothing. Empirical application to investigation of housing prices
in relation to interest rates in the United States is demonstrated, with a nonlinear threshold
structure identified.
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1. Introduction12

Large amounts of spatial time-series data with complex structures collected at irregularly13

spaced sampling locations are prevalent in a wide range of disciplines such as economics, so-14

ciology, environmental sciences. For example, it is of economic interest to study the housing15

price in relation to other economic index, say interest rate, based on the available quarterly,16

state-level data collected in the United States (Figure 4). While there is a growing body of17

literature on statistical tools for analyzing spatial time-series data, most methods assume lin-18

earity and stationarity on the data-generating process (see, e.g., Cressie and Wikle (2011)),19

which may be violated in practice. This paper therefore aims to develop more effective e-20

conometric and statistical analytical techniques for modelling nonlinear relationship between21
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response and covariates, needed in analysis of spatial time series or spatio-temporal data in22

applications.23

Study of nonlinear spatio-temporal modeling is still rather rare (Cressie and Wikle (2011),24

pp. 437). In contrast, nonlinear analysis of time series data have been well studied in25

the literature (see, e.g., Tong (1990), Fan and Yao (2003), Gao (2007)). Exceptions for26

nonlinear spatio-temporal modelling may be found in Wikle and Hooten (2010) and Wikle27

and Holan (2011) who developed polynomial nonlinear spatio-temporal integro-difference28

equation models, and in Lu et al. (2009) who proposed semiparametric adaptively varying29

coefficient spatio-temporal models. Note that the models in Wikle and Hooten (2010) and30

Wikle and Holan (2011) are parametric which are reasonable when prior information, such31

as the laws in geophysics, is readily available for model specification. However, in many32

applications, in particular in socio-economic studies, prior knowledge is often lacking and33

parametric relationships among variables may suffer from model mis-specification. We are34

therefore, in this paper, applying semiparametric approaches that are appealing and help to35

uncover complex, often nonlinear, relationships (see, e.g., Li and Racine (2007), Terasvirta36

et al. (2010)).37

Efforts to explore nonlinearity by nonparametric and semiparametric approaches for pure-38

ly spatial data, particularly lattice data (i.e., with regular sampling grids), under stationarity39

have been well attempted in the last decade. For example, curse of dimensionality with s-40

patial interactions when applying nonparametric approaches have been well addressed and41

various semiparametric approaches proposed under spatial stationarity; see, e.g., Lu and42

Chen (2002), Gao et al. (2006), Lu et al. (2007), Hallin et al. (2009), Robinson (2011), to43

list a few. For spatial data on irregular sampling grids, even under assumption of station-44

arity over space, there are still fewer results with nonparametric approaches; see, e.g., Sun45

et al. (2014) and Lu and Tjøstheim (2014) for some recent progress. However, in practice,46

spatial data is usually non-stationary, which may require some kind of transformations prior47

to application of these methods developed.48

Nonparametric analysis of spatio-temporal data is still at its early stage. There are quite49

many challenges that we need to overcome. See Rao (2008) and Lu et al. (2009) for some50

recent discussions. Although there are various methods, e.g., differencing operations, to51

turn non-stationary time series into stationary one with unilateral time, it becomes more52

difficult for spatial data owing to the multi-lateral nature of space. To get across the dif-53

ficulty, we will follow Rao (2008) and Lu et al. (2009) and assume that spatial time series54

data is non-stationary over space but stationary along time in the sequel. By this, we (Lu55

et al. (2009)) recently extended Fan et al. (2003) and proposed adaptively varying-coefficient56

spatio-temporal models which are location-dependent. These models can accommodate non-57

linearity with temporal-lag and spatial-neighbouring effects (noting that Rao (2008) did not58

consider the spatial-neighbouring impacts). However, in Lu et al. (2009), a regular grid of59

spatial sampling locations is actually required for specifying appropriate neighboring vari-60

ables in the models and it is also a challenge to investigate nonlinear effects of exogenous61

covariates due to computational complexity with these models. For example, we are facing62
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the difficulty of irregular sampling grids with spatio-temporal modelling for the US housing63

price data set in Section 5 below.64

The purpose of this paper is therefore to propose a family of semiparametric nonlinear65

regression models, with the ideas in Lu et al. (2009) and Gao et al. (2006) extended, for66

analysis of nonlinear relationship between response and covariates of spatial time series67

data. The features of these models include not only the concerned nonlinear impacts of68

covariates on response but also that they are location-dependent with both temporal-lag69

and spatial-neighbouring effects taken account of, therefore allowing data-generating process70

to be nonstationary over space (but stationary along time) while the sampling spatial grids71

can be irregular. It is worth noting that practical econometric and statistical methods for72

analysis of such complex spatial time-series data remain elusive, as irregular sampling grids73

and non-stationarity in space generally lead to the challenging large curse of dimensionality74

due to spatio-temporal interactions. For instance, possibly nonlinear effect of interest rate75

on the housing prices at the state level in the United States will be considered in Section 5,76

where among 49 states (excluding Alaska and Hawaii, but counting District of Columbia as77

a state), a convenient way to specify the neighbouring variables is by seeing all other states78

as the neighborhood of a state, and due to non-stationarity of the response of house price79

returns over 49 states, the dimension of nonlinear regression of the response at a state on its 580

temporal lags at 49 states plus one covariate of interest rate increment is as high as (1+49×81

5) = 246. See Section 5, where by the methodology in this paper, we will be able to analyse82

the data by combining a popular idea of spatial weight matrix in econometrics (see, e.g.,83

Anselin (1988)). We will develop a computationally feasible method of two-step procedure for84

estimation and thus enable our methodology to be readily applicable in practice. Asymptotic85

properties of our proposed estimates are established and numerical comparisons are made86

theoretically and empirically between estimates before and after spatial smoothing in the87

two steps.88

The remainder of the paper is organized as follows. In Section 2, we present the semi-89

parametric spatio-temporal autoregressive partially nonlinear regression model and develop90

a two-step procedure for estimation. We provide the asymptotic properties of the estima-91

tors in Section 3 and study the finite-sample properties via a simulation study in Section 4.92

In Section 5, our methodology is demonstrated to investigate housing price in relation to93

interest rate in the United States. We show that more insight into the effect of interest94

rate on housing price in different states and time periods can be gained from our method,95

with a threshold structure found to be helpful for prediction. Conclusions and discussion96

are given in Section 6. The technical details including proofs are relegated to web-based97

supplementary materials.98

2. Methodology99

2.1. Model100

Let Yt(s) and Xt(s) denote two spatio-temporal processes at discrete time points t =101

1, . . . , T and continuous locations s in a spatial domain S ⊂ R2. The relationship of between102
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Y and X is of interest, with Y denoting the response variable and X the covariate vector103

of dimension d, respectively. Assume that both processes are observed at T time points104

t = 1, . . . , T and at N spatial sampling locations sj = (uj, vj)
′ ∈ S for j = 1, . . . , N on105

a possibly irregular grid. That is, the data comprise {(Yt(sj), Xt(sj)): t = 1, . . . , T and106

j = 1, . . . , N}.107

As in the housing price example in Section 5, note that for a given state, not taking108

into account the effects of the housing prices from neighboring states like the model in109

Rao (2008) could result in biased estimates of the relationship between interest rates and110

housing price. However, the irregular grid of states makes it difficult to specify a small, same111

number of neighboring variables over all states as in Lu et al. (2009). By extending Rao112

(2008); Gao et al. (2006), we therefore propose a class of location-dependent spatio-temporal113

autoregressive partially (non)linear regression (STAR-PLR) models in the form of114

Yt(sj) = g(Xt(sj), sj) +

p∑
i=1

λi(sj)Y
sl
t−i(sj) +

q∑
l=1

αl(sj)Yt−l(sj) + εt(sj). (1)

Here g(Xt(sj), sj) is a fixed, nonparametric function that we are concerned with, which varies115

by location and characterizes the relationship between the response and exogenous covariates116

that are of interest in applications. To account for spatial neighboring effects, a spatially117

lagged response variable, Y sl
t (sj) =

∑N
k=1wjkYt(sk), is defined, where wjk is a spatial weight118

for 1 ≤ j, k ≤ N such that wjj = 0 and the spatial weight matrix W = [wjk]
N
j,k=1 is assumed119

to be specified a priori, the idea of which is popular in econometrics (see, e.g., Chapter 3 of120

Anselin (1988)). The choice of spatial weights will be discussed in the context of the data121

example in Section 5. To further account for temporal effects, two temporally lagged response122

variables, Y sl
t−i(sj) involving neighboring locations of site sj and Yt−l(sj) at location sj, are123

included in the model, with temporal lags i = 1, . . . , p up to the pth lag and l = 1, . . . , q up124

to the qth lag, respectively. Both Y sl
t−i(sj) and Yt−l(sj) are in linear relation to Yt(sj) with125

spatially-varying autoregressive coefficients λi(sj) and αl(sj), respectively. The random error126

(or, innovation) εt(sj) is assumed to be independently and identically distributed (iid) over127

time with mean 0 and spatially-varying variance σ2(sj). The processes {Xt(sj)}, {Y sl
t (sj)},128

and {Yt(sj)} are assumed to be stationary over time. Further, Xt(sj), Y
sl
t−i(sj), and Yt−l(sj)129

are independent of the innovation process εt(sj) for any t and j with i > 0 and l > 0.130

Since the form of the function g(Xt(sj), sj) is left unspecified, the model is more flexible131

than the traditional spatio-temporal linear regression (see, e.g., Section 6.8, Cressie (1993)).132

While temporal stationarity is assumed, the model allows for nonstationarity over space,133

because the function g(·, sj) and the autoregressive coefficients λi(sj) and αl(sj) vary by134

location (Rao, 2008; Lu et al., 2009). Further, the innovation has a variance that varies by135

location and the distribution of innovation, unlike in the traditional spatio-temporal linear136

regression model, does not need to be Gaussian. In essence, the STAR-PLR model (1) is137

semiparametric and partially nonlinear, as the form of g(Xt(sj), sj) is left unspecified and138

the innovation process is distribution-free. For ease of presentation, we consider Xt(sj) ∈ R1
139

with d = 1 below. The method and theory to be developed, however, apply to a general d140
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dimension with a minor modification though d should not be too big in application.141

2.2. Estimation142

Next, we develop a two-step procedure for estimating the unknown function g and the143

autoregressive coefficients λi’s and αl’s in the STAR-PLR model (1). As we will demonstrate,144

the computation in this two-step procedure is quite fast, making it computationally feasible145

for handling spatial time-series data that are becoming increasingly bigger and more complex.146

Let Zt(sj) = (Y sl
t−1(sj), . . . , Y

sl
t−p(sj), Yt−1(sj), . . . , Yt−q(sj))

′ denote the vector of spatio-147

temporally lagged variables and let β(sj) = (λ1(sj), . . . , λp(sj), α1(sj), . . . , αq(sj))
′ denote148

the corresponding vector of autoregressive coefficients. Then, the STAR-PLR model given149

in (1) can be rewritten as150

Yt(sj) = g(Xt(sj), sj) + Zt(sj)
′β(sj) + εt(sj), (2)

where t = r + 1, . . . , T , with r = max{p, q}, and j = 1, . . . , N .151

From (2), the unknown function g(Xt(sj), sj) is given by g(Xt(sj), sj) = Yt(sj)−Zt(sj)′β(sj)−152

εt(sj). Taking expectation conditional on the covariate leads to153

g(Xt(sj), sj) = E[Yt(sj)|Xt(sj)]− E[Zt(sj)|Xt(sj)]
′β(sj),

which can be estimated by154

ĝ(Xt(sj), sj) = Ê[Yt(sj)|Xt(sj)]− Ê[Zt(sj)|Xt(sj)]
′β̂(sj),

provided that the unknowns involved in the two terms on the right-hand side can be well-155

approximated. Therefore, as in Lu et al. (2009), we propose a two-step procedure as follows156

and describe the details in Sections 2.3 and 2.4, to simplify the computational burden with157

a large set of spatial time series data.158

Step 1 (Time-series based estimation): For each fixed location s = sj, consider time-159

series based estimation.160

(i) Both E[Yt(s)|Xt(s)] and E[Zt(s)|Xt(s)] are estimated by a local linear regression161

method.162

(ii) The estimators Ê[Yt(s)|Xt(s)] and Ê[Zt(s)|Xt(s)] are then used to estimate the163

unknown vector of autoregressive coefficients, β(s), by a least squares method.164

Step 2 (Spatial smoothing): The time-series based estimators are further improved by165

pooling information at neighboring locations.166

2.3. Time-Series Based Estimation167

In Step 1, at a fixed location s = sj, we estimate g(x, s) with covariate x = x(s) and168

autoregressive coefficients β(s) by169

ĝ(x, s) = ĝ1(x, s)− ĝ2(x, s)′β(s),

where ĝ1(x, s) and ĝ2(x, s) are the estimators of g1(x, s) = E[Yt(s)|Xt(s) = x] and g2(x, s) =170

E[Zt(s)|Xt(s) = x], respectively, based on local linear regression as follows.171
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2.3.1. Estimation of g1(x, s)172

First, consider estimating the function g1(x, s) = E[Yt(s)|Xt(s) = x] for a given covariate173

value x and location s. We apply a local approximation a0 + a1(Xt(s) − x) for covariate174

Xt(s) in the neighborhood of x, where a0(x, s) = g1(x, s) and a1(x, s) = ġ1(x, s) is the175

first-order derivative of g1 with respect to x, evaluated at (x, s). For ease of notation, we176

let a0 = a0(x, s) and a1 = a1(x, s). Let T0 = T − r denote an effective sample size with177

r = max{p, q}. Let b = bT0 denote a temporal bandwidth. Let K(·) denote a bounded kernel178

function and Kb(·) = b−1K (·/b). We estimate a0 and a1 by the weighted least squares:179 (
â0
â1

)
= arg min

(a0,a1)′∈R2

T∑
t=r+1

{Yt(s)− a0 − a1(Xt(s)− x)}2Kb(Xt(s)− x). (3)

Let A(x) denote a T0 × 2 matrix with row t − r being (1, b−1 (Xt(s)− x)) for t = r +180

1, . . . , T . Let B(x) = diag {Kb (Xt(s)− x)}Tt=r+1 denote a T0 × T0 diagonal matrix. Let181

Y = (Yr+1(s), . . . , YT (s))′ denote a T0-dimensional vector. The local linear estimators can182

be expressed as183

(â0, bâ1)
′ = U−1T0 VT0 ,

where UT0 = A(x)′B(x)A(x) is a 2 × 2 matrix with entries uT0,jk for j, k = 0, 1 and VT0 =184

A(x)′B(x)Y = (vT0,0, vT0,1)
′. In particular, with

(
Xt(s)−x

b

)0
= 1,185

uT0,jk = (T0b)
−1

T∑
t=r+1

(
Xt(s)− x

b

)j (
Xt(s)− x

b

)k
K

(
Xt(s)− x

b

)
, j, k = 0, 1

and

vT0,j = (T0b)
−1

T∑
t=r+1

Yt(s)

(
Xt(s)− x

b

)j
K

(
Xt(s)− x

b

)
, j = 0, 1.

Thus, with e1 = (1, 0)′, the local linear estimator of g1(x, s) is given by186

ĝ1(x, s) = â0 = e′1U
−1
T0
VT0 . (4)

2.3.2. Estimation of g2(x, s)187

Next, consider estimating the function g2(x, s) = E [Zt(s)|Xt(s) = x] again by local linear188

regression, although the dimension of g2(x, s) is now p+ q. Let189

g21(x, s) =
(
g121(x, s), . . . , g

p
21(x, s)

)′
=
(
E[Y sl

t−1(s)|Xt(s) = x], . . . , E[Y sl
t−p(s)|Xt(s) = x]

)′
and190

g22(x, s) =
(
g122(x, s), . . . , g

q
22(x, s)

)′
= (E[Yt−1(s)|Xt(s) = x], . . . , E[Yt−q(s)|Xt(s) = x])′ .

Thus g2(x, s) = (g21(x, s)
′, g22(x, s)

′)′.191
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Similarly to (3), we estimate the components of g2(x, s) as follows. Let

Zi
1 =

(
Y sl
(r+1)−i(s), . . . , Y

sl
T−i(s)

)′
,

denote a T0-dimensional vector for i = 1, . . . , p and let Ri
1T0

= A(x)′B(x)Zi
1 =

(
ri1T0,0, r

i
1T0,1

)′
192

with193

ri1T0,j = (T0b)
−1

T∑
t=r+1

Y sl
t−i(s)

(
Xt(s)− x

b

)j
K

(
Xt(s)− x

b

)
, j = 0, 1.

Then for i = 1, . . . , p, the local linear estimator of gi21(x, s) is194

ĝi21(x, s) = e′1U
−1
T0
Ri

1T0
. (5)

Also, let Z l
2 =

(
Y(r+1)−l(s), . . . , YT−l(s)

)′
denote a T0-dimensional vector for l = 1, . . . , q and195

Rl
2T0

= A(x)′B(x)Z l
2 =

(
rl2T0,0, r

l
2T0,1

)′
with196

rl2T0,j = (T0b)
−1

T∑
t=r+1

Yt−l(s)

(
Xt(s)− x

b

)j
K

(
Xt(s)− x

b

)
, j = 0, 1.

For l = 1, . . . , q, the local linear estimator of gl22(x, s) is given by197

ĝl22(x, s) = e′1U
−1
T0
Rl

2T0
. (6)

Thus, the estimator of the unknown function g2(x, s) can be written as

ĝ2(x, s) =
(
ĝ121(x, s), . . . , ĝ

p
21(x, s), ĝ

1
22(x, s), . . . , ĝ

q
22(x, s)

)′
. (7)

2.3.3. Estimating the unknown parameter β(s)198

Since the vector of autoregressive coefficients β(s), the unknown function g(Xt(s), s) can
be estimated by

ĝ(Xt(s), s; β) = ĝ1(Xt(s), s)− ĝ2(Xt(s), s)
′β(s), (8)

we estimate β(s) by the least squares:199

β̂(s) = arg min
β∈Rp+q

T∑
t=r+1

{Yt(s)− Z ′t(s)β(s)− ĝ(Xt(s), s; β)}2

= arg min
β∈Rp+q

T∑
t=r+1

{
Ŷt(s)− Ẑt(s)′β(s)

}2

,

where Ŷt(s) = Yt(s)− Ê[Yt(s)|Xt(s)] and Ẑt(s) = Zt(s)− Ê[Zt(s)|Xt(s)]. Thus,200

β̂(s) =

{
T∑

t=r+1

Ẑt(s)Ẑt(s)
′

}−1{ T∑
t=r+1

Ẑt(s)Ŷt(s)

}
. (9)

Finally, by substituting β̂(s) into (8), g(x, s) can be estimated by201

ĝ(x, s) = ĝ1(x, s)− ĝ2(x, s)′β̂(s). (10)
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2.4. Spatial Smoothing202

To improve the estimators (9) and (10) obtained from Step 1 that is based on time-series203

at a given location, we consider pooling the information from neighboring locations by spatial204

smoothing (Lu et al., 2009). At location s0 ∈ S with S for the support of the spatial sampling205

intensity function f (c.f., Assumption S in Appendix ), the spatial smoothing estimators of206

β(s0) and g(x, s0) can be obtained by207

β̃(s0) =
N∑
j=1

β̂(sj)K̃
∗
h,j (s0) (11)

and208

g̃(x, s0) =
N∑
j=1

ĝ(x, sj)K̃
∗
h,j (s0) , (12)

where β̂(sj) =
(
λ̂1(sj), . . . , λ̂p(sj), α̂1(sj), . . . , α̂q(sj)

)′
and ĝ(x, sj) are defined in (9) and209

(10), respectively, and K̃∗h,j (·) denotes a weight function on R2, associated with h = hN > 0210

a spatial bandwidth depending on the number of the spatial sampling locations N .211

Here we apply local linear spatial smoothing by using the weight function K̃∗h,j (s0) =212

ẽ′1 (C ′DC)−1C ′D, which is a local linear fitting equivalent kernel, where ẽ1 = (1, 0, 0)′ ∈ R3,213

C denotes an N×3 matrix with the jth-row (1, (sj − s0)′/h), and D = diag
{
K̃h(sj − s0)

}N
j=1

214

an N ×N diagonal matrix with K̃h(·) = h−2K̃(·/h) and K̃(·) a kernel function on R2.215

3. Asymptotic Theory216

For the large-sample properties stated below, the regularity conditions imposed on the217

time series and spatial processes are given in Appendix A and the proofs of the theorems218

are in a web-based Appendix B.219

We first provide the asymptotic properties for the time series based estimators, β̂(s) in220

(9) and ĝ(x, s) in (10), in Theorems 1–2 below.221

Theorem 1. Under Assumption T in Appendix A, together with T0b
4 → 0 as T0 → ∞, it222

holds that for each s = sj,223

T
1/2
0

{
β̂(s)− β(s)

}
D−→ N(0,Σβ(s))

as T0 →∞, where
D−→ denotes convergence in distribution, and Σβ(s) = M(s)−1σ2

ε(s), with224

M(s) = E [Z∗t (s)Z∗t (s)′], Z∗t (s) = Zt(s)− E [Zt(s)|Xt(s)] and σ2
ε(s) = V ar[εt(s)].225
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Theorem 2. Under Assumption T in Appendix A, (with a bandwidth b different from that226

in Theorem 1), for each s = sj and x in the support of X(s),227

(T0b)
1/2
[
{ĝ(x, s)− g(x, s)} − (1/2)b2B0(x, s)

] D−→ N(0,Γ(x, s))

as T0 → ∞, where B0(x, s) = ∂2g(x,s)
∂x2

∫
u2K(u)du, Γ(x, s) = σ2(x, s)p(x, s)−1

∫
K2(u)du,

p(x, s) is the probability density function of Xt(s), and

σ2(x, s) = V ar [{Yt(s)− Zt(s)′β(s)}|Xt(s) = x] .

228

Next, we establish the asymptotic properties for the estimators after spatial smoothing,229

β̃(s0) in (11) and g̃(x, s0) in (12), in Theorems 3–4.230

Theorem 3. Under the conditions in Theorem 1 together with Assumption S in Appendix A,,231

it holds that for s0 ∈ S, as T0 →∞ and N →∞,232

β̃(s0)− β(s0)− (1/2)h2B(s0) = T
−1/2
0 ν(s0)ξ(s0){1 + op(1)},

where ξ(s0) is a (p+ q)× 1 Gaussian random vector with zero mean and identity covariance

matrix, B(s0) = tr
{
∂2β(s0)
∂s∂s′

∫
zz′K̃(z)dz

}
and

ν2(s0) = σ2(s0){Nh2f(s0)}−1M(s0)
−1 + σ2

1(s0)M(s0)
−1M∗1(s0, s0)M(s0)

−1,

with σ2
1(·) and M∗1(·, ·) defined in Assumption S.233

Theorem 4. Under the conditions in Theorem 2 together with Assumption S in Appendix A,234

for s0 ∈ S, as T0 →∞ and N →∞,235

g̃(x, s0)− g(x, s0)− (1/2)h2µ1(x, s0)− (1/2)b2µ2(x, s0) = (T0b)
−1/2ν1(x, s0)η(s0){1 + op(1)},

where η(s0) is a Gaussian random variable with zero mean and identity variance, and

µ1(x, s0) = tr

{
∂2g(x, s0)

∂s∂s′

∫
zz′K̃(z)dz

}
, µ2(x, s0) =

{
∂2g(x, s0)

∂x2

∫
u2K(u)du

}
and

ν21(x, s0) = bσ2
1(s0)p(x, s0)

−2q(x, x; s0) + {Nh2p(x, s0)f(s0)}−1σ2(s0)

∫
K2(u)du

∫
K̃2(z)dz,

with q(·, ·; s0) defined in Assumption S.236
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In Theorems 1–2, asymptotic normality is obtained for the time series based estimators,237

β̂(s) in (9) and ĝ(x, s) in (10). For the estimators after spatial smoothing, β̃(s0) in (11)238

and g̃(x, s0) in (12), consistency results are established in Theorems 3–4. As Nh2 →∞ and239

b → 0, both the first term of ν2(s0) in Theorem 3 and ν21(x, s0) in Theorem 4 tend to 0;240

thus the asymptotic variances of the estimators β̃(s) and g̃(x, s) after spatial smoothing are241

of a smaller order than those of the time series based estimators β̂(s) and ĝ(x, s) without242

spatial smoothing. Further, to minimize the mean squared error (MSE) of β̃(s), the spatial243

bandwidth h should be of order (NT )1/6. Thus, under the condition T = o(N2), the MSE244

β̃(s) after spatial smoothing is smaller than that of β̂(s) without spatial smoothing. Finally,245

under Nh2 = O(b−1), the rate of the convergence for ĝ(x, s) without spatial smoothing is246

(T0b)
1/2, whereas that of g̃(x, s) is T

1/2
0 with spatial smoothing. These results hinge on the247

nugget effect condition in Assumption S, without which spatial smoothing does not appear248

to affect the asymptotic variance.249

4. Simulation Study250

We study the finite-sample performance of our proposed estimators for the unknown251

quantities in model (1) in a simulation study. In particular, we consider the following STAR-252

PLR model:253

Yt(sj) = g(Xt−1, sj) +
5∑
i=1

λi(sj)Y
sl
t−i(sj) +

5∑
l=1

αl(sj)Yt−l(sj) + εt(sj), (13)

where, as in Section 5 below, sj = (uj, vj) is the centroid consisting of the latitude and254

longitude of the jth state, j = 1, · · · , 49, in the US, and for simplicity, at any location sj,255

the covariate process Xt−1 follows the same AR(1) model, Xt = −0.450Xt−1 + et, with iid256

N(0, 1) errors et’s that are independent of the innovation εt(sj)’s, and257

g(Xt−1, sj) = log
[
1 +

{
(b2(sj) +Xt−1)

2
}b1(sj)] ,

where b1(sj) = 0.5 + 0.2 cos(uj + vj) and b2(sj) = 0.6 + 0.3 sin(uj × vj) for sj = (uj, vj)
′ is258

the latitude and longitude of the jth state. Further, let εt(sj)’s follow iid normal distribution259

with mean 0 and standard deviation σ = 0.1 over time and space. For the other parts of260

model (13), we follow the set-up of the data example in Section 5 below. In particular, there261

are N = 49 spatial sampling locations and the spatially-varying autoregressive coefficients262

λi’s and αl’s are set to the estimated values in the data example of Section 5.263

We generate data from model (13) as follows. At each location sj for j = 1, . . . , 49, the264

initial values of Y0(sj) are set to zero. Then we generate Yt(sj) for t = 1, 2, . . .. The first 50265

time points are discarded and the next T time points are saved, denoted as {(Xt(sj), Yt(sj))266

for t = 1, . . . , T , and j = 1, . . . , N}. We consider two time series lengths: T = 75 and267

T = 150. To asses the estimate of the unknown function g(x, sj), we select 50 points of x268

between the 10th and 90th percentiles of the covariate Xt−1. The temporal bandwidth b in269
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Figure 1: Boxplots of squared estimation error (SEE) for the estimation of g(·) without spatial smoothing
(NS) or with spatial smoothing (SS), for T = 75 time points (left) and T = 150 time points (right).

Section 2.3 and the spatial bandwidth h in Section 2.4 are selected by AICc for estimation270

of g and coefficients (c.f.,(Hurvich et al., 2002; Lu and Zhang, 2012)).271

The performance of the time-series based estimates with and without spatial smoothing272

will be assessed by defining a squared estimation error (SEE) as a measure of the accuracy273

of estimation at a location s (c.f. (Lu et al., 2009)). That is, for each location s, we define274

SEE(λ̂i(s)) =
{
λ̂i(s)− λi(s)

}2

; i = 1, . . . , 5,

SEE(α̂l(s)) = {α̂l(s)− αl(s)}2 ; l = 1, . . . , 5 and

SEE(ĝ(·, s)) =
1

50

50∑
k=1

{ĝ(xk, s)− g(xk, s)}2 ,

where xk for k = 1, . . . , 50 are 50 points that equally partition the interval between the 10th275

and the 90th percentiles of the simulated covariates Xt−1.276

We repeat the simulation 10 times and thus have, for the 49 locations, 10 × 49 = 490277

values in total for each type of SEE, summarized in boxplots in Figures 1–3 for the time278

series lengths T = 75 and 150. These figures clearly indicate that the estimates with spatial279

smoothing are more accurate than the estimates based only on individual time series data.280

In addition, the estimates apparently improve as the sample size increases and from the281

median SEE values, appear acceptable, even in the case of N = 49 and T = 75.282

11



●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●●●
●●

●
●

●

●
●

●
●
●●
●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●●
●

●●

●

●●●●●●●●●
●
●●●●●
●●●●●●●●●●

●

●●

NS SS

0.0
0.2

0.4
0.6

0.8
1.0

SE
E

●

●
●●●
●●

●

●●●●
●

●
●

●

●
●

●

●

●●

●
●●●
●
●

●

●
●●
●●
●●●●●●

●

●●●●●●●●●●●●
●
●

NS SS

0.0
0.2

0.4
0.6

0.8
1.0

SE
E

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●●

●●●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●●●●
●●●●

●

●
●●
●●
●●
●
●

NS SS

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

SE
E

●

●

●

●●●

●

●

●
●
●

●

●

●●●
●

●

●

●

●

●

●
●●
●

●

●
●●
●

●

●

●

●

●
●
●●

●●

●

●

●

●

●
●●
●

●

●

●
●●●●●●
●

●

●●●●●

●

●
●●●●
●
●
●●●●
●●

●

●●
●
●
●
●●

NS SS

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

SE
E

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●

●
●

●●
●
●
●
●
●
●●
●●●●●

NS SS

0.0
0.1

0.2
0.3

0.4

SE
E

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●
●
●

●

●
●

●

●
●
●
●

●

●

●

●
●

●

●●●●●●
●●●●●●●

●
●
●●●
●●
●
●●
●
●●●●●
●
●●
●
●●●●●●●●●●●●
●●●●●●●●●●●
●●
●
●●●

NS SS

0.0
0.1

0.2
0.3

0.4

SE
E

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●

●●●
●

●
●
●●●
●
●

●

●
●●
●

●●

●

●●●

●

●●

●
●
●
●

●

●

●

●

●●
●
●

NS SS

0.0
0.1

0.2
0.3

0.4
0.5

SE
E

●●

●●●●

●

●

●

●
●
●●
●

●

●

●

●
●●●●

●

●
●●●●
●
●

●
●
●

●
●●
●●

●

●

●●●

●

●

●●●
●
●●●●●
●
●

●●
●●●●

NS SS

0.0
0.1

0.2
0.3

0.4
0.5

SE
E

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●●
●
●
●

●

●

●

●

●

●●

●

●

●●●●●
●
●●●●●
●
●

●

●●
●
●
●
●●

●
●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

NS SS

0.0
0.1

0.2
0.3

0.4

SE
E

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●
●

●

●
●
●

●●

●

●

●
●●●

●

●
●
●

●

●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●

●

●●●●

NS SS

0.0
0.1

0.2
0.3

0.4

SE
E

Figure 2: Boxplots of squared estimation error (SEE) for the estimation of λi without spatial smoothing
(NS) or with spatial smoothing (SS), for T = 75 time points (top row) and T = 150 time points (bottom
row), i = 1, . . . , 5 (left to right per row).

5. Real Data Example283

Obviously (mortgage) interest rate plays an important role in deciding housing price (c.f.284

Reichert (1990)). In this section, we demonstrate the methodology developed in Sections 2–285

3 by studying the impact of (mortgage) interest rate on housing prices in the 48 states286

(excluding Alaska and Hawaii) and the District of Columbia (DC) of the United States from287

1991 to 2012, a time period that encompasses the US housing bubble burst, the financial288

crisis, and the global recession in recent years. Here we exclude Alaska and Hawaii in289

our consideration because they are isolated from other 49 states (counting the District of290

Columbia as a state). Quarterly housing price index (HPI) data from the first quarter of291

1991 until the first quarter of 2012 are attained from the United States Federal Housing292

Financial Agency, with a time series of 85 observations for each state. It appears that the293

original HPI time series in all the states, shown in Figure 4, are nonstationary with increasing294

and then decreasing trends prior to and after the housing bubble burst in 2007. We follow295

the convention in economics and consider instead the geometric return of HPI, which is the296

change of the logarithmic HPI, for each state. Henceforth the response variable Yt(sj) at297
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Figure 3: Boxplots of squared estimation error (SEE) for the estimation of αl without spatial smoothing
(NS) or with spatial smoothing (SS), for T = 75 time points (top row) and T = 150 time points (bottom
row), l = 1, . . . , 5 (left to right per row).

the tth quarter and jth state is the geometric return of housing price index (HPIGR) for298

t = 2, . . . , 85 and j = 1, . . . , 49 and the centroid sj = (uj, vj)
′ consisting of the latitude and299

longitude of the jth state.300

The exogenous variable of interest is the quarterly change in interest rate, obtained and301

aggregated from monthly 30-year conventional interest rate data from the Board of Governors302

of the Federal Reserve System. The original quarterly interest rate data are plotted in the left303

panel of Figure 5 and appear to have a downward trend and thus nonstationary. However, the304

series of quarterly change of the interest rate, xt, plotted in the middle panel of Figure 5, is305

fairly stationary, the same for all states. Further, a kernel density estimate of the quarterly306

change of interest rate is plotted in the right panel of Figure 5, which suggests that the307

distribution appears non-Gaussian.308

We now assess the possibly nonlinear relationship between HPIGR, Yt(sj), and the309

temporally lagged quarterly change of interest rate, Xt(sj) = xt−1, for t = 2, . . . , 85 and310

j = 1, . . . , 49, by specifying an STAR-PLR model (1).311

First, for specifying the spatial weights wjk in the spatially lagged variable Y sl
t−i(sj) =312 ∑N

k=1wjkYt−i(sk), we follow a common practice in econometrics and use the inverse distance313
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Figure 4: Time-series of the quarterly housing price index (HPI) for the 48 states (excluding Alaska and
Hawaii) and District of Columbia of the United States from the first quarter of 1991 to the first quarter of
2012.

between states, such that wjk = 1/djk where djk is the Euclidean distance between the314

centroids of two states sj and sk, j 6= k, and wjj = 0 (c.f. (Wilhelmsson, 2002)). The315

spatial weight matrix W = [wjk]
N
j,k=1 is row-standardized so that

∑N
k=1wjk = 1. Second,316

to determine the orders of temporally lagged variables, p and q, we minimize the Akaike317

Information Criterion with correction (AICc) (c.f. (Hurvich et al., 1998))318

AICc(p, q) = log(σ̂2) +
1 + (T0N)−1tr(H)

1− (T0N)−1{tr(H) + 2}
, (14)

with respect to p and q, where σ̂2 = (T0N)−1
∑T

t=r+1

∑N
j=1

{
Yt(sj)− Ŷt(sj)

}2

and the hat319

matrix H is an N × N matrix with N = 49 (c.f. Appendix B.2). Finally, the bandwidth320

parameters b and h for time-series based estimators and those after spatial smoothing in321

Section 2 are determined by AICc. For the data example, p = q = 5 are selected and thus,322

the STAR-PLR model is of the form:323

Yt(sj) = g(xt−1, sj) +
5∑
i=1

λi(sj)Y
sl
t−i(sj) +

5∑
l=1

αl(sj)Yt−l(sj) + εt(sj), (15)

where t = 7, . . . , 85 and j = 1, . . . , 49.324

The estimates of g(x, sj) as a function of the quarterly change of interest rate, x, for the325

jth state where j = 1, . . . , 49, are plotted in Figure 6, with or without spatial smoothing326

14



Year

Mo
rtg

ag
e R

ate

1995 2005

4
5

6
7

8
9

Year

Mo
rtg

ag
e R

ate
 C

ha
ng

e

1995 2005

−0
.5

0.0
0.5

−1.0 0.0 0.5 1.0

0.0
0.2

0.4
0.6

0.8
1.0

Mortgage Rate Change

De
ns

ity

Figure 5: Time-series plot of quarterly interest rate data (left), time-series plot of quarterly change of interest
rate data (middle), and kernel density estimate (solid curve) superimposed with Gaussian density estimate
of same mean and variance (dashed curve) (right) in the United States from the first quarter of 1991 to the
first quarter of 2012.

after the time-series based estimation. The effect of spatial smoothing is apparent. The327

estimated functions appear quite variable before spatial smoothing, while after spatial s-328

moothing, they are smoother and show clearer patterns. The relationship between HPIGR329

and the interest rate change among the 48 states and the DC are quite similar except for330

Florida in dotted line which looks slightly different from the others on the right-hand side331

in Figure 6(b). There is a nonlinear structure with changing points occurring approximately332

at x = −0.3, 0.1 and 0.4. In particular, for each state, the relationship is negative when333

the interest rate change x is smaller than −0.3 or between 0.1 and 0.4, but is positive334

when the interest rate change x is between −0.3 and 0.1 and appears to be constant for335

x greater than 0.4 (except for Florida). For Florida, the pattern seems special, which is336

non-constant and negative when x is larger than 0.4. According to the website of ‘state of337

florid living’ (http://www.stateoffloridaliving.com/good-time-buy-house-florida/), Florida is338

a highly transient state that has a real estate market that rises and falls like a yoyo. This339

may partly explain that a large increase of interest rate could have a large, negative impact340

on the return of the housing price in Florida while has a little impact in other states, as341

indicated for x > 0.4 in Figure 6(b). Furthermore, interestingly, the threshold values at342

x = −0.3, 0.1 and 0.4 appear consistent with the changing patterns of the previous kernel343

density estimate that exhibits a mixture pattern (Figure 5), and also with the suggestions344

of nonlinear relationships in McQuinn and OReilly (2007).345

Like the estimates of the g function, the estimates of the autoregressive coefficients,346
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Figure 6: Estimates of g as a function of interest rate change x for the 48 states (excluding Alaska and
Hawaii) and District of Columbia of the United States: (a) without spatial smoothing (left), and (b): with
spatial smoothing (right).

λi(sj) and αl(sj), for i, l = 1, . . . , 5 and j = 1, . . . , 49, are considerably smoother after time-347

series based estimates are smoothed over space. To save space, we only present the maps of348

the estimated coefficients after spatial smoothing in Figure 7. The temporal effects among349

neighboring states are apparent in the maps of λ̂i (Figure 7 left panel). While the coefficient350

estimates λ̂1(sj) and λ̂4(sj) at temporal lags 1 and 4 are positive in all the states with larger351

values in the northwest for lag 1 and in the west for lag 4, those at the other three lags 2,352

3, and 5, λ̂2(sj), λ̂3(sj), and λ̂5(sj), are negative except for some in the east for lag 2 and353

some in the west for lag 3. Further, the temporal effects for a given state are also apparent354

in the maps of α̂l(sj) in the right panel of Figure 7. It appears that α̂1(sj) and α̂2(sj) are355

mostly negative except for the southwestern states and Florida for lag 1 and California for356

lag 2, α̂3(sj)’s are positive, and α̂4(sj) and α̂5(sj) are positive in the northeastern states357

but negative in the other states. We comment that from the methodology perspective,358

our proposed models are location-dependent, allowing for data to be non-stationary over359

space with spatial site features characterised (such as varying coefficients from one region to360

another), so it is meaningful to use the proposed models on sub-regions of the US, e.g., the361

west, mid-west, south, east, although they may vary significantly from one region to another.362
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Figure 7: Maps of estimated coefficients λ̂i for i = 1, . . . , 5 (top to bottom in the first column) and α̂l for
l = 1, . . . , 5 (top to bottom in the second column).
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To further evaluate our method, we consider comparison of the prediction based on363

different parametric forms of g function. The first is a linear function gL(x, s) = a0(s)+b0(s)x364

where a0(s) and b0(s) are spatially-varying linear coefficients ((Thom, 1983; Reichert, 1990;365

Englund and Ioannides, 1997; McGibany and Nourzad, 2004)). In general, nonparametric366

specification can help to explore the parametrization of possibly nonlinear relationship, but367

itself may not give optimal prediction. Thus, a nonlinear threshold function based on Figure 6368

is considered:369

gNL(x, s) = {a10(s) + a11(s)x} I (x < −0.3) + {a20(s) + a21(s)x} I (−0.3 ≤ x < 0.1)

+ {a30(s) + a31(s)x} I (0.1 ≤ x < 0.4) + {a40(s) + a41(s)x} I (x ≥ 0.4) ,

where I(·) is an indicator function and akl(s)’s are the spatially-varying piecewise linear370

coefficients for k = 1, . . . , 4 and l = 0, 1. With each of the parametric forms of g, we set371

aside the last 10 quarters for prediction and use the first T = 74 quarters for model estimation372

with or without spatial smoothing after the time-series based estimation.373

A mean squared prediction error (MSPE) of the one-step ahead prediction is computed374

for the linear and nonlinear forms of g and estimation with or without spatial smoothing.375

The MSPE values without spatial smoothing are 0.000782 and 0.000780 and those with376

spatial smoothing are 0.000624 and 0.000584 for gL and gNL, respectively. These results377

demonstrate a clear advantage of using spatial smoothing in estimation for prediction, with378

a relative improvement approximately more than 17%. Further, compared with the linear379

gL, the threshold parametrization gNL outperforms the gL in prediction, with a relative380

improvement of 6.48%. These results further show that our methodology can help to uncover381

the relationship between the interest rate change and and geometric returns of housing prices382

which is more complex than linear. In addition, to assess the sensitivity of the selected383

model (15) with p = q = 5, we consider the model simplified to a first order model of384

p = q = 1, as suggested by a referee. Here we only report the MSPEs for the semiparametric385

prediction with g being a nonparametric function after spatial smoothing, which are 0.000642386

and 0.000874 for p = q = 5 and p = q = 1, respectively. Obviously, our AIC selected model387

of p = q = 5 performs much better than the model with p = q = 1, as expected.388

Finally we make some comments. (i) We have identified a threshold-like model for the389

impact of the interest rate change on the housing price return by our semiparametric mod-390

elling. In fact, the threshold phenomenon for interest rate has been well recognised in the391

literature (c.f., Pfann et al. (1997)). This seems well explain our finding, which looks rea-392

sonable and consistent with the reference of Pfann et al. (1997). (ii) In the analysis above,393

only the impact of interest rate is considered for simplicity of demonstration of the proposed394

methods. In practice, as commented by a referee, there are many other relevant variables395

that may impact housing price, in which case estimation of the function g in model (1) may396

also suffer from curse of dimensionality if the dimension of Xt is large, and further extension397

will hence be needed, say by allowing the function g to be of a kind of additive structure as in398

Gao et al. (2006). We leave this kind of partially linear additive spatio-temporal modelling399

of irregular sampling grids for future research. (iii) In this paper, we suppose {Xt} is an400
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exogenous time series variable, but its time series structure is not supposed (except α-mixing401

property needed in theory). As commented by a referee, it would be interesting to investi-402

gate if the lag parameters λ and α in model (1) are impacted by Xt, which need to develop403

a new method, quite different from what we do in this paper, for a functional-coefficient404

(depending on Xt) spatio-temporal model of irregular sampling grids. This is also left for405

future research.406

6. Conclusions and Discussion407

In this paper, we have developed a class of location-dependent spatio-temporally au-408

toregressive partially (non)linear regression (STAR-PLR) models that allows for possibly409

nonlinear relationships between responses and covariates via a nonparametric function, pos-410

sibly nonstationarity over space via spatially-varying autoregressive coefficients, and for both411

regular and irregular sampling spatial locations. The proposed methodology is supported412

by both asymptotic theory and finite sample properties via a simulation study. We have413

demonstrated the methodology to study housing prices and interest rate in the US, illustrat-414

ing the usefulness of the proposed STAR-PLR model for uncovering complex relationships415

between housing prices and interest rate that are nonlinear and nonstationary over space.416

Further extensions of the methodology are possible besides some discussions mentioned417

at the end of Section 5. For example, an important topic in housing price risk analysis is418

to investigate the impact of interest rates on housing price volatility. It would therefore419

be useful to extend the conditional mean modeling of this paper to conditional volatility420

modeling by developing a semiparametric spatio-temporal ARCH/GARCH type models. In421

addition, a data-driven approach to determine the spatial weights in the spatio-temporal422

models is another interesting issue in practice (Zhu et al., 2010). We leave such topics for423

future research.424
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Appendix A: Regularity Conditions511

Let SN = {s1, . . . , sN} denote the set of spatial sampling locations with a sampling densi-512

ty function f(s) in the spatial domain S ⊂ R2. At time t, set Yt = (Yt(s1), . . . , Yt(sN))′, Xt =513

(Xt(s1), . . . , Xt(sN))′, Gt = (g(Xt(s1), s1), . . . , g(Xt(sN), sN))′, and Et = (εt(s1), . . . , εt(sN))′.514

Recall λi(sj) = 0 for q < i ≤ r or αl(sj) = 0 for p < l ≤ r for r = max(p, q). For 1 ≤ i ≤ r,515

let Ai denote an N × N matrix whose (j, k)th element is αi(sj) if j = k and λi(sj)wjk516

otherwise. We can rewrite the STAR-PLR model in (1) as517

Yt = Gt +
r∑
i=1

AiYt−i + Et, (16)

for t = r + 1, . . . , T .518

For the strictly stationary time series {Xt}t=0,±1,±2,..., we need the concept of α-mixing519

as follows for reference below. For k = 1, 2, . . . , define520

α(k) = sup
A∈F0

−∞,B∈F∞k

|P (A)P (B)− P (AB)| −→ 0,

where F ji is σ-algebra generated by {Xt}i≤t≤j. The time series {Xt} is said to be an α-mixing521

process if the mixing coefficient α(k)→ 0, as k →∞ (Fan and Yao, 2003).522

We first state the regularity conditions for Theorems 1–2, given in Assumption T with523

time series data including conditions (C1)–(C7).524

Assumption T:525
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(C1) (i) For each s ∈ SN , the covariate process {Xt(s)} is strictly stationary and α-526

mixing in time and Xt(s) has a compact support RX with the joint probability den-527

sity function p(x1, x2; s) of Xt1(s) and Xt2(s) being continuous and bounded from528

above for all t1 6= t2 and x1, x2 ∈ RX . (ii) The α-mixing coefficient α(·) satisfies529

limk→∞K
a
∑∞

n=k{α(n)}δ/(2+δ) = 0 for some constant a > δ/(2 + δ).530

(C2) The roots of det(IN −
∑r

i=1Aiz
i) = 0 are outside the unit circle, where Ai is defined531

in (16) and IN is an N ×N identity matrix.532

(C3) (i) For each s ∈ SN , the functions g1(x, s) = E(Yt(s)|Xt(s) = x) and g2(x, s) =533

E(Zt(s)|Xt(s) = x) are continuous at all x and twice differentiable. (ii) The function534

g(x, s) and the vector of autoregressive coefficients β(s) are twice differentiable with535

respect to s.536

(C4) (i) For each s ∈ S, the innovations {εt(s)}t≥r+1 are iid random variables independent537

of {Xt(s)}t≥r+1. Further, for each t > r, {εt(s)}s∈S are independent of
{
Y sl
t−i(s)

}
s∈S538

for i = 1, . . . , p, and {Yt−l(s)}s∈S for l = 1, . . . , q. (ii) For each t, the spatial covariance539

function γt(s1, s2) ≡ Cov[εt(s1), εt(s2)] is bounded over S × S. (iii) For each s ∈ S,540

E
[
|εt(s)|2+δ

]
<∞ for some δ > 0, E

[
|Yt(s)|2+δ

]
<∞, and E

[
||Zt(s)||2+δ

]
<∞.541

(C5) The matrices M(s) and Σβ(s) in Theorem 1 are positive definite for each s ∈ SN .542

(C6) (i) The kernel function K(·) is symmetric, uniformly bounded by some constant, and543

integrable. Further,
∫
K(u)du = 1 and

∫
u2K(u)du < ∞. (ii) K(u) is Lipschitz544

continuous of order 1. (iii) K(u) has an integrable second-order radial majorant (i.e.,545

QK(x) = sup‖y‖≥‖x‖
[
‖ y ‖2K(y)

]
is integrable).546

(C7) (i) The temporal bandwidth b→ 0 in such a way that T0b→∞ and log(T0)/(T
1/2
0 b)→547

0 as T0 →∞. (ii) There exist two sequences of positive integer vectors, aT0 →∞ and548

ηT0 →∞, as T0 →∞, such that ηT0/aT0 → 0 and T0a
−1
T0
α(ηT0)→ 0. (iii) The temporal549

bandwidth b→ 0 in such manner that ηT b = O(1) and b−δ/(2+δ)
∑∞

t=ηT0
α(t)δ/(2+δ) → 0550

as T0 →∞.551

For spatial smoothing with Theorems 3–4, in additional to the above conditions, we need552

the following Assumption S including conditions (C8)–(C11).553

Assumption S:554

(C8) As N → ∞, N−1
∑N

j=1 I (sj ∈ A) −→
∫
A
f(s)ds for any measurable set A ⊂ S ⊂ R2

555

where the sampling density function f satisfies f > 0 in a neighborhood of s0 ∈ S.556

(C9) The kernel function K̃(·) satisfies
∫
R2 K̃(z)dz = 1,

∫
R2 zK̃(z)dz = 0 and

∫
R2 zz

′K̃(z)dz <557

∞.558
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(C10) (i) For each t ≥ r+1 and s ∈ S, εt(s) = ε1,t(s)+ε2,t(s), where {ε1,t(s)} and {ε2,t(s)} are559

two independent processes and both satisfy the condition C4(ii). Further, γ1t(sj, sk) ≡560

Cov [ε1,t(s1), ε1,t(s2)] is continuous in (s1, s2) and γ2t(s1, s2) ≡ Cov [ε2,t(s1), ε2,t(s2)] = 0561

if s1 6= s2 and γ2t(s1, s2) = σ2
2(sj) > 0 is continuous in s1. (ii) For each t, the562

matrix M∗(s1, s2) = E [Z∗t (s1)Z
∗
t (s2)] = M∗1(s1, s2) + M∗2(s1, s2), where M∗1(s1, s2) is563

continuous in (s1, s2), and M∗2(s1, s2) = 0 if s1 6= s2 and M∗2(s1, s2) = M∗2(s1) > 0564

is continuous in s1. (iii) For each t, the joint probability density function of Xt(s1)565

and Xt(s2) satisfies the following limit lims1,s2→s0 p(x1, x2; s1, s2) = q(x1, x2; s0) where566

q(x1, x2; s0) is continuous in both x1 and x2.567

(C11) The spatial smoothing bandwidth h→ 0 and Nh2 →∞, as N →∞.568

The above regularity conditions are fairly mild. Condition (C1) assumes that the covari-569

ate process Xt(s) has smooth, bounded probability density functions and is α-mixing over570

time (c.f. Fan and Yao (2003), pp. 68), which are quite standard in nonparametric time571

series analysis. The boundedness of Xt(s) is for simplicity of proof; otherwise, we may use572

truncation argument for Xt(s) as usually done in the literature (c.f., Gao et al. (2006)), with573

more tedious proof needed. (C2) is a stationarity condition assumed about the autoregres-574

sive coefficient matrices Ai’s in (16), whereas (C3) assumes smoothness conditions about the575

functions g, g1, g2 and the vector of autoregressive coefficients β(s) given in Section 2. Con-576

ditions (C4) and (C5) impose conditions on the model regarding the innovation processes as577

well as Yt(s) and Zt(s), which are mild. (C6) is a standard regularity condition imposed on578

the kernel function K(·) for the time-series based estimation while (C9) on K̃(·) is for spatial579

smoothing. Conditions (C7) and (C11) are the requirements about the temporal bandwidth580

b = bT0 and the spatial bandwidth h = hN , respectively. Furthermore, over space, we impose581

(C8) on the spatial sampling intensity (density) (c.f. Lahiri and Zhu (2006)) and (C10) on582

the nugget effects for {εt(s)}, Z∗t (s) and Xt(s), which are needed for spatial smoothing.583

The conditions imposed on the time series in (C1)–(C7) are fairly mild and used in the584

literature (c.f. Fan and Yao (2003) and Gao (2007)). Similarly, conditions (C8)–(C11) have585

been used for spatial smoothing; c.f., Zhang et al. (2003), Lu et al. (2008) and Lu et al.586

(2009).587
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Web-based Supplementary Materials: Appendix B588

“Estimation for Semiparametric Nonlinear Regression of Irregularly Located Spatial589

Time-series Data”590

B.1. Proof of Theorems591

Let
P−→ denote convergence in probability, a∗T0 = {log(T0)/(T0b)}1/2 + b2, and

U = p(x, s)

(
1 0
0
∫
u2K(u)du

)
.

Also, note that owing to (16), Yt may not be α-mixing in general (c.f., Lu and Linton (2007)592

and Li et al. (2012)), and hence the Theorems may not follow from the α-mixing asymptotic593

results in the literature.594

B.1.1. Proof of Theorem 1595

Notation. Let Ŷt(s) = Yt(s)− Ê [Yt(s)|Xt(s)] and Ẑt(s) = Zt(s)− Ê [Zt(s)|Xt(s)],596

where Ê [Yt(s)|Xt(s)] = ĝ1(Xt(s), s) and Ê [Zt(s)|Xt(s)] = ĝ2(Xt(s), s). Recall also that597

Z∗t (s) = Zt(s)−E[Zt(s)|Xt(s)] in Theorem 1. Let ∆Y
t (s) = E [Yt(s)|Xt(s)]− Ê [Yt(s)|Xt(s)]598

and ∆Z
t (s) = E [Zt(s)|Xt(s)]− Ê [Zt(s)|Xt(s)].599

Proof. Since by (9),600

β̂(s)− β(s) =

{
T−10

T∑
t=r+1

Ẑt(s)Ẑt(s)
′

}−1
T−10

T∑
t=r+1

Ẑt(s)
{
Ŷt(s)− Ẑt(s)′β(s)

}
= A−1ZZAZY ,

where601

AZZ = T−10

T∑
t=r+1

Z∗t (s)Z∗t (s)′ + T−10

T∑
t=r+1

Z∗t (s)∆Z
t (s)′

+T−10

T∑
t=r+1

∆Z
t (s)Z∗t (s)′ + T−10

T∑
t=r+1

∆Z
t (s)∆Z

t (s)′ =
4∑
l=1

AZZ,l

and602

AZY = T−10

T∑
t=r+1

εt(s)Z
∗
t (s) + T−10

T∑
t=r+1

Z∗t (s)
{

∆Y
t (s)−∆Z

t (s)′β(s)
}

+T−10

T∑
t=r+1

εt(s)∆
Z
t (s) + T−10

T∑
t=r+1

∆Z
t (s)

{
∆Y
t (s)−∆Z

t (s)′β(s)
}

=
4∑
l=1

AZY,l,

B.1



it suffices to show that603

AZZ
P−→M(s) and T

1/2
0 AZY −→D N(0,M(s)σ2

ε(s)), (B.1)

where M(s) is defined in Theorem 1.604

We first show that605

T∑
t=r+1

{
ĝ(m)(Xt(s), s)− g(m)(Xt(s), s)

}2
= op(T

1/2
0 ),

for m = 0, 1, . . . , (p+ q), where g(0)(x, s) = g1(x, s) and g(m)(x, s) is the m-th component of606

g2(x, s), defined in Section 2.3, for m = 1, . . . , (p+ q). By the uniform convergence theorem607

(Li et al. (2012), page 942),608

sup
x∈RX

|ĝ(m)(x, s)− g(m)(x, s)| = Op

(
a∗T0
)
.

Since log(T0)/(T
1/2
0 b)→ 0 and T0b

4 → 0,609

T
1/2
0

[
{log(T0)/(T0b)}1/2 + b2

]2
= O(1)

[{
log(T0)/(T

1/2
0 b)

}
+ T

1/2
0 b4

]
→ 0.

Thus, for ∆
(m)
t (s) = ĝ(m)(Xt(s), s)− g(m)(Xt(s), s),610

T∑
t=r+1

{
∆

(m)
t (s)

}2

=
T∑

t=r+1

{
ĝ(m)(Xt(s), s)− g(m)(Xt(s), s)

}2
= op(T

1/2
0 ). (B.2)

By the Cauchy-Schwarz inequality, as T0 →∞, the (m,n)th element of AZZ,4 satisfies611

|AZZ,4(m,n)| = T−10 |
T∑

t=r+1

∆
(m)
t (s)∆

(n)
t (s)|

≤ T−10

[
T∑

t=r+1

{
∆

(m)
t (s)

}2
]1/2 [ T∑

t=r+1

{
∆

(n)
t (s)

}2
]1/2

= op(1).

Similarly, we have AZZ,2 = op(1) and AZZ,3 = op(1). Thus, as T0 →∞,612

AZZ
P−→M(s) = E [Z∗t (s)Z∗t (s)′] . (B.3)

Moreover, by condition (C4) and T0b
4 → 0 together with the Cauchy-Schwarz inequality and613

(B.2), we have614

T
1/2
0

4∑
l=2

AZY,l = op(1). (B.4)

B.2



Finally, by the martingale central limit theorem (c.f., Chow and Teicher (1988), page615

318), we have,616

T
1/2
0 AZY,1 = T

−1/2
0

T∑
t=r+1

εt(s)Z
∗
t (s) −→D N(0,M(s)σ2

ε(s)). (B.5)

With (B.3), (B.4) and (B.5), the proof is completed.617

B.1.2. Proof of Theorem 2618

Notation. For g1(x, s) = E[Yt(s)|Xt(s) = x], define

Hv
T0

=

(
ĝ1(x, s)− g1(x, s)
{ˆ̇g1(x, s)− ġ1(x, s)}b

)
= U−1T0 VT0 −

(
g1(x, s)
ġ1(x, s)b

)
= U−1T0

{
VT0 − UT0

(
g1(x, s)
ġ1(x, s)b

)}
= U−1T0 W

v
T0
, (B.6)

where ġ1(x, s) is the first order derivative of g1(x, s) with respect to x, and Y ∗t (s) = Yt(s)−619

a0 − a1 {Xt(s)− x}, W v
T0

= (W v
T00
,W v

T01
)′ is given by, for

(
Xt(s)−x

b

)0
= 1,620

(
W v
T0

)j
= (T0b)

−1
T∑

t=r+1

Y ∗t (s)

(
Xt(s)− x

b

)j
K

(
Xt(s)− x

b

)
, (B.7)

for j = 0, 1.621

Proof. Now for g2(x, s) = E[Zt(s)|Xt(s) = x], recall that g2(x, s) = (g21(x, s)
′, g22(x, s)

′)′,
where g21(x, s) = (gi21(x, s))

′
with gi21(x, s) = E[Y sl

t−i(s)|Xt(s) = x] for i = 1, . . . , p and

g22(x, s) =
(
gl22(x, s)

)′
with gl22(x, s) = E[Yt−l(s)|Xt(s) = x] for l = 1, . . . , q. Then, for

i = 1, . . . , p, let

Hri
1T0

=

(
ĝi21(x, s)− gi21(x, s)

{ĝ(1)i21 (x, s)− g(1)i21 (x, s)}b

)
= U−1T0 R

i
1T0
−
(

gi21(x, s)

g
(1)i
21 (x, s)b

)
= U−1T0

{
Ri

1T0
− UT0

(
gi21(x, s)

g
(1)i
21 (x, s)b

)}
= U−1T0 W

ri
1T0
,

(B.8)

where W ri
1T0

comprises, for j = 0, 1,622

(
W ri

1T0

)
j

= (T0b)
−1

T∑
t=r+1

Y sl∗
t−i(s)

(
Xt(s)− x

b

)j
K

(
Xt(s)− x

b

)
, (B.9)

B.3



with Y sl∗
t−i(s) = Y sl

t−i(s)− c0 − c1{Xt(s)− x}. Similarly, for l = 1, . . . , q, let

Hrl
2T0

=

(
ĝl22(x, s)− gl22(x, s)

{ĝ(1)l22 (x, s)− g(1)l22 (x, s)}b

)
= U−1T0 R

l
2T0
−
(

gl22(x, s)

g
(1)l
22 (x, s)b

)
= U−1T0

{
Rl

2T0
− UT0

(
gl22(x, s)

g
(1)l
22 (x, s)b

)}
= U−1T0 W

rl
2T0
,

(B.10)

where W rl
2T0

comprises, for j = 0, 1,623

(
W rl

2T0

)
j

= (T0b)
−1

T∑
t=r+1

Y ∗t−l(s)

(
Xt(s)− x

b

)j
K

(
Xt(s)− x

b

)
,

with Y ∗t−l(s) = Yt−l(s)− c0 − c1{Xt(s)− x}.624

Since ĝ(x, s) = ĝ1(x, s)− ĝ2(x, s)′β̂(s) estimates g(x, s) = g1(x, s)− g2(x, s)′β(s),625

ĝ(x, s)− g(x, s) = {ĝ1(x, s)− g1(x, s)}−{ĝ2(x, s)− g2(x, s)}′ β(s)− ĝ2(x, s)′
{
β̂(s)− β(s)

}
.

From Theorem 1, T
1/2
0

{
β̂(s)− β(s)

}
= Op(1) and (T0b)

1/2ĝ2(x, s)
′
{
β̂(s)− β(s)

}
= Op(b

1/2) =626

op(1). Thus, to establish the asymptotic normality of ĝ(x, s), it suffices to establish the627

asymptotic normality of ĝ1(x, s)− g1(x, s) and ĝ2(x, s)− g2(x, s).628

For W r
T0

=
(
W r1

1T0
, . . . ,W rp

1T0
,W r1

2T0
, . . . ,W rq

2T0

)′
, by the arguments of Lemmas 3.2, 3.3, and629

3.4 of Lu and Linton (2007), we have for d = 1630

(T0b)
1/2

(
U−1W v

T0
− U−1E[W v

T0
]

U−1W r
T0
− U−1E[W r

T0
]

)
−→ N

((
0
0

)
,

(
U−1Σvv(U−1)′ U−1Σvr(U−1)′

U−1Σrv(U−1)′ U−1Σrr(U−1)′

))
,

(B.11)
where631

E[W v
T0

] = (b2/2)
∂2g1(x, s)

∂x2
p(x, s)

( ∫
u2K(u)du

0

)
+ o(b2),

E[W r
T0

] = (b2/2)
∂2g2(x, s)

∂x2
p(x, s)

( ∫
u2K(u)du

0

)
+ o(b2),

Σvv = V ar [Yt(s)|Xt(s) = x] p(x, s)

( ∫
K2(u)du 0

0
∫
u2K2(u)du

)
,

Σvr = (Σrv)′ = Cov [Yt(s), Zt(s)|Xt(s) = x] p(x, s)⊗
( ∫

K2(u)du 0
0

∫
u2K2(u)du

)
and

Σrr = V ar [Zt(s)|Xt(s) = x] p(x, s)⊗
( ∫

K2(u)du 0
0

∫
u2K2(u)du

)
,

B.4



where ⊗ stands for the Kroneck product. Thus,632

(T0b)
1/2

{(
ĝ1(x, s)− g1(x, s)
ĝ2(x, s)− g2(x, s)

)
−
(
Bv

0(x, s)
Br

0(x, s)

)}
−→ N

((
0
0

)
,

(
Γvv(s) Γvr(s)
Γrv(s) Γrr(s)

))
,

(B.12)
where633

Γvv(s) = V ar [Yt(s)|Xt(s) = x] p(x, s)−1
∫
K2(u)du,

Γvr(s) = (Γrv(s))′ = Cov [Yt(s), Zt(s)|Xt(s) = x] p(x, s)−1
∫
K2(u)du,

Γrr(s) = V ar [Zt(s)|Xt(s) = x] p(x, s)−1
∫
K2(u)du,

Bv
0(x, s) = (b2/2)

∂2g1(x, s)

∂x2

∫
u2K(u)du+ op(b

2) and

Br
0(x, s) = (b2/2)

∂2g2(x, s)

∂x2

∫
u2K(u)du+ op(b

2). (B.13)

Now by Slutsky’s theorem, and noticing g(x, s) = g1(x, s)− g2(x, s)′β(s),634

(T0b)
1/2{ĝ(x, s)−g(x, s)} = (T0b)

1/2 [{ĝ1(x, s)− g1(x, s)} − {ĝ2(x, s)− g2(x, s)}′β(s)]+oP (1)

is asymptotically normal. Thus, Theorem 2 follows.635

B.1.3. Proof of Theorem 3636

Proof. For kernel function K̃∗h,j (s0) in Section 2.4, it is straightforward to verify that, under637

condition (C9),638

N−1 (C ′DC) −→ f(s0)

(
1 0

0
∫
zz′K̃(z)dz

)
,

where C,D, K̃∗(·), K̃(·) are defined in Section 2.4. Further,639

N∑
j=1

(
sj − s0
h

)
K̃∗h,j (s0) = 0 (B.14)

and640

N∑
j=1

(
sj − s0
h

)(
sj − s0
h

)′
K̃∗h,j (s0) −→

∫
zz′K̃(z)dz. (B.15)

Now by Theorem 1, we have, for s ∈ S,641

β̂(s)− β(s) = T−10 M(s)−1
T∑

t=r+1

εt(s)Z
∗
t (s) + oP (T−1/2).

B.5



Then, for s0 ∈ S, we have642

β̃(s0)− β(s0) =
N∑
j=1

{
β̂(sj)− β(sj)

}
K̃∗h,j (s0) +

N∑
j=1

{β(sj)− β(s0)} K̃∗h,j (s0)

=
N∑
j=1

T−10 M(sj)
−1

T∑
t=r+1

εt(sj)Z
∗
t (sj)K̃

∗
h,j (s0) +

N∑
j=1

{β(sj)− β(s0)}

×K̃∗h,j (s0) = A1 + A2, (B.16)

where A1 and A2 are associated with the variance and bias of β̃(s0), respectively.643

For A2, by Taylor’s expansion and from (B.14) and (B.15), we have644

A2 =
N∑
j=1

{
∂β(s0)

∂s′
(sj − s0) + (1/2)(sj − s0)′

∂2β(s0)

∂s∂s′
(sj − s0)

}
K̃∗h,j (s0)

= h
∂β(s0)

∂s

N∑
j=1

(
sj − s0
h

)
K̃∗h,j (s0)

+(h2/2)
∂2β(s0)

∂s∂s′

N∑
j=1

(
sj − s0
h

)(
sj − s0
h

)′
K̃∗h,j (s0)

= (h2/2)tr

{
∂2β(s0)

∂s∂s′

∫
zz′K̃(z)dz

}
{1 + o(1)}. (B.17)

For A1, it is clear that E [A1] = 0. Thus, we have645

V ar
[
β̃(s0)− β(s0)

]
=

N∑
j=1

T−20 M(sj)
−1

T∑
t=r+1

V ar [εt(sj)Z
∗
t (sj)] {M(sj)

−1}′
{
K̃∗h,j (s0)

}2

+
N∑

j 6=k=1

T−20 M(sj)
−1

T∑
t=r+1

Cov [εt(sj)Z
∗
t (sj), εt(sk)Z

∗
t (sk)]M(sk)

−1K̃∗h,j (s0) K̃
∗
h,k (s0)

= V1 + V2,

B.6



where646

V1 =
N∑
j=1

T−20 M(sj)
−1

T∑
t=r+1

E {Z∗t (sj)Z
∗
t (sj)

′}V ar [εt(sj)] {M(sj)
−1}′

{
K̃∗h,j (s0)

}2

=
N∑
j=1

T−10 M(sj)
−1E [Z∗t (sj)Z

∗
t (sj)

′] Γ(sj, sj){M(sj)
−1}′{N2h4f 2(s0)}−1

×K̃2

(
sj − s0
h

)
{1 + o(1)}

= σ2(s0)(T0N)−1M(s0)
−1
∫
{h4f 2(s0)}−1K̃2

(
s− s0
h

)
f(s)ds{1 + o(1)}

= σ2(s0)(T0Nh
2)−1M(s0)

−1{f 2(s0)}−1
∫
K̃2(z)f(s0 + hz)dz{1 + o(1)}

= σ2(s0){T0Nh2f(s0)}−1M(s0)
−1
∫
K̃2(z)dz{1 + o(1)}, (B.18)

and under condition C9(ii),647

V2 =
N∑

j 6=k=1

T−20 M(sj)
−1

T∑
t=r+1

E {Z∗t (sj)Z
∗
t (sk)

′}Cov [εt(sj), εt(sk)]M(sk)
−1

×K̃∗h,j (s0) K̃
∗
h,k (s0)

=
N∑

j 6=k=1

M(sj)
−1T−10 M∗(sj, sk)Γ1(sj, sk)M(sk)

−1{N2h4f 2(s0)}−1

×K̃
(
sj − s0
h

)
K̃

(
sk − s0
h

)
{1 + o(1)}

= σ2
1(s0)T

−1
0 M(s0)

−1M∗1(s0)M(s0)
−1{h4f 2(s0)}−1

∫
K̃

(
s∗ − s0
h

)
f(s∗)ds∗

×
∫
K̃

(
s∗ − s0
h

)
f(s∗)ds∗{1 + o(1)}

= σ2
1(s0){T0f 2(s0)}−1M(s0)

−1M∗1(s0)M(s0)
−1
∫
K̃(z)f(s0 + hz)dz

×
∫
K̃(y)f(s0 + hy)dy{1 + o(1)}

= σ2
1(s0)T

−1
0 M(s0)

−1M∗1(s0)M(s0)
−1{1 + o(1)}. (B.19)

It follows from (B.18) and (B.19) that the asymptotic variance is648

T−10

[
σ2(s0){Nh2f(s0)}−1M(s0)

−1
∫
K̃2(z)dz + σ2

1(s0)M(s0)
−1M∗1(s0)M(s0)

−1
]

B.7



which is T−10 ν2(z, s0), and together with (B.17), thus the proof for asymptotic variance and649

bias is completed.650

Finally, as done in the proof of Theorem 1, the asymptotic normality follows from (B.16)651

by letting T →∞ first and then N →∞, and hence ξ(s0) is of Gaussian distribution. The652

proof is completed.653

B.1.4. Proof of Theorem 4654

Proof. By Theorem 2, we have655

ĝ(x, s)− g(x, s)

= {ĝ1(x, s)− g1(x, s)} − {ĝ2(x, s)− g2(x, s)}′ β(s) + oP ((T0b)
−1/2)

= {ĝ1(x, s)− ĝ2(x, s)′β(s)} − {g1(x, s)− g2(x, s)′β(s)}+ oP ((T0b)
−1/2).

Thus,656

ĝ(x, s)− g(x, s) = e′1 {A(x)′B(x)A(x)}−1A(x)′B(x) (Y ∗ −G)

+e′1 {A(x)′B(x)A(x)}−1A(x)′B(x)G− g(x, s) + oP ((T0b)
−1/2),

where Y ∗ = (Yr+1(s)− Zr+1(s)
′β(s), . . . , YT (s)− ZT (s)′β(s))′, G = (g(Xr+1(s), s), . . . , g(XT (s), s))′,657

and both A(x) and B(x) are defined in Section 2.658

Then, for ε = (εr+1(s), . . . , εT (s))′, we have659

e′1 {A(x)′B(x)A(x)}−1A(x)′B(x) (Y ∗ −G) = e′1 {A(x)′B(x)A(x)}−1A(x)′B(x)ε

= {p(x, s)T0b}−1
T∑

t=r+1

εt(s)K

(
Xt(s)− x

b

)
{1 + op(1)}, and

660

e′1 {A(x)′B(x)A(x)}−1A(x)′B(x)G = {p(x, s)T0b}−1
T∑

t=r+1

K

(
Xt(s)− x

b

)
g(Xt(s), s){1+op(1)}.

By Taylor’s expansion of g(Xt(s), s), we have661

{p(x, s)T0b}−1
T∑

t=r+1

K

(
Xt(s)− x

b

)
g(Xt(s), s)

= b{2T0p(x, s)}−1
∂2g(x, s)

∂x2

T∑
t=r+1

{
Xt(s)− x

b

}2

K

(
Xt(s)− x

b

)
= b2{2p(x, s)}−1∂

2g(x, s)

∂x2

∫
u2K(u)p(x+ bu, s)du{1 + op(1)}

= (b2/2)
∂2g(x, s)

∂x2

∫
u2K(u)du{1 + op(1)}.

B.8



Thus,662

ĝ(x, s)− g(x, s) = {p(x, s)T0b}−1
T∑

t=r+1

εt(s)K

(
Xt(s)− x

b

)
{1 + op(1)}

+(b2/2)
∂2g(x, s)

∂x2

∫
u2K(u)du{1 + op(1)}. (B.20)

It follows from (B.20) that, as T0 →∞,663

g̃(x, s0)− g(x, s0) =
N∑
j=1

{ĝ(x, sj)− g(x, sj)} K̃∗h,j (s0) +
N∑
j=1

{g(x, sj)− g(x, s0)} K̃∗h,j (s0)

=
N∑
j=1

{p(x, sj)T0b}−1
T∑

t=r+1

εt(sj)K

(
Xt(sj)− x

b

)
K̃∗h,j (s0) {1 + op(1)}

+
N∑
j=1

(b2/2)
∂2g(x, sj)

∂x2

∫
u2K(u)duK̃∗h,j (s0) {1 + op(1)}

+
N∑
j=1

{g(x, sj)− g(x, s0)} K̃∗h,j (s0) + op(1)

= I1{1 + op(1)}+ I2{1 + op(1)}+ I3 + op(1), (B.21)

where664

I2 =
N∑
j=1

(b2/2)
∂2g(x, sj)

∂x2

∫
u2K(u)duK̃∗h,j (s0)

= (b2/2)
∂2g(x, s0)

∂x2

∫ ∫
u2K(u)du{h2f(s0)}−1K̃

(
s− s0
h

)
f(s)ds{1 + o(1)}

= b2/{2h2f(s0)}
∂2g(x, s0)

∂x2

∫ ∫
u2K(u)duK̃

(
s− s0
h

)
f(s)ds{1 + o(1)}

= b2/{2h2f(s0)}
∂2g(x, s0)

∂x2

∫
u2K(u)du

∫
K̃(s∗)f(s0 + hs∗)ds∗{1 + o(1)}

= (b2/2)
∂2g(x, s0)

∂x2

∫
u2K(u)du{1 + o(1)}. (B.22)
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Also, from (B.14), (B.15), and by Taylor’s expansion, we have665

I3 =
N∑
j=1

{g(x, sj)− g(x, s0)} K̃∗h,j (s0)

=
N∑
j=1

∂g(x, s0)

∂s
(sj − s0)K̃∗h,j (s0) + (1/2)

N∑
j=1

(sj − s0)′
∂2g(x, s0)

∂s∂s′
(sj − s0)K̃∗h,j (s0)

= h
∂g(x, s0)

∂s

N∑
j=1

(
sj − s0
h

)
K̃∗h,j (s0)

+(h2/2)
∂2g(x, s0)

∂s∂s′

N∑
j=1

(
sj − s0
h

)(
sj − s0
h

)′
K̃∗h,j (s0)

= (h2/2)

∫
z′
∂2g(x, s0)

∂s∂s′
zK̃(z)dz{1 + op(1)}. (B.23)

Further, E[I1] = 0 and666

E[I21 ] = (T0b)
−2

N∑
j=1

{p2(x, sj)}−1
T∑

t=r+1

E[ε2t (sj)]K
2

(
Xt(sj)− x

b

){
K̃∗h,j (s0)

}2

+(T0b)
−2

N∑
j 6=k=1

{p(x, sj)p(x, sk)}−1

×
T∑

t=r+1

E[εt(sj)εt(sk)]K

(
Xt(sj)− x

b

)
K

(
Xt(sk)− x

b

)
K̃∗h,j (s0) K̃

∗
h,k (s0)

= I11 + I12. (B.24)

In particular,667

I11 = (T0b)
−2

N∑
j=1

{p(x, sj)}−2
T∑

t=r+1

σ2(sj)EK
2

(
Xt(sj)− x

b

){
K̃∗h,j (s0)

}2

= (T0b)
−1

N∑
j=1

σ2(sj){p(x, sj)}−2
{
K̃∗h,j (s0)

}2
∫
K2(u)p(x+ bu, sj)du

= (T0b)
−1

N∑
j=1

σ2(sj){p(x, sj)}−1
∫
K2(u)du

[{
Nh2f(s0)

}−1
K̃

(
sj − s0
h

)]2
{1 + o(1)}

= σ2(s0){T0bNh2f 2(s0)}−1
∫
p(x, s0)

−1K2(u)du

∫
K̃2(z)f(s0 + hz)dz{1 + o(1)}

= σ2(s0){T0bNh2p(x, s0)f(s0)}−1
∫
K2(u)du

∫
K̃2(z)dz{1 + o(1)} (B.25)
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and, under condition C9(iii),668

I12 = (T0b)
−2

N∑
j 6=k=1

{p(x, sj)p(x, sk)}−1
T∑

t=r+1

Γ(sj, sk)EK

(
Xt(sj)− x

b

)
K

(
Xt(sk)− x

b

)
×K̃∗h,j (s0) K̃

∗
h,k (s0)

= (T0b)
−2

N∑
j 6=k=1

{p(x, sj)p(x, sk)}−1
T∑

t=r+1

σ2
1(sj)K

(
Xt(sj)− x

b

)
K

(
Xt(sk)− x

b

)
×
[
{Nh2f(s0)}−1K̃

(
sj − s0
h

)][
{Nh2f(s0)}−1K̃

(
sk − s0
h

)]
{1 + o(1)}

= T−10

N∑
j 6=k=1

{p(x, sj)p(x, sk)}−1σ2
1(sj)E [Kb (Xt(sj)− x)Kb (Xt(sk)− x)]

×
[
{Nh2f(s0)}−1K̃

(
sj − s0
h

)][
{Nh2f(s0)}−1K̃

(
sk − s0
h

)]
{1 + o(1)}

= T−10 σ2
1(s0){p(x, s0)}−2q(x, x; s0)f(s0)

−2
∫
K̃ (z) f(s0 + hz)dz

∫
K̃ (y) f(s0 + hy)dy{1 + o(1)}

= T−10 σ2
1(s0){p(x, s0)}−2q(x, x; s0){1 + o(1)}. (B.26)

Thus, from (B.25) and (B.26), we have669

(T0b)
−1
[
bσ2

1(s0){p(x, s0)}−2q(x, x; s0) + σ2(s0){Nh2p(x, s0)f(s0)}−1
∫
K2(u)du

∫
K̃2(z)dz

]
×{1 + op(1)} = (T0b)

−1ν21(x, s0).

Together with (B.22) and (B.23), the proof for asymptotic variance and bias is completed.670

Finally, as done in the proof of Theorem 2, the asymptotic normality follows from (B.21)671

by letting T →∞ first and then N →∞, and hence η(s0) is of Gaussian distribution. The672

proof is completed.673

B.2. Hat Matrix H in (14)674

We specify the hat matrix H in (14) with respect to model (1). Denote the vector of
fitted values by Ŷ such that Ŷ = HY with

Ŷ︷ ︸︸ ︷
Ŷ (s1)

Ŷ (s2)
...

Ŷ (sN)

 =

H︷ ︸︸ ︷
H11 H12 · · · H1N

H21 H22 · · · H2N
...

...
...

...
HN1 HN2 · · · HNN


Y︷ ︸︸ ︷

Y (s1)
Y (s2)

...
Y (sN)

 .
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Here, the hat matrix H is an NT0 × NT0 matrix with T0 × T0 sub-matrix Hjk = 0 for675

j 6= k, j, k = 1, . . . , N and Ŷ (sj) = HjjY (sj), with Ŷ (sj) = (Ŷr+1(sj), . . . , ŶT (sj))
′ and676

Y (sj) = (Yr+1(sj), . . . , YT (sj))
′.677

To define Hjj, note that, by model (1),

Ŷt(sj) = ĝ(Xt(sj), sj) + Zt(sj)
′β̂(sj),

where β̂(sj) and ĝ(Xt, sj) are given in (9) and (10). Hence, denoting

ĝ(X, sj) = (ĝ(Xr+1(sj), sj), . . . , ĝ(XT (sj), sj))
′ and Z(sj) = (Zr+1(sj), . . . , ZT (sj))

′,

we have678

Ŷ (sj) = ĝ(X, sj) + Z(sj)β̂(sj)

= ĝ1(X, sj) + {Z(sj)− ĝ2(X, sj)} β̂(sj)

= ĝ1(X, sj) + {Z(sj)− ĝ2(X, sj)}
{
Ẑ(sj)

′Ẑ(sj)
}−1

Ẑ(sj)
′Ŷ (sj),

where Ẑ(sj) is defined similarly to Z(sj), with Ẑt(sj) = Zt(sj) − Ê[Zt(sj)|Xt(sj)], while679

ĝ1(X, sj) and ĝ2(X, sj) are defined similarly to ĝ(X, sj), with ĝ1(Xt(sj), sj) = Ê[Yt(sj)|Xt(sj)]680

and ĝ2(Xt(sj), sj) = Ê[Zt(sj)|Xt(sj)], respectively, used in (9). It follows from Theorem 1681

that in calculating β̂(sj), a bandwidth b∗ smaller than the optimal bandwidth by AICc, b, is682

needed, which, according to empirical experience, is set as b∗ = 0.75b (c.f., (Lu and Zhang,683

2012)) in numerical examples. Then, we have684

Ŷ (sj) = ĝ1(X, sj) + {Z(sj)− ĝ2(X, sj)}
{
Ẑ(sj)

′Ẑ(sj)
}−1

Ẑ(sj)
′
{
Y (sj)− Ê[Y (sj)|X]

}
= ĝ1(X, sj) + {Z(sj)− ĝ2(X, sj)}

{
Ẑ(sj)

′Ẑ(sj)
}−1

Ẑ(sj)
′Y (sj)

−{Z(sj)− ĝ2(X, sj)}
{
Ẑ(sj)

′Ẑ(sj)
}−1

Ẑ(sj)
′Ê[Y (sj)|X]

= H1,jY (sj) +H2,jY (sj)−H2jH1,jY (sj) = {H1,j +H2,j(I −H1,j)}Y (sj) = HjjY (sj),

where H2,j = {Z(sj)− ĝ2(X, sj)}
{
Ẑ(sj)

′Ẑ(sj)
}−1

Ẑ(sj)
′ and H1,j is a T0×T0 matrix whose685

(t − r)th row is of the form e′1 {A(Xt(sj))
′B(Xt(sj))A(Xt(sj))}−1A(Xt(sj))

′B(Xt(sj)), for686

t = r + 1, . . . , T , with both A(x) and B(x) defined in Section 2.687
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