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Abstract 

Credit risk is crucial to understanding banks’ production technology and should be explicitly 
accounted for when modeling the latter. The banking literature has largely accounted for risk by 
using ex-post realizations of banks’ uncertain outputs and the variables intended to capture risk. 
This is equivalent to estimating an ex-post realization of bank’s production technology which, 
however, may not reflect optimality conditions that banks seek to satisfy under uncertainty. The 
ex-post estimates of technology are likely to be biased and inconsistent, and one thus may call 
into question the reliability of the results regarding banks’ technological characteristics broadly 
reported in the literature. However, the extent to which these concerns are relevant for policy 
analysis is an empirical question. In this paper, we offer an alternative methodology to estimate 
banks’ production technology based on the ex-ante cost function. We model credit uncertainty 
explicitly by recognizing that bank managers minimize costs subject to given expected outputs 
and credit risk. We estimate unobservable expected outputs and associated credit risk levels 
from banks’ supply functions via nonparametric kernel methods. We apply this framework to 
estimate production technology of U.S. commercial banks during the period from 2001 to 2010 
and contrast the new estimates with those based on the ex-post models widely employed in the 
literature. 
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1 INTRODUCTION 

Commercial banking is a risky business. Banks are subject to risks of many kinds among which 

credit risk and liquidity risk are the two most commonly referenced (e.g., Freixas & Rochet, 2008). 

Credit risk is associated with the likelihood that a borrower will default on the debt by failing to 

make payments as obligated contractually. Liquidity risk arises from financing long-term illiquid 

assets with short-term liquid liabilities. These risks shape banks’ production technology by 

requiring them to spend substantial resources on risk management. Therefore, researchers should 

explicitly account for these intrinsic risks when modeling banks’ production technology (Hughes 

& Mester, 1998). 

 A handful of empirical studies on microeconomics of banking account for risk-taking 

behavior of banks. With a few exceptions (Hughes, Lang, Mester & Moon, 1996, 2000; Hughes, 

Mester & Moon, 2001; Hughes & Mester, 2013), researchers customarily estimate banks’ scale and 

scope economies, productivity or efficiency by assuming away uncertainty in banks’ production 

(e.g., Berger, Hanweck & Humphrey, 1987; Clark, 1996; Berger & Mester, 1997, 2003; Wheelock & 

Wilson, 2001, 2012; Feng & Serletis, 2009, 2010). Credit risk is often (if at all) modeled  by using 

its ex-post “proxies” such as non-performing loans or the volatility of net income in prior years 

(Hughes & Mester, 1993), while liquidity risk is seldom accounted for.1 

 The use of ex-post realizations of risk and uncertain outputs (to which all above-cited papers 

resort to) is equivalent to estimating an ex-post realization of banks’ production technology which, 

however, may not reflect actual optimality conditions that banks seek to satisfy under production 

(credit) uncertainty (Pope & Just, 1996). Thus, one may call into question the reliability of the 

results regarding banks’ technological characteristics broadly reported in the literature, since the 

ex-post estimates of banking technology are likely to be biased and inconsistent (Pope & Chavas, 

1994). However, the extent to which these concerns are relevant for policy analysis is an empirical 

question. 

 In this paper, we shed light on this issue by highlighting the fundamental differences 

between the estimation of banks’ production technology under uncertainty and that under the 

assumption of a deterministic production process. We first discuss why the underlying 

production process in banking ― namely, the production of (income-generating) credit ― is 

inherently uncertain.2 Then, we review the ex-post modeling approach commonly undertaken in 

the literature which either assumes uncertainty away or models it in a somewhat ad hoc fashion. 

We contrast this approach with its ex-ante counterpart which recognizes the uncertain nature of 

the production process in banking in the first stages of modeling. We show that the ex-post 

                                                           
1 Some studies investigating banks’ profitability account for liquidity risk using ex-post liquidity ratios (e.g., long-term 
loans to liquid liabilities, liquid assets to total assets or liquid assets to deposits). See Shen, Chen, Kao and Yeh (2009) 
and references therein. 
2 Clearly, the fundamental principle of the production process in banking itself is quite certain, i.e., to borrow funds 
from one group of customers in the form of deposits and lend these funds to another group in the form of loans. 
However, the amount of loans that will ultimately generate income for a bank is uncertain because not all issued loans 
are paid back duly. Since the fraction of the nonperforming loans is unknown to banks in advance, the latter makes the 
production of performing (earnings) loans uncertain.  
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estimates of banking technology are likely to be biased and inconsistent and offer an alternative 

methodology to estimate banks’ production technology based on the ex-ante (dual) cost function 

(Pope & Chavas, 1994; Pope & Just, 1996, 1998).3 The latter acknowledges credit uncertainty 

explicitly by recognizing that bank managers minimize costs subject to given expected outputs and 

credit risk levels. We note that the estimation of the ex-ante cost function is advantageous over the 

primal approach to uncertain production processes (i.e., the expected utility maximization) 

because it is free of risk preference parameters and avoids the specification of the utility function. 

In order to make the model feasible to estimate, we estimate unobservable expected outputs and 

their associated credit risk levels from banks’ supply functions (Moschini, 2001) via 

nonparametric kernel methods. 

 We apply this ex-ante framework to data on U.S. commercial banks operating during the 

period from 2001 to 2010. The reported results on cost elasticities, scale economies and 

productivity growth are contrasted with those obtained from the ex-post models of banking 

technology. We find that output elasticities of cost computed using the ex-post estimates of 

production technology tend to be biased upwards which in turn leads to downward biases in the 

returns to scale estimates. The results, however, do not differ qualitatively across the ex-ante and 

ex-post models if one controls for unobserved bank-specific effects. In the latter case, we find that 

virtually all U.S. commercial banks (regardless of the size) operate under increasing returns to 

scale, which is consistent with findings recently reported in the literature despite the differences 

in methodology (e.g., Feng & Serletis, 2010; Hughes & Mester, 2013; Wheelock and Wilson, 2012). 

Interestingly, if we leave bank-specific effects uncontrolled (as, for instance, the three above-cited 

studies do), the results change dramatically: the ex-ante models then indicate that 23-35% and 33-

34% of large banks exhibit decreasing and constant returns to scale, respectively.4 

 When analyzing the growth in total factor productivity (TFP) and its components, we find 

that, for medium and large banks, the TFP growth estimates from the ex-ante models tend to be 

higher than those from the ex-post models. The opposite is true for small banks. In fact, results 

from the ex-ante models indicate that the average annual TFP growth is negative among small 

banks. All models suggest that the bulk of the positive productivity growth in the industry comes 

from the scale economies component. According to the ex-ante models, the asset-weighted 

average annual TFP growth due to increasing returns to scale is around 2.1-2.2% per annum 

across all banks. Despite that small banks exhibit higher economies of scale, we find that, on 

average, the TFP scale component is larger in magnitude for medium and large banks. Except for 

large banks, we find little evidence of economically significant technical progress. The level of 

expected credit risk, as measured by the volatility of earning assets, does not seem to impact 

productivity much either. For small and medium banks, we find no effect of expected risk levels 

on TFP growth; little negative effect is found for large banks.  

                                                           
3 The terms “ex-ante cost function” and “ex-post cost function” were first coined by Pope and Chavas (1994). 
4 Restrepo-Tobón, Kumbhakar and Sun (2013) similarly document that one is more likely to find the evidence of non-
increasing returns to scale among commercial banks if unobserved effects are ignored. 
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 The rest of the paper unfolds as follows. Section 2 discusses why the nature of banks’ 

production process is inherently uncertain (stochastic) and describes the framework suitable to 

address this uncertainty in the estimation of banking technology. Section 3 provides a description 

of the data. The details of the estimation and the results are presented in Section 4. Section 5 

concludes. 

 

2 STOCHASTIC BANKING TECHNOLOGY 

To avoid confusion, we note that, throughout the paper, we use the word “stochasticity” in its 
economic rather than econometric meaning, i.e., when saying “stochasticity” we mean 
“uncertainty” of the production process. 
 

2.1. CREDIT UNCERTAINTY 

We start by examining how the “production” is conceptually formalized in the case of banks. The 

framework broadly employed in the literature is the so-called “intermediation approach” of 

Sealey and Lindley (1977), according to which a bank’s balance sheet is assumed to capture the 

essential structure of a bank’s core business. Liabilities, together with physical capital and labor, 

are taken as inputs to the banks’ production process, whereas assets (other than physical) are 

considered as outputs. Liabilities include core deposits and purchased funds; assets include loans 

and trading securities. Thus, this framework suggests the following mapping 

�	� ∈ ℝ�� ; 		 ∈ ℝ�
	� 		→ 		 
	� ∈ ℝ��	�	,																																																																																																				(2.1) 
where � is a � × 1 vector of variable inputs that include a bank’s liabilities; 	 is a � × 1 vector of 

(quasi-)fixed inputs5 (if any); and � is an � × 1 vector of outputs (assets and securities).  

 Numerous studies such as Berger and Mester (1997, 2003), Hughes and Mester (1998), 

Wheelock and Wilson (2001, 2012), Feng and Zhang (2012) among many others have used the 

above framework in their analysis of banking technologies. However, two points are worth 

mentioning here. First, most studies commonly specify total issued loans and securities as banks’ 

outputs, whereas Sealey and Lindley (1977) argue at length that “only earning assets as outputs 

are consistent with rational profit maximizing behavior” (p.1260; emphasis added). Normally, 

not all issued loans are paid back duly. One may argue that it is more appropriate to consider 

only “performing” loans as earning assets and thus as banks’ output. We recognize that Sealey 

and Lindley (1977) made the above argument largely to justify the inappropriateness of treating 

deposits as banks’ outputs: loans, not deposits, earn banks income. In this paper, we however 

take Sealey and Lindley’s (1977) argument a step further by tightening the definition of earning 

assets as those that actually earn income (i.e., performing loans) as opposed to merely have the 

                                                           
5 Some studies of banks’ production technologies also incorporate financial (equity) capital and income from off-
balance-sheet activities as quasi-fixed netputs (e.g., Berger & Mester, 1997, 2003). We address this issue in detail later 
in the paper. 



   
 

 5  

 

potential to.6 In fact, most existing studies do acknowledge the difference between the issued and 

performing loans (called non-performing loans), as we will see below. Note that no such 

difference exists in Sealey and Lindley (1977) who explicitly assume that all assets are payable in 

full at maturity and that neither loans nor securities are subject to default (credit) risk (p.1255). 

This brings us to the second point. 

 The original framework of Sealey and Lindley (1977) implies that the mapping in (2.1.) is 

deterministic, since no assets are subject to credit risk. However, the latter assumption is rather 

strong and unrealistic. A desired alternative is to relax this assumption by allowing the bank’s 

production process (2.1) to be stochastic (uncertain). By doing so, one would acknowledge that 

bank managers do not have perfect foresight and understand that some fraction of the issued 

loans may not be repaid. Note that this is consistent with the fact that banks actively engage in 

risk management which includes pre-screening of applicants, monitoring, collateralizing loans 

and hedging. These risk mitigating activities are based on a bank’s expected risk as opposed to 

realized risk. Formally, we define performing (��) and non-performing (��) loans and securities 

such that � = �� + ��, where � is a vector of total issued loans. The bank’s production process 

under credit uncertainty may then be represented as 

�	� ∈ ℝ�� ; 		 ∈ ℝ�
; 	� ∈ ℝ� 	� 		→ 		 
	�� ∈ ℝ��	�	,																																																																																(2.2) 
where �� is an � × 1 vector of earning assets (i.e., performing loans and securities); and � is an � × 1 vector of corresponding mean-zero stochastic disturbances that represent the credit risk.  

 To clearly see the difference between the two formulations of the production process ― 

deterministic (2.1) and stochastic (2.2) ― we consider the banking technology represented by the 

primal production function. For the ease of discussion and notational simplicity, we use a 

simplified single-output representation of the bank’s technology throughout this section. Then, 

the deterministic production function corresponding to the input-output mapping (2.1) takes the 

following form 

� =  (�, 	)	,																																																																																																																																																	(2.3) 
where � is an output scalar, say, corresponding to total assets; � and 	 are as defined above; and  (∙) is the production function. 

 Explicit modeling of credit risk leads to a stochastic production function, corresponding to 

(2.2), which can take the form 

�� = #(�, 	, $) ≡  (�, 	) exp($),																																																																																																									(2.4) 
where �� is an output scalar corresponding to a total of earning assets; $ is an i.i.d. random 

disturbance with *+$|�, 	- = 0 and *+$/|�, 	- = 0/. Equation (2.4) tells that output is not 

deterministically determined by a bank’s inputs and may deviate from  (∙) in the presence of a 

                                                           
6 This narrowed definition is consistent with a more realistic banks’ objective, i.e., to maximize expected profits as 
opposed to maximize the potential for profits. It is also consistent with the proposition that bank managers (or banks 
themselves) maximize expected utility drawn from actual profits, not from the potential for profits. 



   
 

 6  

 

non-zero exogenous shock $. The latter is more consistent with the reality that banks face than 

the assumption of no credit uncertainty implied by (2.3).  

 Modeling production as a stochastic (uncertain) process is not novel in economics (e.g., 

Feldstein, 1971; Antle, 1983); the approach is a common practice among agricultural economists 

[see Just and Pope (2002) and references therein].  Note that, while production function (2.4) 

allows for uncertainty in credit production by banks, it however assumes that the credit risk, as 

measured by the standard deviation of the output (a common measure of risk), is bank-invariant 

and cannot be influenced by banks. These two implications are too restrictive: (i) banks differ 

from one another in their riskiness and (ii) they actively engage in risk management thus (at least 

partly) influencing the magnitude of risk that they are exposed to. We can adopt the above factors 

into the production function as follows (Just & Pope, 1978) 

�� = #(�, 	, $) ≡  (�, 	) + $ℎ(�, 	)	,																																																																																																		(2.5) 
where $ is an i.i.d. mean-zero, unit-variance random disturbance. However according to equation 

(2.5), the volatility of output is no longer the same across banks and can now be affected by a 

bank’s efforts as captured by the risk-management function ℎ(∙) ≥ 0. In other words, the standard 

deviation 4+��|�, 	- = 0ℎ(�, 	) ≠ 0. 

 One might think that, econometrically, the difference between the deterministic and 

stochastic formulations of the bank’s production process [(2.1) and (2.2), respectively] is miniscule 

if one estimates the bank’s production technology directly. The only difference between (2.3) and 

(2.5) is that the latter has the output defined as performing loans as opposed to total issued loans 

and that it has a heteroskedastic error. However, the difference will become more pronounced 

when one introduces the bank manager’s behavior into the analysis (optimization and risk 

preferences), as we will see below. In what follows, we explicitly distinguish between 

deterministic and stochastic formulations of banking technology as well as between the issued, 

performing and non-performing loans (�, �� and ��, respectively). 

 

2.2. THE EX-ANTE COST FUNCTION 

When estimating banking technology in an attempt to obtain some metric of production 

technology such as economies of scale or scope, technical change, productivity or efficiency, most 

studies in the literature use the dual approach (e.g., Hughes & Mester, 1993, 1998, 2013; Hughes 

et al., 1996, 2001; Wheelock & Wilson, 2001, 2012; Feng & Serletis, 2009, 2010; Restrepo-Tobón et 

al., 2013). By assuming that banks minimize costs, these studies are able to quantify banks’ 

technology by estimating the dual cost function.7 This is advantageous over the estimation of a 

primal specification of the production process mainly because it avoids the use of input quantities 

                                                           
7 An alternative approach is to estimate the dual profit function under the premise of profit maximization. This is 
mostly popular amid the studies of inefficiency in the banking industry in the stochastic frontier framework (e.g., 
Berger & Humphrey, 1997). 
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on the right-hand side of the regression equation which can lead to simultaneity (endogeneity) 

problems given that the input allocation is endogenous to a bank’s decisions.  

 However, the majority of these studies appeal to a standard dual theory based on a 

deterministic production process like the one in (2.3), according to which the bank’s dual cost 

function is defined as (in a single-output case) 

6(�,7, 	) = min� 
	�′7	|	� ≤  (�, 	); 		 = 	=	�	,																																																																																(2.6) 
where 6 is the variable cost (cost of variable inputs); 7 is a vector of the competitive variable 

input prices; 	 is a vector of (quasi)-fixed inputs or “control variables” with the corresponding 

vector of observed (fixed) values 	=; and the remaining arguments are as defined before.  

 Since the above method takes the risky nature of banking operations for granted, several 

attempts have been made to incorporate risk into the estimation of the banking technology. 

Hughes and Mester (1993, 1998) propose to condition the bank’s cost function on financial 

(equity) capital and output quality (inverse of credit risk). By doing so, they allow (directly or 

indirectly) the price of uninsured deposits and the level of equity capital to be endogenous to a 

bank’s decisions. The inclusion of the above variables into the cost function is motivated by a 

bank manager’s utility maximization problem, according to which utility is a function not only 

of profits but also of output quality and equity capital. According to Hughes and Mester (1993, 

1998), inclusion of output quality into a manager’s utility function reflects the trade-off between 

profits and the credit risk associated with them. Equity capital may be a source of loanable funds 

and thus can be used as a cushion against liquidity risk; it can also be a means of signaling the 

degree of a bank’s credit riskiness to its depositors.  

 There may, however, be some concerns about implementing this method in practice. First, 

since the risk is not observed ex ante, researchers often resort to using its ex-post realizations. 

Output quality and risk are usually proxied by the ex-post ratio of non-performing loans to total 

issued loans and by the average standard deviation of the bank’s yearly net income during five 

prior years, respectively. Second, the underlying utility-maximization framework, based on 

which the dual cost function is ultimately defined in Hughes and Mester (1998), is still 

deterministic in its core. The latter amounts to an implicit assumption that risk and profits are 

known to bank managers ex ante, which might be rather strong. 

 A more general treatment of the banks’ risky technology is offered by Hughes, Lang, Mester 

and Moon (1996, 2000) and Hughes, Mester and Moon (2001) who propose a model in which bank 

managers rank production plans (i.e., the set of input mix, output level and quality, and the level 

of equity capital) and profits according to their risk preferences and subjective conditional 

probability distribution of states of the world. The model is then estimated using Deaton and 

Muellbauer’s (1980) almost ideal demand system which produces the “most-preferred” cost-

function. However, the concerns we express above are still likely to apply. While conditioning 

the bank managers’ utility-maximization problem on their subjective probability distributions 

does free the model from stochasticity, it however comes at a cost. The model would then include 
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expected values (and possibly higher moments) of all inherently stochastic arguments of the 

utility function which are unobserved at the time of decision-making. That is, managers would 

rank production plans based on the expected outputs, risk and profits. Given that the latter 

variables are unobserved, one may instead use their ex-post realizations in the estimation.8 Doing 

the latter would be equivalent to estimating banks’ ex-post cost function which, however, may not 

reflect the actual optimality condition that bank managers seek to satisfy under production 

uncertainty (Pope & Just, 1996).  

 An alternative approach to modeling banks’ risky technology would be to recognize the 

uncertainty associated with the credit production by letting bank managers maximize expected 

utility subject to appropriate economic constraints. The principal drawback of this approach, 

however, is the need to either specify managers’ utility function or, under certain conditions, its 

mean-variance representation in order to quantify banking technology (e.g., Chavas, 2004). To 

avoid this, we instead suggest invoking the duality (under uncertainty) and recovering a bank’s 

technology from its ex-ante cost function which is free of bank managers’ risk preference 

parameters (Pope & Chavas, 1994; Pope & Just, 1996; Moschini, 2001).  

 We rely on results by Pope and Chavas (1994) who show that an ex-ante cost function of the 

following form (in our notation) 

6(?,7, 	) = min� 
	�′7	|	? ≤ @(�, 	); 		 = 	=	� 	,																																																																														(2.7) 
is consistent with (the bank managers’) expected utility maximization if and only if the revenue 

function takes the form B+@(�, 	), $,∙-, where $ is a stochastic error in the production process #(�, 	, $), and @(∙) is an 4 × 1 vector of non-random constraints with the corresponding vector of 

levels ?. This implies that the cost minimization is interpreted as the first stage in a two-step 

decomposition of expected utility maximization (where the expected utility is set to be a function 

of uncertain profits). Intuitively, the above proposition says that the constraints @(∙) need to hold 

both expected revenue (i.e., expected output, given there is no price uncertainty) and the risk 

premium constant (Pope & Chavas, 1994, p.200).  

 In particular, under the assumption that the banking production technology takes the form 

in (2.5), where a bank’s risk-management efforts are explicitly accounted for, the ex-ante cost 

function consistent with the bank managers’ expected utility maximization is 

6(CD, C/, 7, 	) = min� 
	�′7	|	CD ≤  (�, 	);	C/ ≤ ℎ(�, 	); 		 = 	=	�	,																																										(2.8) 
which is equivalent to 

6F�G�, 0GHI , 7, 	J = min� 
	�′7	|	�G� ≤ *+#(�, 	, $)-; 	0GHI ≤ 
*K#(∙) − *+#(∙)-M/�D//; 		 = 	=	� 										(2.9) 
The above equivalence holds because *+#(�, 	, $)- =  (�, 	) and 
*K#(�, 	, $) − *+#(∙)-M/�D// =0ℎ(�, 	), where the latter is proportional to ℎ(�, 	) [for details, see Pope and Chavas (1994)].  

                                                           
8 As, for instance, Hughes et al. (1996, 2000, 2001) do. 
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 Equation (2.9) says that under credit uncertainty banks minimize cost holding expected 

output and expected standard deviation of output (that is, risk) constant. We note that the ex-ante 

cost minimization would be constrained by expected output only [regardless of the functional 

form of the production function #(�, 	, $)], if one is willing to assume a risk-neutral behavior by 

bank managers. This means that one should not justify the estimation of an ex-post cost function 

such as (2.6) or any modifications of it, which uses realized (ex-post) values of outputs and risk, 

by the assumption of risk-neutrality. We also emphasize that the cost 6 in (2.9) by no means 

excludes banks’ expenses associated with actual nonperforming loans. The latter is consistent 

with bank managers optimally allocating inputs � ex-ante based on their expected quantity of 

performing loans �G� (and the expected volatility in this quantity 0GHI), because one may not know 

in advance which loans that banks issue would eventually become nonperforming ex-post. 

 To demonstrate the implication of estimating the ex-post as opposed to ex-ante cost function, 

we consider a simple example of a stochastic production function taking the form in (2.4). If we 

assume a single-input production (i.e., � is a scalar and 	 = =) and let the dual cost function take 

the translog form, the corresponding ex-ante cost function is 

ln 6 = QR + QD ln �G� + 12Q/(ln�G�)/ + SD lnT + 12S/(lnT)/ + U ln �G� lnT																									(2.10) 
where �G� is the expected output.9 However, as argued above, researchers traditionally estimate 

the ex-post cost function using the realized output. Thus, substituting �G� =  (V) = �� exp(−$) 
from (2.4) into (2.10) yields 

ln 6 = QR + QD ln �� + 12Q/(ln��)/ + SD lnT + 12S/(lnT)/ + U ln �� lnT + 	W	,															(2.11) 
where W = X−QD$ + D

/Q/$/ − Q/$ ln �� − U$ lnTY is the “error” that clearly is not mean-zero and is 

correlated with covariates through ln �� and lnT. Therefore, the estimates of banking technology 

produced by the ex-post cost function are likely to be biased and inconsistent.10 Moreover, Pope 

and Just (1996) show that the ex-post cost function may not necessarily have all standard 

properties of cost functions such as concavity in input prices; however, all properties apply to the 

ex-ante cost function. 

 

3 DATA 

The data we use come from Call Reports publically available from the Federal Reserve Bank of 

Chicago. We include all FDIC insured commercial banks with reported data for 2001:I-2010:IV. 

We exclude internet banks, commercial banks conducting primarily credit card activities and 

banks chartered outside the continental U.S. We also omit observations for which negative values 

                                                           
9 Here we use the narrow definition of earning assets as discussed above: performing loans (��), rather than total 
issued loans (�), are treated as the output. 
10 Here we abstract from other potential sources of biases across both the ex-post and ex-ante cost functions, such as 
biases due to the misspecification of the model, etc. 
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for assets, equity, outputs, off-balance-sheet income and prices are reported. The resulting data 

sample is an unbalanced panel with 64,581 bank-year observations for 7,535 banks. All nominal 

stock variables are deflated to 2005 U.S. dollars using the Consumer Price Index (for all urban 

consumers).  

 We follow the abovementioned “intermediation approach” and define the following 

earning outputs for the ex-ante cost function: performing consumer loans (�D�), performing real 

estate loans (�/�), performing commercial and industrial loans (�Z�) and earning securities (�[�).11 

These output categories are essentially the same as those in Berger and Mester (1997, 2003). The 

variable inputs are labor, i.e., the number of full-time equivalent employees (VD), physical capital 

(V/), purchased funds (VZ), interest-bearing transaction accounts (V[) and non-transaction 

accounts (V\). We also specify two quasi-fixed netputs: off-balance-sheet income (]^_) and equity 

capital (`) (e.g., Berger & Mester, 1997, 2003; Feng & Serletis, 2009). We thus concur with Hughes 

and Mester’s (1993, 1998) argument that banks may use equity capital as a source of loanable 

funds and thus as a cushion against losses. We compute the price of inputs [7 = 
Ta�abD\ ] by 

dividing total expenses on each input by the corresponding input quantity. Similarly, the price of 

outputs [c = 
de�ebD[ ] is computed by dividing total revenues from each output by the 

corresponding output quantity. We discuss the use for output prices in Section 4. Lastly, total 

variable cost (6) equals the sum of expenses on each of the five variable inputs.12 Table 1 presents 

summary statistics of the data used in the analysis. For details on the construction of the variables, 

see the Appendix. 

[insert Table 1 here] 

 

4 ESTIMATION AND RESULTS 

Under the assumption of risk-aversion and a bank’s production process that explicitly accounts 

for bank-varying credit uncertainty and risk-management efforts as represented by (2.5), the 

estimation of the ex-ante cost function (2.9) requires the knowledge of bank managers’ expectations 

of the levels of earning outputs (�f�) and associated credit risk levels as captured by the standard 

deviations (gf�I). These expected outputs and volatility are not observed but can be estimated. 

For instance, Pope and Just (1996, 1998) suggest letting the ex-ante cost function take a self-dual 

functional form so that one can recover the underlying production function in its closed form. 

One can then use the recovered production function to estimate the expected value of outputs 

(i.e., conditional mean) by regressing their ex-post realizations on inputs.13 Flexible functional 

                                                           
11 These earning outputs are computed by subtracting the value of nonperforming loans and securities from the 
corresponding reported total values, i.e., �e� = �e − �e� 		∀	i = 1,… ,4. 
12 As previously discussed, note that the total variable cost (6) includes expenses associated with total issued loans and 
securities (both those which turn out being performing and nonperforming) because the bank managers allocate inputs 
ex-ante, i.e., before they know which loans would eventually become nonperforming.  
13 Note that one does not need to regress outputs on inputs in order to obtain expected output levels per se: they can 
rather be recovered indirectly inside the numerical optimization algorithm (see Pope & Just, 1996 for details). This 
approach, however, is still subject to Moschini’s (2001) criticism. 
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forms such as the translog or Fourier clearly do not belong to the family of such self-dual cost 

functions. Further, this approach is subject to criticism since it introduces endogeneity into the 

estimation because inputs are endogenous to banks’ cost-minimizing decisions (for details, see 

Moschini, 2001). 

 We do not wish to restrict our analysis to an inflexible self-dual specification of the ex-ante 

cost function and therefore follow an alternative approach. We opt to recover bank managers’ 

expectations of outputs and risk levels (as measured by volatility) via kernel methods as 

suggested by Pope and Chavas (1994). This allows us to let the cost function take any desired 

form, particularly the translog which is widely used in the banking literature. Thus, the 

estimation of the ex-ante cost function consists of two stages: (i) the estimation of the unobserved 

expected outputs and associated credit risk levels and (ii) the estimation of banks’ production 

technology via cost function. 

 In the first stage, we estimate the expectations of banks’ outputs and their associated credit 

risk levels via nonparametric kernel methods. In order to avoid the introduction of endogeneity 

by estimating the production function as described above, here we follow Moschini’s (2001) 

advice and instead estimate the corresponding (nonparametric) supply functions that are 

functions of exogenous output and input prices, and quasi-fixed inputs: �e� = ke(c,7, `)		∀		i =1,… ,4, where the subscript i designates one of the four outputs. We use the local-constant least 

squares estimator14 to estimate the bank-year-specific expected outputs (�Ge�), i.e., 

�Ge�lm(n) = opp�qrlm − ns tu

mbD

v

lbD
w
�D

opp�e�lm� qrlm − ns tu

mbD

v

lbD
w	,																																																				(4.1) 

where rlm ≡ (clm , 7lm, `lm) is a vector of arguments of the supply function15; �(∙) is a product kernel 

function (Racine & Li, 2004);16 and s is a vector of optimal bandwidths which we select via the 

data-driven least squares cross-validation (LSCV) method (Li & Racine, 2004).17 We divide the 

output and input prices by the price of one of the outputs in order to impose the homogeneity of 

degree zero onto the supply function. 

                                                           
14 We opt for the local-constant estimator as opposed to the local-polynomial estimator (which has the same asymptotic 
variance but smaller bias) because the selection of optimal bandwidths for the former is less computationally 
demanding than for its alternatives. The latter is a non-negligible issue given a large sample size of the dataset we use 
as well as the number of estimations we need to perform. 
15 In order to control for year and fixed effects, we also include the time trend as well as an unordered bank-index 
variable. This is similar in nature to the least squares dummy variable approach in parametric panel data models with 
fixed effects. 
16 We use a second-order Gaussian kernel for continuous covariates and Racine and Li‘s (2004) kernels for ordered and 
unordered covariates (i.e., the time trend and the bank index, respectively). 
17 Given that the cross-validation (CV) function is often not smooth in practice, we use multiple starting values for 
bandwidths when optimizing the function in order to ensure a successful convergence. Also, although we use constant 
bandwidths in our analysis, we acknowledge that one may instead prefer the use of adaptive bandwidths which adjust 
to the local sparseness of the data (if there is any). The selection of the adaptive bandwidths would however be more 
computationally demanding, especially given a relatively large number of dimensions in which the CV function needs 
to be optimized.  
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We obtain the estimates of expected credit risk level (0GHxI ) corresponding to each of the four 

outputs, as standardly measured by their volatility, by nonparametrically regressing the squares 

of residuals from (2.12) on rlm. The latter produces the bank-year-specific estimates of conditional 

variances of the four outputs (under the mean-zero assumption for the error terms).18 Similarly, 

here we use the LSCV to select optimal bandwidths. Note that the use of the local-constant 

estimator automatically ensures that no negative fitted values of the variance are produced. 

Figure 1 presents histograms of these expected credit risk estimates tabulated by the bank-size 

category. We classify a bank as “small” if its total assets are below $100 million, “medium” if total 

assets are between $100 million and $1 billion, and “large” if total assets exceed $1 billion. Here, 

we plot an output-weighted expected risk (scaled down by its standard deviation) in order to 

avoid plotting four different risk measures associated with each of the four outputs that we 

consider. As expected, the distributions are positively skewed with mean (median) risk increasing 

with the size of the bank. The fit in both the estimation of �f� and gf�I, measured by the square of 

the correlation coefficient between the actual and predicted values, is as high as 0.99.19  

[insert Figure 1 here] 

In the second stage, we estimate the multi-output generalization of the ex-ante cost function 

under risk-aversion (2.9) which takes the following form (under the translog specification)20 

ln 6lm = yR + p ye ln �Ge�lm
[

ebD
+ 12 p pyez ln �Ge�lm ln �Gz�lm

[

zbD

[

ebD
+ 

															p Qe ln 0GHxI lm
[

ebD
+ 12 p pQez ln 0GHxI lm ln 0GH{Ilm

[

zbD

[

ebD
+ p pSez ln �Ge�lm ln 0GH{Ilm

[

zbD

[

ebD
+ 

																pUa lnTalm
\

abD
+ 12ppUa| lnTalm lnT|lm

\

|bD

\

abD
+ 

																p p}ea ln �Ge�lm lnTalm
\

abD

[

ebD
	+ p p~ea ln 0GHxI lm lnTalm

\

abD

[

ebD
+ 

																	p�� ln ��lm
/

�bD
+ 12pp��� ln ��lm ln ��lm

/

�bD

/

�bD
+�D� + 12�DD�/ + 

                                                           
18 McAllister and McManus (1993) use a similar nonparametric procedure to estimate the expected rate of return and 
associated expected risk for U.S. banks. 
19 To conserve space, we do not report the detailed results from the first stage (they are available upon request) and 
directly proceed to the discussion of the main results from the second stage. 
20 Note that, like in the first stage, the ex-ante cost function could have been alternatively estimated via nonparametric 
kernel methods. In this paper, we however opt for (admittedly more restrictive) translog specification. We 
acknowledge that several papers have documented that the translog form may sometimes be a poor approximation of 
banks’ cost function (e.g., Wheelock & Wilson, 2001, 2012). We nevertheless opt for this parametric specification in 
order to facilitate the comparison of our findings with the results in the existing banking literature that overwhelmingly 
favors the translog specification. 
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																	p p�e� ln �Ge�lm ln ��lm
/

�bD

[

ebD
	+ p p�e� ln 0GHxI lm ln ��lm

/

�bD

[

ebD
+pp�a� lnTalm ln ��lm

/

�bD

\

abD
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																	p �eD ln �Ge�lm �
[

ebD
	+ p �e/ ln 0GHxI lm �

[

ebD
+p�aZ lnTalm �

\

abD
+p��[ ln ��lm �

/

�bD
+ �l																	(4.2) 

where 	 = (]^_, `)′; � is the time trend; �l is the bank-specific (unobserved) fixed effect; and the 

remaining variables are as defined before. To account for unobserved heterogeneity, we include 

bank-specific fixed effects (�l) in the above cost function. The latter is broadly overlooked in the 

literature which might lead to biased and misleading results (see the discussion in Restrepo-

Tobón et al., 2013). We also include the time trend to capture time effects/technical change.  

In order to analyze how the use of (i) different approaches to accommodate credit 

uncertainty in the analysis of banks’ cost technologies and (ii) different definitions of banks’ 

earning outputs (total issued loans and securities versus performing loans and securities) affects 

the conclusions that researchers draw about the banking technology, we estimate a number of 

auxiliary models in addition to the ex-ante cost function under risk-aversion in (4.2).  For the ease 

of discussion, below we define all second-stage models we estimate. 

Model I. The model of banking technology under credit uncertainty and risk-aversion in the 

form of the ex-ante cost function (4.2). 

Model II. The model of banking technology under credit uncertainty and risk-neutrality in 

the form of the ex-ante cost function. Here, we estimate (4.2) with the expected risk measures 

omitted from the equation (see the discussion in Section 2.2). 

Model III. The model of banking technology estimated via the ex-post cost function. Here, we 

estimate (4.2) with realized values of performing loans and securities (��) used as earning 

outputs (as opposed to expected values �f�) and the expected risk measures omitted from the 

equation. 

Model IV. The model of banking technology estimated via the ex-post cost function with total 

issued loans and securities (�) used as earning outputs. No risk measures are included. This is 

the most commonly estimated model in the banking literature.  

Model V. The model of banking technology estimated via the ex-post cost function with total 

issued loans and securities (�) used as earning outputs. Here, we add an ex-post measure of 

credit risk as proxied by the ratio of total nonperforming loans to issued loans, widely used 

in the literature to “control” for risk in an ad hoc manner. 

The fixed-effect adjustment is done via the within transformation. For all model specifications, 

we estimate the SUR system consisting of the cost function and the corresponding input cost share 

equations, onto which we impose the symmetry, linear homogeneity (in input prices) and cross-

equation restrictions. 
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4.1. ELASTICITIES 

We first examine the differences between the models in terms of implied elasticities of banks’ 

costs. Table 2 reports average elasticity estimates for outputs, input prices, quasi-fixed netputs 

and the time trend from all five models, based on which we can make several observations.  

[insert Table 2 here] 

 As expected, estimates of input price elasticities do not differ across the models since they 

are constrained by the same input cost share equations. However, when examining output 

elasticities, we find that, while there are little differences within the groups of ex-ante (I and II) 

and ex-post (III through V) models, there are dramatic changes across the two groups. In the case 

of all four outputs, the ex-ante Models I and II report average elasticities that are significantly 

smaller than those from the ex-post Models III, IV and V. For instance, the estimated elasticity of 

cost with respect to consumer loans (���d��	1) from Models I and II is, on average, 2.9 times 

smaller than its counterpart obtained from Models III through V. The difference is of similar 

magnitude in the case of securities (���d��	4). Notably, all five models show that banks’ cost is 

the most sensitive to changes in the level of real estate loans (���d��	2). However, the two groups 

differ in the second most “cost-influential” output: commercial loans (���d��	3) according to 

Models I and II versus securities (���d��	4) as predicted by Models III through V. 

 For equity capital (`), the differences in mean elasticities are miniscule. We consistently find 

it to be positive across the models, which leads us to conclude that banks do not rely on financial 

capital as a source of loanable funds but rather consider it as an “output”. This is in line with 

Hughes and Mester’s (1998) argument that banks might use equity capital as a means of signaling 

their overall riskiness to customers.21  

[insert Table 3 here] 

 

4.2. SCALE ECONOMIES 

Table 3 presents the summary statistics of the point estimates of returns to scale based on all five 

models over the entire sample period.22 We break down the results by the asset size of banks. 

Overall, we find the returns to scale estimates from the ex-ante Models I and II to be larger than 

those from Models III, IV and V. This result was expected given our findings that the output 

elasticities, based on the results from ex-ante models, are consistently smaller than those from ex-

post models. Recall that returns to scale estimates are the inverse of the sum of cost elasticities 

with respect to outputs. These downward biases in returns to scale estimates produced by the ex-

                                                           
21 This result may also stem from the fact that financial regulations require equity (financial) capital to expand in 
proportion to loans. 
22 When computing these summary statistics, we omit the first and the last percentiles of the distribution of the returns 
to scale estimates, in order to minimize the influence of outliers. However, the omitted estimates correspond to the 
same observations across all five models, in order to keep the results comparable. We therefore can still cross-reference 
results from different models at the bank level. 
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post Models III through V are more apparent in Figure 2 which plots kernel densities of these 

estimates. 

[insert Figure 2 here] 

The right pane of Table 3 also reports the groupings of banks by the returns to scale 

categories: decreasing returns to scale (DRS), constant returns to scale (CRS) and increasing 

returns to scale (IRS). We classify a bank as exhibiting DRS/CRS/IRS if the point estimate of its 

returns to scale is found to be statistically less than/equal to/greater than one at the 95% 

significance level.23 The empirical evidence suggests that there is little (if any at all) qualitative 

difference in scale economies across the models: virtually all banks are found to exhibit IRS 

regardless whether the ex-ante or ex-post cost function is being estimated. These findings of IRS 

are consistent with those recently reported in the literature despite the differences in 

methodology (e.g., Feng & Serletis, 2010; Hughes & Mester, 2013; Wheelock and Wilson, 2012). 

However, examining the Spearman’s rank correlation coefficients of the scale economies 

estimates across the models (see Table 4) suggests striking differences in rankings of the banks. 

The rank correlation coefficient between the ex-ante models and ex-post models is around 0.3 for 

small banks, 0.45 for medium size banks and 0.6 for large banks.24 

[insert Table 4 here] 

Notably, the results on economies of scale change dramatically if we do not account for 

unobserved bank-specific heterogeneity when estimating the models, as commonly done in the 

literature (e.g., Hughes et al. 2001; Wheelock and Wilson, 2012). We find that biases in returns to 

scale estimates from the ex-post Models III through V are no longer uniformly negative across all 

bank-size categories. In particular, these models tend to over-estimate the scale economies for 

large banks. The ex-post Models III, IV and V estimate that 88-89% of large U.S. banks exhibit IRS, 

whereas the results from the ex-ante Models I and II indicate that 23-35% and 33-34% of large 

banks exhibit DRS and CRS, respectively.25  

 

4.3. PRODUCTIVITY 

The estimation of the cost function allows the econometric decomposition of the total factor 

productivity (TFP) growth (defined as �#�� = �� − ∑ kaV�a�abD  in a single-output case26) into several 

components (e.g., Denny, Fuss & Waverman, 1981). However, the latter procedure is designed 

for production processes under certainty, which is clearly not the case in our study. For instance, 

Solow (1957) derives this Divisia index assuming that the production process is deterministic. In 

order to be able to follow his derivation in the presence of uncertainty, one first needs to take the 

expected values of both sides of the production function. It is easy to show that in this case, the 

                                                           
23 Standard errors are constructed using the delta method. 
24 We note that one ought to be careful here when comparing rankings using the Spearman’s rank correlation coefficient 
because the latter does not account for the estimation error associated with the estimation of scale economies. 
25 To conserve space, we do not report detailed results from these models; they are available upon request. 
26 Here, the “dot” designates the growth rate and ka  is the cost share of the �th input. 
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Divisia index of the TFP growth (with a single output) will be defined as �#�� = �G� − ∑ kaV�a�abD , 

where the growth in expected output (�G) rather than actual output is used. Naturally, one can claim 

that asymptotically the two measures will be the same since the average of errors approaches zero 

as � → ∞. However, the latter will not hold true if the variance of the error conditional on inputs 

is not constant over time, as we have in our case where banks are explicitly allowed to manage 

risk through the time-dependent ℎ(∙) function in (2.5). Further, as we have discussed in Section 

2, the choice of outputs is ambiguous in the case of banks. Researchers have customarily used 

total issued loans and securities as banks’ earning outputs, whereas we employ a more narrow 

definition in this paper by considering performing loans and securities only as banks’ outputs. 

We therefore compute three different Divisia indices of the TFP growth.27 

Divisia 1. The Divisia index of the TFP growth computed using expected earning outputs 

(�f�). This index is comparable to the TFP estimates from the ex-ante Models I and II. 

Divisia 2. The Divisia index of the TFP growth computed using realized values of earning 

outputs (��). This index is comparable to the results from the ex-post Model III. 

Divisia 3. The Divisia index of the TFP growth computed using realized values of outputs 

that include nonperforming loans and securities (�). This index is comparable to the results 

from the ex-post Models IV and V. 

[insert Figure 3 here] 

Figure 3 plots these indices normalized to a hundred in 2001.28 The three indices are virtually 

indistinguishable up until 2005, when the divergence between the Divisia index 1 and the 

remaining two indices starts. The Divisia 1 indicates that banks had higher expectations of 

productivity growth up until the onset of the financial crisis in 2007. In 2008, however, the 

expectation-based productivity growth plunges down. Notably, there has been a growing gap 

between index 2 and 3 since 2007. We attribute this to the inability of the Divisia index 3 to account 

for a large share of nonperforming loans that banks have been handling after the crisis. Overall, 

we estimate the productivity in the industry to have grown by 9% over the 2001-2010 period.  

As noted before, we can decompose the TFP growth by estimating its components 

econometrically from the dual cost function. By adding and subtracting the Divisia index 1 from 

the ex-ante cost function (4.2) of Model I and then totally differentiating the latter with respect to 

time, it is easy to show that the TFP growth can be decomposed into 

�#�� = p��e − � ln6F�f�, gf�I , 7, 	J� ln �Ge� ��G�e�e
	+	p�ka − � ln 6(∙)� lnTa �T�aa

	− 

                                                           
27 Since we have four outputs, we follow the literature and use the revenue-shared weighted output growth when 

computing the TFP growth, i.e., �#�� = ∑ �e��e[ebD − ∑ kaV�a\abD , where �e is the revenue share of the ith output. 
28 Since the Divisia index is bank-specific, in order to construct the plot we use the asset-weighted average annual TFP 
growth rates. 
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														p� ln6(∙)� ln �l ��ll
	− 	p� ln6(∙)� ln 0Ge� 0G�e�l

	−	� ln 6(∙)� ln � 		,																																																																(4.3) 
where �e is the revenue share of the ith output; ka is the cost share of the �th input; 	 = (]^_, `)′; 
and the remaining variables are as defined before. The “dot” designates the growth rate. 

The components in (4.3) are defined as follows [in order of appearance in (4.3)]: (i) “scale 

component” which can be shown to consist of two subcomponents which depend on returns to 

scale and the mark-up (departure of output prices from their respective marginal costs); (ii) 

“allocative component” which captures the effects of non-optimal input allocation; (iii) 

“exogenous component” which captures effects of quasi-fixed netputs (here, off-balance-sheet 

income and equity capital); (iv) “risk component” which accounts for the effect of the risk levels; 

and (v) “technical change” that captures temporal shifts in the estimated cost function.29 Clearly, 

the definition of the outputs will be changing with the model: �G� vs. �� vs. �. Further, we will 

have the risk component only when estimating Models I and V (recall they are the only ones that 

control for risk).30 

[insert Table 5 here] 

We report the TFP growth components across the models in Table 5. For medium and large 

banks, the TFP growth estimates from the ex-ante Models I and II are higher than those from the 

ex-post Models III through V. The opposite is true for small banks. In fact, we find that the average 

annual TFP growth is negative for small banks, based on Models I and II.  

We consistently find the exogenous component to negatively contribute (about -1%) to the 

TFP growth across all five models and all bank-size categories. There is also some evidence of 

negative effects of input misallocation on TFP in the case of large banks. All models suggest that 

the bulk of the positive productivity growth comes from the scale economies component. The ex-

ante Models I and II estimate the asset-weighted average annual TFP growth due to IRS to be 

around 2.1-2.2% per annum across all banks. The estimate is about 1.5 times smaller based on the 

ex-post Models III through V (around 1.5-1.6% per annum for all banks). Notably, despite that 

small banks exhibit the largest economies of scale in our sample (see Table 3), the results from 

Models I and II indicate that the scale component is larger in magnitude for medium and large 

banks instead.  

We find little evidence of economically significant technical progress, except for large banks 

according to the ex-ante Models I and II (about 1.6-1.7% per annum, on average). Risk level does 

not seem to impact productivity much either. Based on Model I, we find no effect of expected risk 

levels on small and medium banks’ productivity growth; little negative effect is found for large 

banks (average annual rate of -0.8%). 

                                                           
29 For more on the decomposition of the TFP growth, see Kumbhakar and Lovell (2000).  
30 In the case of the ex-post Model V, it is easy to show that the risk component of the TFP growth is defined as the 

negative of  
� �� �(∙)
� ����� ^d�� , where ^d��  is the growth rate of the ratio of total nonperforming loans to issued loans (an ex-post 

measure of credit risk). 
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[insert Figure 4 here] 

We use the estimated TFP growth rates to construct the TFP indices (normalized to a 

hundred in 2001) which we plot in Figure 4 with the corresponding Divisia indices. The TFP 

indices from all five models are compared to Divisia 1 and 2, which we believe are more reliable 

measures of productivity change since they are based on performing loans and securities. We find 

that the Divisia indices generally lay in between the indices based on the estimates from the group 

of ex-ante and the group of ex-post models. Note that we do not seek to compare the indices 

obtained based on econometric models with the data-based (nonparametric) Divisia indices. Had 

our goal been to (econometrically) estimate the TFP index that is equal to the Divisia index, we 

could have imposed this equality in the estimation as, for instance, done by Kumbhakar and 

Lozano-Vivas (2005).  

 

5 CONCLUSION 

Risk is crucial to banks’ production. Banks actively engage in risk assessment, risk monitoring 

and other risk management activities. Therefore, researchers should explicitly incorporate banks’ 

risk-taking behavior when estimating their production technology. The banking literature has 

largely focused on the estimation of the ex-post realization of banking technology with credit risk 

being either completely overlooked or controlled for in a somewhat ad hoc manner. Most studies 

use ex-post realizations of risk related variables and uncertain outputs. These methods, however, 

may not reflect the optimality conditions that bank managers seek to satisfy ex ante under credit 

uncertainty. One thus may call into question the reliability of the results from such studies.  

 In this paper, we argue that the underlying production process in banking ― namely, the 

production of (income-generating) credit ― is inherently uncertain and show that the ex-post 

estimates of the banking technology (that assume uncertainty away) are likely to be biased and 

inconsistent. We offer an alternative methodology to recover banks’ technologies based on the ex-

ante cost function (Pope & Chavas, 1994; Pope & Just, 1996, 1998; Moschini, 2001), which models 

credit uncertainty explicitly by recognizing that bank managers minimize costs subject to given 

expected outputs and credit risks. In order to make this model feasible to estimate, we estimate 

unobservable expected outputs and associated credit risk levels from banks’ supply functions via 

nonparametric kernel methods. We apply this ex-ante framework to data on commercial banks 

operating in the U.S. during the period from 2001 to 2010.  

 We find that methods estimating the ex-post realization of banking technology tend to over-

estimate output elasticities of cost which, in turn, leads to downward biases in the returns to scale 

estimates. The results, however, do not differ qualitatively across ex-ante and ex-post models if 

one controls for unobserved bank-specific effects. In this case, we find that virtually all U.S. 

commercial banks (regardless of the size) operate under increasing returns to scale, which is 

consistent with findings recently reported in the literature despite the differences in methodology 

(e.g., Feng & Serletis, 2010; Hughes & Mester, 2013; Wheelock and Wilson, 2012). Interestingly, 

when we leave bank-specific effects uncontrolled (as, for instance, the three above-cited studies 
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do), the results change dramatically: the ex-ante models then indicate that 23-35% and 33-34% of 

large banks exhibit decreasing and constant returns to scale, respectively.  

 Our empirical results show that the ex-post models tend to underestimate banks’ TFP 

growth. For medium and large banks, the TFP growth estimates from ex-ante models tend to be 

higher than those from ex-post models. The opposite is true for small banks. In fact, based on ex-

ante models, we find that the average annual TFP growth is negative among small banks. All 

models suggest that the bulk of the positive productivity growth in the industry comes from the 

scale economies component. The ex-ante models estimate the asset-weighted average annual TFP 

growth due to increasing returns to scale to be around 2.1-2.2% per annum for banks of all sizes. 

Despite that small banks exhibit higher economies of scale, on average, the scale component in 

TFP is larger for medium and large banks. We find little evidence of economically significant 

technical progress, except for large banks. Risk level does not seem to impact productivity much 

either. We find no effect of expected risk levels on small and medium banks’ productivity growth; 

little negative effect is found for large banks. 
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APPENDIX 

TABLE A1. Call Report Definitions of the Variables 

Variable Call Report Definition Description 
�� rcfd1975 (Total issued) loans to individuals 

��
�
 �� – rcfd1979 – rcfd1981 ��, less nonperforming loans to individuals 

�� rcfd1410 (Total issued) real estate loans 

��
�
 �� – rcfd1422 – rcfd1423 ��, less nonperforming real estate loans 

�� rcfd1766 + rcfd1590 + rcfd3484 +  
rcfd3381 + rcfd2081 + rcfd1288 +  
rcfd2107 + rcfd1563 

(Total issued) commercial & industrial loans, loans to finance agricultural 
production & other loans to farmers, lease financing receivables,  interest-
bearing balances due from depository institutions, loans to foreign 
governments & official institutions, loans to depository institutions, 
obligations (other than securities and leases) of states & political 
subdivisions in the U.S., other loans 

��
�
 �� – rcfd1583 – rcfd1607 – 

rcfd1608 – rcfd1227 – rcfd1228 – 
rcfd5381 – rcfd5382 – rcfd5390 – 
rcfd5391 – rcfd5460 – rcfd5461 

��, less nonperforming categories that enter �� 

�� rcfd3365 + rcfd3545 + rcfd1754 + 
rcfd1773 

(Total issued) federal funds sold & securities purchased under agreements 
to resell, trading assets, held-to-maturity securities total, available-for-sale 
securities 

��
�
 �� – rcfd3506 – rcfd3507 ��, less nonperforming categories that enter �� 

�� riad4150 Number of full time equivalent employees on payroll at end of current 
period 

�� rcfd2145 Premises & fixed assets 

�� rcfd3353 + rcfd3548 + rcfd3190 + 
rcfd3200 + rcon2604 

All borrowed money 

�� rcon3485 Interest-bearing transaction accounts 

�� rcfd2200 – rcon3485 – rcon2604 Non-transaction accounts: total deposits, less interest-bearing transaction 
accounts, less time deposits of $100,000 or more 

	� riad4135/�� Salaries & employee benefits, divided by �� 

	� riad4217/�� Expenses on premises & fixed assets, divided by �� 

	� (riad4180 + riad4185 + riad4200 + 
riada517) /�� 

Expense of federal funds purchased & securities sold under agreements to 
repurchase, interest on trading liabilities & other borrowed money, interest 
on notes & debentures subordinated to deposits, interest on time deposits 
of $100,000 or more, divided by �� 

	� riad4508/�� Interest on transaction accounts (now accounts, ats accounts, and telephone 
& preauthorized transfer accounts) , divided by �� 

	� (riad4170 – riad4508 – riada517) 
/�� 

Interest on deposits, less  interest on transaction accounts, less interest on 
time deposits of $100,000 or more, divided by �� 


� riad4013/��
� Interest & fee income on loans to individuals for household, family and 

other personal expenditures, divided by ��
� 


� riad4011/��
� Interest & fee income on loans secured by real estate, divided by ��

� 


� (riad4012 + riad4024 + riad4065 + 
riad4115 + riad4056 + riad4058) 
/��

� 

Interest & fee income on commercial and industrial loans, interest & fee 
income on loans to finance agricultural production & other loans to farmers 
in domestic offices, interest income on balances due from depository 
institutions, income from lease financing receivables, interest income on 
balances due from depository institutions, interest & fee income on all 
other loans in domestic offices, divided by ��

� 


� (riad4020 + riad4069 + riada220 + 
riad4218 + riad3521 + riad3196) 
/��

� 

Interest income on federal funds sold & securities purchased under 
agreements to resell, interest income from trading assets, trading revenue, 
interest & dividend income on securities, realized gains (losses) on held-to-
maturity securities, realized gains (losses) on held-to-maturity securities, 
realized gains (losses) on available-for-sale securities, divided by ��

� 

� ∑ �
 ∗ 	

�

��   Total Variable Cost 

��� riad4079 – riad4080 Net noninterest income, less service charges on deposits 

� quarterly average of riad3210 Quarterly average of equity 

Assets quarterly average of rcfd2170 Quarterly average of total assets 

 



   
 

23 

 

IN-TEXT TABLES AND FIGURES 

 

TABLE 1. Summary Statistics 

Variable Mean 
Percentiles 

5th 25th Median 75th 95th 
 

� 43,464.41 886.20 2,307.05 4,589.50 9,972.00 44,823.99 

�� 79,372.97 550.08 1,976.37 4,371.84 9,894.39 47,035.32 

��
�
 78,605.61 546.24 1,963.25 4,347.32 9,846.48 46,899.32 

�� 393,148.62 5,001.36 19,583.04 48,586.56 120,325.87 556,182.82 

��
�
 381,885.68 4,938.08 19,349.13 47,944.53 118,409.87 543,611.25 

�� 250,842.81 2,650.06 8,063.20 16,817.83 37,114.16 172,501.73 

��
�
 247,633.80 2,615.50 7,953.38 16,595.01 36,723.73 170,489.53 

�� 345,821.85 4,126.95 12,813.31 26,365.19 57,121.30 256,123.06 

��
�
 345,627.16 4,126.95 12,812.85 26,351.50 57,098.80 256,123.05 

�� 52.99 35.93 43.67 50.12 58.99 79.90 

�� 0.3963 0.1012 0.1660 0.2427 0.3950 1.0462 

�� 0.0344 0.0164 0.0257 0.0336 0.0429 0.0534 

�� 0.0104 0.0019 0.0047 0.0082 0.0138 0.0259 

�	 0.0261 0.0104 0.0181 0.0247 0.0332 0.0462 


� 0.0927 0.0546 0.0756 0.0871 0.0997 0.1296 


� 0.0708 0.0536 0.0633 0.0699 0.0778 0.0910 


� 0.0856 0.0391 0.0626 0.0801 0.1041 0.1433 


� 0.0403 0.0194 0.0329 0.0404 0.0470 0.0574 

��
 17,613.76 19.00 92.00 284.00 969.00 7,784.00 

� 116,088.34 2,557.5 6,101.5 11,611.75 24,281.00 107,893.75 

Total Assets 1,197,667.50 23,324.75 57,255.75 112,795.52 245,347.16 1,115,980.10 
 

NOTES: The variables are defined as follows. C – total variable cost; �� and ��
� – total issued and performing consumer 

loans, respectively; �� and ��
� – total issued and performing real estate loans, respectively; �� and ��

� – total issued and 
performing commercial and industrial loans, respectively; �� and ��

� – total and earning securities, respectively; �� – price 
of labor; �� – price of physical capital; �� – price of purchased funds; �� – price of interest-bearing transaction accounts; 
�� – price of non-transaction accounts; ��, ��, �� and �� – prices of ��

�, ��
�, ��

� and ��
�, respectively; ��� - off-balance-sheet 

income; � – equity capital; Assets – total assets. All variables but input and output prices are in thousands of real 2005 US 
dollars. All input and output prices but �� are interest rates and thus are unit-free.  
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TABLE 2. Mean Elasticity Estimates        

 I II III IV V 

 

	������	1 0.023 0.022 0.064 0.064 0.064 

������	2 0.397 0.386 0.407 0.408 0.407 

������	3 0.097 0.098 0.142 0.141 0.141 

������	4 0.060 0.061 0.170 0.169 0.169 

�� 0.413 0.413 0.412 0.412 0.412 

�� 0.102 0.102 0.101 0.101 0.101 

�� 0.167 0.167 0.168 0.168 0.168 

�� 0.026 0.026 0.026 0.026 0.026 

�� 0.292 0.292 0.294 0.294 0.294 

� 0.071 0.081 0.075 0.079 0.079 

��� 0.076 0.077 0.033 0.033 0.033 

� 0.000 0.000 0.000 -0.001 -0.002 
 

NOTE: While the output categories are the same across five models, 
the values used in the estimation are different. Models I and II use 
estimates of the expected performing loans and securities; Model III 
uses the realized values of performing loans and securities; and 
Models IV and V use the realized values of issued loans and securities 
(performing + nonperforming). See the text, for details. 
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TABLE 3. Summary of Returns to Scale Estimates 

 Point Estimates of RS Categories of RS 

Model Mean St. Dev. Min 1st Q Median 3rd Q Max DRS CRS IRS 
 

-                                                                   Small Banks                                                                 - 
 

I 2.004 0.278 1.292 1.793 1.979 2.188 2.911 0 0 28,700 
II 2.044 0.266 1.366 1.839 2.024 2.223 2.758 0 0 28,700 
III 1.333 0.091 0.973 1.271 1.320 1.380 2.324 0 4 28,696 
IV 1.337 0.091 0.967 1.276 1.325 1.385 2.311 1 3 28,696 
V 1.332 0.091 0.944 1.269 1.318 1.380 2.094 2 4 28,694 

 

-                                                                 Medium Banks                                                               - 
 

I 1.633 0.208 1.072 1.482 1.610 1.765 2.908 0 0 31,656 
II 1.656 0.199 1.152 1.512 1.636 1.787 2.656 0 0 31,656 
III 1.246 0.072 0.901 1.198 1.238 1.285 2.714 4 5 31,647 
IV 1.250 0.072 0.903 1.202 1.242 1.289 2.677 4 5 31,647 
V 1.254 0.073 0.901 1.206 1.245 1.292 2.252 4 7 31,645 

 

-                                                                   Large Banks                                                                 - 
 

I 1.313 0.150 1.084 1.203 1.284 1.394 2.613 0 0 2,935 
II 1.332 0.147 1.134 1.227 1.305 1.410 2.617 0 0 2,935 
III 1.180 0.100 1.021 1.127 1.166 1.210 2.934 0 0 2,935 
IV 1.182 0.098 1.017 1.129 1.168 1.213 2.904 0 0 2,935 
V 1.197 0.084 1.016 1.146 1.185 1.229 2.271 0 0 2,935 

 

-                                                                     All Banks                                                                   - 
 

I 1.787 0.318 1.072 1.554 1.750 1.988 2.911 0 0 63,291 
II 1.817 0.316 1.134 1.584 1.782 2.022 2.758 0 0 63,291 
III 1.283 0.095 0.901 1.218 1.271 1.333 2.934 4 9 63,278 
IV 1.287 0.096 0.903 1.222 1.275 1.337 2.904 5 8 63,278 
V 1.287 0.093 0.901 1.224 1.274 1.335 2.271 6 11 63,274 

 

 

 

 

 

 

 

 

 

 

 



   
 

26 

 

 

TABLE 4. Rank Correlation Coefficients of Returns to Scale Estimates 

 

 -                Small Banks               - -                Large Banks               - 
 

 I II III IV V I II III IV V 

I 1.00     1.00     
II 0.99 1.00    0.99 1.00    
III 0.31 0.34 1.00   0.57 0.58 1.00   
IV 0.33 0.36 0.99 1.00  0.60 0.61 0.99 1.00  
V 0.30 0.34 0.91 0.91 1.00 0.60 0.61 0.96 0.97 1.00 

 

 -              Medium Banks             - -                  All Banks                 - 
 

 I II III IV V I II III IV V 

I 1.00     1.00     
II 0.99 1.00    0.99 1.00    
III 0.42 0.44 1.00   0.59 0.61 1.00   
IV 0.45 0.47 0.99 1.00  0.61 0.63 0.99 1.00  
V 0.44 0.45 0.94 0.95 1.00 0.57 0.59 0.95 0.95 1.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

27 

 

 

TABLE 5. Weighted Average Annual Growth in TFP and Its Components 

Model TC Scale Allocative Exogenous Risk Total 
 

-                                                              Small Banks                                                            - 
 

I 0.0000 0.0080 0.0021 -0.0112 0.0000 -0.0012 
II 0.0001 0.0084 0.0021 -0.0117 ― -0.0012 
III 0.0005 0.0140 0.0021 -0.0090 ― 0.0076 
IV 0.0017 0.0144 0.0021 -0.0092 ― 0.0091 
V 0.0022 0.0149 0.0020 -0.0093 -0.0021 0.0078 

 

-                                                            Medium Banks                                                          - 
 

I -0.0024 0.0238 0.0009 -0.0108 0.0000 0.0115 
II -0.0022 0.0247 0.0009 -0.0118 ― 0.0115 
III -0.0022 0.0149 0.0010 -0.0116 ― 0.0021 
IV 0.0000 0.0156 0.0010 -0.0118 ― 0.0048 
V 0.0012 0.0162 0.0010 -0.0122 -0.0020 0.0042 

 

-                                                              Large Banks                                                            - 
 

I 0.0166 0.0218 -0.0040 -0.0134 -0.0079 0.0131 
II 0.0153 0.0196 -0.0041 -0.0143 ― 0.0165 
III 0.0058 0.0143 -0.0021 -0.0111 ― 0.0070 
IV 0.0075 0.0141 -0.0021 -0.0110 ― 0.0086 
V 0.0084 0.0153 -0.0021 -0.0120 0.0002 0.0098 

 

-                                                                All Banks                                                              - 
 

I 0.0071 0.0216 -0.0014 -0.0121 -0.0039 0.0113 
II 0.0066 0.0209 -0.0015 -0.0130 ― 0.0130 
III 0.0020 0.0145 -0.0004 -0.0112 ― 0.0049 
IV 0.0039 0.0148 -0.0004 -0.0112 ― 0.0070 
V 0.0048 0.0157 -0.0005 -0.0119 -0.0009 0.0072 

 

NOTE: The estimates are obtained by averaging the bank-year specific annual TFP growth rates over the entire sample 
period using the total assets as weights. 
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FIGURE 1. Histograms of Output-Weighted Credit Risk Estimates. 
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FIGURE 2. Kernel Densities of Returns to Scale Estimates. 
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FIGURE 3. TFP Divisia Indices. 
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FIGURE 4. TFP Indices based on Models I through V. 
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