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Abstract—This paper addresses estimation of the equivalent
number of looks (ENL), an important parameter in statistical
modeling of multilook synthetic aperture radar (SAR) images.
Two new ENL estimators are discovered by looking at cer-
tain moments of the multilook polarimetric covariance matrix,
which is commonly used to represent multilook polarimetric SAR
(PolSAR) data, and assuming that the covariance matrix is com-
plex Wishart distributed. First, a second-order trace moment
provides a polarimetric extension of the ENL definition and also
a matrix-variate version of the conventional ENL estimator. The
second estimator is obtained from the log-determinant matrix
moment and is also shown to be the maximum likelihood estimator
under the Wishart model. It proves to have much lower variance
than any other known ENL estimator, whether applied to sin-
gle-polarization or PolSAR data. Moreover, this estimator is less
affected by texture and thus provides more accurate results than
other estimators should the assumption of Gaussian statistics for
the complex scattering coefficients be violated. These are the first
known estimators to use the full covariance matrix as input, rather
than individual intensity channels, and therefore to utilize all the
statistical information available. We finally demonstrate how an
ENL estimate can be computed automatically from the empirical
density of small sample estimates calculated over a whole scene.
We show that this method is more robust than procedures where
the estimate is calculated in a manually selected region of interest.

Index Terms—Moment methods, parameter estimation, radar
polarimetry, synthetic aperture radar (SAR), unsupervised
learning.

I. INTRODUCTION

THE EQUIVALENT (or effective) number of looks (ENL)
is a parameter of multilook synthetic aperture radar (SAR)

images, which describes the degree of averaging applied to the
SAR measurements during data formation and postprocessing.
Multilooking is performed in order to mitigate the noiselike
effect of interference, known as speckle, which is characteristic
of all coherent imaging systems. In this process, correlated
measurements are averaged, which complicates statistical mod-
eling of the resulting multilook data. The pragmatic solution is
to model the output as an average of independent measurements
and to replace the actual number of correlated samples by an
equivalent number of independent ones, i.e., the ENL. The ENL
estimate is the parameter value that produces a best match be-
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tween empirical moments of the correlated data and theoretical
moments of the data model, which assumes independence. The
ENL is generally a noninteger number.

The processing task normally referred to as multilook-
ing is performed in the frequency domain. It is part of the
range/azimuth compression leading up to a focused SAR image
[1], [2]. Multiple measurements are obtained by splitting the
synthetic aperture Doppler bandwidth into a number of sub-
bands, each giving rise to a separate image referred to as a
look. All looks are averaged in the power domain to produce
multilook data. However, multilooking can also be done as
postprocessing, i.e., after a well-focused image is generated.
This method requires that the data are available in single-
look complex (SLC) format. Averaging is then performed in
the spatial domain. In addition to reducing speckle, both ap-
proaches to multilooking reduce image resolution and, hence,
the amount of data, an effect which is sometimes desired to
ease the computational burden.

Being a distribution parameter, the ENL has influence on the
accuracy of the information extracted by methods based upon
statistical modeling of multilook SAR data. For instance, the
ENL is a necessary input to important classification and change
detection algorithms for polarimetric SAR (PolSAR) data. The
discriminant function of the popular Wishart classifier [3], [4]
avoids dependence upon the ENL by the restrictive assumption
of equiprobable classes. For nontrivial choices of prior proba-
bility, Bayesian classifiers based on the Wishart distribution [5]
or more sophisticated data models [6], [7] require an estimate
of the ENL, so does the change detection algorithm derived
from the generalized likelihood ratio of two unknown Wishart
distributed matrices [8].

The ENL is commonly estimated by identifying homoge-
neous regions in an image, where the speckle is fully developed
and contribution of texture is negligible, meaning that the
radar cross section is assumed to be constant. These conditions
assure that the distribution of the scattering coefficients can be
assumed complex Gaussian [1]. Under this statistical model,
the ENL can be estimated from simple image statistics. A
reliable ENL estimate can be obtained for a given sensor and
fixed data processing scheme by manually selecting appropriate
calibration targets, and such a value is sometimes provided as
part of the image metadata. However, a processing chain with
selectable algorithms and processing parameters will clearly
benefit from having a robust and automatic estimation method,
but such methods are difficult to design due to the required
identification of homogeneous regions. Underestimation of the
ENL occurs in the presence of texture and other sources of
inhomogeneity.
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The ENL and the conventional ENL estimator have been
defined for the case of single-polarization SAR, as described in
[1] and [2]. For PolSAR data, the ENL has traditionally been
estimated separately for each polarimetric channel and then
averaged as in [6] and [9]. In the following, we will develop a
general theory for fully polarimetric SAR data, for which ENL
estimation from single-polarization images becomes a special
case. The objective of this paper is twofold: We want to extend
the theory of ENL estimation to the polarimetric case, where es-
timates are derived explicitly from matrix-variate statistics. We
next want to design a fully automatic estimation procedure that
requires no parameter selection or manual intervention, such as
selection of homogeneous regions where image statistics are to
be calculated.

This paper is structured as follows. Section II introduces
SAR polarimetry, with different data formats and their distri-
bution models. Section III presents the traditional definition
of the ENL and reviews the literature of known estimators.
In Section IV, we present certain moment expressions for the
Wishart distribution and use them to derive new ENL estimators
for PolSAR data. The contents of Section V are related to
performance evaluation. We derive a lower bound to the vari-
ance of the ENL estimator, closely related to the Cramér–Rao
bound (CRB), and further present a statistical model, which
will be used to assess robustness to texture. The discussion of
robustness is particularly relevant to unsupervised estimation,
which is the topic of Section VI. We here propose an estimation
procedure that is fully automatic. Section VII presents results
of experiments with synthetic and real data. In Section VIII, we
give our conclusions.

Our convention for notation is that scalar values are denoted
as lower or upper case standard weight characters, vectors are
lower case boldface characters, and matrices are upper case
boldface characters. For simplicity, we have not distinguished
between random variables and instances of random variables,
as such can be ascertained through context.

II. STATISTICAL MODELING OF PolSAR DATA

The full-polarimetric SAR instrument separately transmits
orthogonally polarized microwaves pulses and measures or-
thogonal components of the received signal. For each pixel,
the measurements result in a matrix of scattering coefficients.
These are complex-valued dimensionless numbers that describe
the transformation of the transmitted (incoming) electromag-
netic (EM) field to the received (backscattered) EM field for all
combinations of transmit and receive polarizations.

The transformation can be expressed as[
Er

h

Er
v

]
=

ejkr

r

[
Shh Shv

Svh Svv

] [
Et

h

Et
v

]
(1)

where k denotes wavenumber and r is the distance between
radar and target. The subscript of the EM field components
Ej

i ’s denotes horizontal (h) or vertical (v) polarization, which
is the most common set of orthogonal polarizations, while the
superscript indicates transmitted (t) or received (r) wave. The
scattering coefficients Sij’s are subscripted with the associated
receive and transmit polarizations, in that order. Together, they
form the scattering matrix denoted as S = [Sij ].

The scattering matrix can be reduced to one of the vectors

s =

⎡⎣ Shh

(Shv + Svh)/
√

2
Svv

⎤⎦ k =
1√
2

⎡⎣Shh + Svv

Shh − Svv

Shv + Svh

⎤⎦ . (2)

The lexicographic scattering vector, denoted as s, is the vec-
torized version of S after the cross-polarization terms Shv and
Svh have been averaged, assuming reciprocity of the target. The
scaling with a factor

√
2 is done to preserve total power of the

signal. The Pauli basis scattering vector, denoted as k, is a linear
transformation of s, which provides physical interpretations of
its elements in terms of basic scattering mechanisms [4].

A. Gaussian Model

It is commonly assumed that the scattering vector elements
are jointly circular complex Gaussian. This is strictly justified
only for homogeneous regions of the image, characterized by
fully developed speckle and no texture. The notion of texture
describes spatial variation in the backscatter that is due to
target variability, i.e., fluctuations in the radar cross section. The
Gaussian model only encompasses variability due to speckle.

The matrix S and the vectors s and k are SLC format
representations of PolSAR data. Multilook PolSAR data are
commonly represented by

Cs =
1
L

L∑
i=1

sisH
i Ck =

1
L

L∑
i=1

kikH
i (3)

known as the sample covariance matrix and coherency ma-
trix, respectively. They are formed as the mean Hermitian
outer product of the single-look scattering vectors {si}L

i=1 and
{ki}L

i=1, respectively, where L is the nominal number of looks.
The superscript H means complex conjugate transpose. Assume
that s (or k) is zero mean and circular complex multivariate
Gaussian, denoted as s ∼ NC

d (0,Σs), where 0 is a column
vector of zeros, d is the dimension of s, and Σs = E{ssH}
is the covariance matrix of s. The probability density function
(pdf) of s is thus

ps(s;Σs) =
1

πd|Σs|
exp
(
−sHΣ−1

s s
)

(4)

where | · | is the determinant operator. It follows that if L ≥ d
and the si (or ki) in (3) are independent, then the scaled
covariance matrix, defined as Z = LCs (or Z = LCk), follows
the nonsingular complex Wishart distribution [10]

pZ(Z;L,Σ) =
|Z|L−d

|Σ|LΓd(L)
exp
(
−tr(Σ−1Z)

)
(5)

where tr(·) is the trace operator and Σ = E{Z}/L = E{Cs}.
We write this as Z ∼ WC

d (L,Σ). The normalization constant
Γd(L) is the multivariate Gamma function defined as

Γd(L) = πd(d−1)/2
d−1∏
i=0

Γ(L − i) (6)

where Γ(L) is the standard Euler gamma function.
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B. Product Model

The randomness of a SAR measurement is mainly attributed
to two unrelated factors, namely, speckle and texture. The latter
represents the natural spatial variation of the radar cross section,
which is generally not perfectly homogeneous for pixels that
are thematically mapped as one class. Whereas the Gaussian
model only accounts for speckle, several statistical models exist
that also incorporate texture, either by assuming statistics that
imply a non-Gaussian scattering vector or explicitly modeling
texture as a separate random variable (rv). The latter case leads
to a doubly stochastic model with a compounded distribution.

The well-known product model, reviewed, e.g., in [1] and
[11], has been shown to be both mathematically tractable
and successful for modeling and prediction purposes. In the
polarimetric version [12], it decomposes the scattering vector
z (defined on a lexicographic or Pauli basis) as a product of two
independent stochastic processes with individual distributions

z =
√

γw. (7)

The first process, w ∼ NC

d (0,Σw), models speckle. The sec-
ond process generates texture, represented by the scalar rv
γ, under the assumption that the texture is independent of
polarization. The multiplicative property of the model is pre-
served as data are transformed from single-look to multilook
format, provided that the fluctuations in the radar cross section
occur on a scale larger than or equal to the multilook cell. In
the multilook covariance matrix domain, the product model
becomes

Z = γLW (8)

where we have defined W =
∑L

i=1 wiwH
i ∼ WC

d (L,Σw) and
Z =

∑L
i=1 zizH

i . The pdf of Z depends on the multilook texture
rv γL, which is related, but not identical, to γ.

The multilook polarimetric product model leading up to (8)
is extensively reviewed in [13], where the family of generalized
inverse Gaussian distributions is proposed as a model for γ
and implicitly also for γL. Selecting among several applicable
members of this family, we shall assume that γ is gamma dis-
tributed, denoted as γ ∼ G(μ, α), with unit mean (μ = E{γ} =
1) and shape parameter α = μ2/Var{γ} = 1/Var{γ}. The pdf
of γ ∼ G(1, α) is

pγ(γ;α) =
αα

Γ(α)
γα−1e−αγ . (9)

Based upon the product model with γ ∼ G(1, α), a family
of distributions can be derived for the complex scattering
coefficient, multilook detected amplitude, multilook intensity,
and their polarimetric counterparts, referred to in common as
K-distributions. The K-distribution for the polarimetric scatter-
ing vector z was derived in [12]. A K-distribution for the multi-
look polarimetric covariance matrix Z was first presented in [9]

pZ(Z;L,Σ, αL) =
2|Z|L−dα

αL+Ld

2
L

Γd(L)|Σ|LΓ(αL)
(
tr(Σ−1Z)

)αL−Ld

2

× KαL−Ld

(
2
√

αLtr(Σ−1Z)
)

. (10)

Here, Kν(·) is the modified Bessel function of the second kind
with order ν. Furthermore, αL is a distribution parameter of

γL ∼ Γ(1, αL), which also becomes a parameter of pZ(Z). It
was shown in [7] that

αL =
Ld + 1
d + 1

α (11)

assures consistency between the models of (7) and (8) with
respect to certain moment relations.

For interpretation purposes, we note that γL → 1 and the
multilook polarimetric K-distribution in (10) converges in dis-
tribution to the complex Wishart distribution in (5) as αL → ∞.
Thus, high values of αL imply little texture, whereas low values
refer to significant texture and non-Gaussianity.

In the following sections, we use the Wishart distribu-
tion pZ(Z;Le,Σ) as the underlying model when deriving
ENL estimators. The multilook polarimetric K-distribution
pZ(Z;Le,Σ, αL) is used to investigate how deviation from the
Wishart model, in terms of texture, affects the performance
of the proposed estimators. It is possible to derive an ENL
estimator from the multilook polarimetric K-distribution, but
this introduces αL as an additional nuisance parameter to be
estimated. Therefore, we will not pursue this approach.

C. Modeling Correlated Data

In the derivation of the distributions in (5) and (10), it was
assumed that the single-look scattering vectors used to form
the multilook polarimetric covariance matrices are independent.
This assumption does not hold, as discussed in Section I. An
exact analytic expression for the pdf of Z that accounts for
correlation of the z samples has, to the best of our knowledge,
not been obtained, and the derivation is regarded as intractable
(see, e.g., [14]). The practical solution for distribution modeling
of correlated data has been to maintain the functional form of
(5) and (10), but to replace the number of correlated looks L
with an equivalent number of uncorrelated looks Le that makes
certain moment relations [to be defined in (14) and (16)] of the
theoretical model consistent with empirical moments.

III. KNOWN ESTIMATORS

A. Coefficient of Variation Estimator

The traditional approach to ENL estimation for single-
polarization SAR data has been to manually select a homoge-
neous image region, where the assumptions of fully developed
speckle and no texture assure that the scattering coefficient
is circular complex Gaussian. A single-polarization multilook
intensity I , which is found as a diagonal entry of Z, will then
be distributed as G(σ,L)

pI(I;σ,L) =
1

Γ(L)

(
L

σ

)L

IL−1e−LI/σ (12)

with the mean intensity σ and the number of looks L as
parameters of the gamma distribution. Fig. 1 shows how the
intensity distribution is affected by a varying number of looks.

The kth-order moment of I is given by [1]

E{Ik} =
Γ(L + k)

Γ(L)

(σ

L

)k

(13)

assuming uncorrelated data. We specifically find that E{I} = σ
and Var{I} = σ2/L, thus E{I}2/Var{I} = L. This does not
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Fig. 1. Example of gamma distribution G(σ, L) parameterized with mean
intensity σ = 0.0358 and number of looks L = {8, 10, 12}.

hold for correlated data, but in this case, L can then be replaced
by the ENL, defined as

Le =
E{I}2

Var{I} . (14)

The right-hand side of (14) defines the entity known as the
coefficient of variation (CV). The traditional ENL estimator,
which arises as

L̂CV
e =

〈I〉2
〈I2〉 − 〈I〉2 (15)

is therefore named the CV estimator. Here, 〈·〉 denotes sample
average. This estimator has a simple form and is easy to apply,
which may explain the very limited interest in ENL estimation
found in the literature, both for single-polarization and PolSAR
data. We have not discovered any known methods that are
tailored for PolSAR data, in the sense that they process the
full covariance or coherency matrices in (3), thereby utiliz-
ing all available statistical information. Methods designed for
monopolarized SAR are used to handle both cases, as we
describe hereinafter.

B. Fractional Moment-Based Estimator

Although (14) is commonly referred to as the definition of the
ENL [1], [2], there are other ways to solve for L from statistics
of the given model, which may also be used to determine Le.
An alternative estimator was suggested in [6], based upon the
same distribution model but using a fractional moment (FM) of
the multilook intensity.

From (13), we have

E{I1/2} =
Γ(L + 1

2 )
Γ(L)

√
σ

L
. (16)

Replacing E{I1/2} and σ with the estimates 〈I1/2〉 and 〈I〉, we
obtain the equation

f
(
L̂(FM)

e

)
=

Γ
(
L̂

(FM)
e + 1

2

)
Γ
(
L̂

(FM)
e

)√
L̂

(FM)
e

√
〈I〉 − 〈

√
I〉 = 0 (17)

which must be solved numerically for the FM estimate, denoted
as L̂

(FM)
e . The existance of a root of f(L̂(FM)

e ) is proved in
Appendix A.

Frery et al. [6] used this method on PolSAR data, estimating
the ENL separately for each polarization and then averaging
the results. We note that (17) differs from the definition found
in [6], which contains some errors.

C. Other Approaches

The earliest publications we have found that are dedicated to
ENL estimation are two papers by Lee et al. that propose to es-
timate the pair E{I}2 and σ2

I = Var{I} in small windows over
the whole image. One may then infer Le from the scatter plot
of paired (E{I}, σI) estimates using the Hough transform [15]
or an angular sweep method [16] to determine the best fitted
line, whose inverse slope squared is the Le estimate. A refined
method is proposed by Foucher et al. [17], which is based on
nonparametric estimation of the distribution of σI/E{I} values
using orthogonal Laguerre functions and also the estimation of
Le from the mode of the distribution. The focus of all these
papers are on unsupervised estimation, omitting selection of a
region of interest.

Further approaches include the papers of Gierull and
Sikaneta [14] and Joughin and Winebrenner [18], where the
authors derive ENL estimators for monopolarized SAR data
from the distribution of interferometric phase. This is a more
specialized application, which requires multiple-baseline data,
and is therefore outside our scope. Moreover, a general esti-
mator can be applied also to interferometric data. We finally
mention the ENL estimators proposed by El Zaart et al. [19].
They are derived from the gamma distribution using maximum
likelihood (ML) theory, in a manner similar to how we will
subsequently derive matrix-variate methods for polarimetric
data from the Wishart distribution. A shortened version of this
paper was presented in [20].

IV. NEW ESTIMATORS

So far, we have not been able to find any ENL estimators in
the literature that use the full sample covariance or coherency
matrix, or any other matrix-variate statistic, as input. We have
therefore tried to derive moment-based estimators founded on
the Wishart distribution.

A. Trace Moment-Based Estimator

Assume that the random matrix Z is positive semidefinite
and complex Wishart distributed with L degrees of freedom
and scale matrix Σ = E{Z}/L. The degrees of freedom are
equivalent to the number of looks, and the Wishart law is
denoted as Z ∼ WC(L,Σ). The following moments of Z are
derived in [21]:

E {tr(ZZ)} =L2 tr(ΣΣ) + L tr(Σ)2 (18)
E
{
tr(Z)2

}
=L2 tr(Σ)2 + L tr(ΣΣ). (19)

These expressions lead to respective estimators for Le

L̂(1)
e =

tr(Σ)2

〈tr(CC)〉 − tr(ΣΣ)
(20)

L̂(2)
e =

tr(ΣΣ)
〈tr(C)2〉 − tr(Σ)2

(21)

now expressed in terms of C = Z/L, which is the supplied
PolSAR data format. Out of these two estimators, we prefer
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the former, i.e., the estimator that originates from the second-
order trace moment (TM) in (18). This is because it uses all the
elements of C and thus all polarimetric information through
tr(CC), whereas the latter uses tr(C), which only contains
the intensities on the diagonal. The variance of L̂

(1)
e is also

observed experimentally to be superior to that of L̂
(2)
e . We

further note that in the single-polarization case, both (20) and
(21) reduce to (15). We have thus found two matrix-variate
extensions of the conventional ENL estimator and denote the
preferred estimator in (20) by L̂

(TM)
e .

B. Log-Determinant Moment-Based Estimator

We next turn to some other moment relations involving the
determinant of a Wishart matrix, and the logarithm thereof. For
the normalized determinant of a Wishart matrix, we have

|Z|
|Σ| ∼

d−1∏
i=0

χ2
L−i (22)

where d is the dimension of Z (or, equivalently, the number
of polarimetric channels). That is, |Z|/|Σ| is distributed like
a product of chi-square distributed variables with different
degrees of freedom, as denoted by the subscript of χ2

i . This
is shown in [22] for real Wishart matrices. The extension to the
complex case is straightforward, as for the moments of |Z|/|Σ|,
given by [22]

E
{(

|Z|
|Σ|

)r}
=

d−1∏
i=0

Γ(L − i + r)
Γ(L − i)

. (23)

To find the moments of ln(|Z|/|Σ|), we note that the moment
generating function of ln(|Z|/|Σ|) is defined as

M
ln
(

|Z|
|Σ|

)(r) = E
{

exp
(

r ln
(
|Z|
|Σ|

))}
(24)

which is identical to the left-hand side of the expression in (23).
It follows that

E

{[
ln
(
|Z|
|Σ|

)]k}
=

[
dk

drk

d−1∏
i=0

Γ(L − i + r)
Γ(L − i)

]∣∣∣∣∣
r=0

. (25)

The first-order moment becomes

E
{

ln
(
|Z|
|Σ|

)}
=

d−1∑
i=0

Ψ(0)(L − i) (26)

where Ψ(0)(L) = Γ′(L)/Γ(L) is known as the digamma func-
tion, which is one of Euler’s polygamma functions, defined as

Ψ(m)(z) =
dm+1

dLm+1
ln Γ(L)

= (−1)m

∞∫
0

tme−zt

1 − e−t
dt. (27)

The derivation of (26) is shown in Appendix B. Since data are
supplied as covariance matrices in the format C = Z/L, we use
ln |Z| = ln |C| + d ln L to write

E {ln |C|} = ln |Σ| +
d−1∑
i=0

Ψ(0)(L − i) − d ln L. (28)

This equation defines our new estimator. The estimate, denoted
as L̂

(ML)
e for reasons explained hereinafter, is the root of

g
(
L̂(ML)

e

)
=〈ln |C|〉−ln |〈C〉|

−
d−1∑
i=0

Ψ(0)
(
L̂(ML)

e −i
)
+d ln L̂(ML)

e =0 (29)

where the mathematical expectation E{ln |C|} has been re-
placed by the empirical mean 〈ln |C|〉 and Σ by 〈C〉. Equation
(29) must be solved numerically in the same fashion as the
estimator defined by (17). The existance of a unique root of
g(L) is proved in Appendix A.

From the complex Wishart distribution in (5), it is easy to
verify that

∂

∂L
ln pZ(Z;L,Σ) = ln |Z| − ln |Σ| − ∂

∂L
ln Γd(L)

= ln
(
|Z|
|Σ|

)
−

d−1∑
i=0

Ψ(0)(L − i). (30)

By comparison of (30) with (26), it is revealed that the solution
of (29) is the ML estimate of Le. It is thus asymptotically
unbiased, efficient, and Gaussian [23].

We finally remark that efficient implementation of the sum of
polygamma functions is aided by the recurrence relation

Ψ(m)(z + 1) = Ψ(m)(z) + (−1)mm! z−(m+1). (31)

V. PERFORMANCE EVALUATION

The obvious way of evaluating estimator performance is by
looking at statistical properties such as bias and (co)variance.
Let θ = [Le,Σ11,Σ21, . . . ,Σdd]T = [Le, vec(Σ)T]T be the
complex-valued parameter vector of the Wishart model, with
the vectorization (column stacking) operator denoted as vec(·),
and let θ̂ be an estimator of θ. The length of θ is D = d2 + 1.

When estimating Le, the entries of the covariance matrix,
denoted as Σij , i, j ∈ {1, . . . , d}, become nuisance parameters
whose uncertainty degrades the estimate of Le. The estimators
defined by (17), (20), and (29) are too complicated to find ana-
lytic expressions for neither the distribution, the bias vector, nor
the covariance matrix of θ̂. The bias vector and the covariance
matrix are defined as

b(θ̂) = E{θ̂} − θ (32)

Cov{θ̂} = E
{(

θ̂ − E{θ̂}
)(

θ̂ − E{θ̂}
)H
}

(33)

respectively. However, we can evaluate both bias and covari-
ance empirically, for instance, using bootstrap methods. We are
also able to establish a lower bound on the variance of Le.
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A. Bound on the Variance of ENL Estimators

Assume that we have a set Z = {Z1, . . . ,ZN} of N inde-
pendent and complex Wishart distributed sample covariance
matrices. The log-likelihood function of Z is

L(Z;Le,Σ) = ln
N∏

i=1

pZ(Zi;Le,Σ)

=
N∑

i=1

ln pZ(Zi;Le,Σ) (34)

with pZ(Z;L,Σ) given by (5). The CRB establishes a lower
bound on the covariance of the stochastic θ̂. For the complex
parameter vector θ, the CRB is defined as [24]

Cov{θ̂} � ∂

∂θT

(
θ + b(θ̂)

)
J−1

(
∂

∂θT

(
θ + b(θ̂)

))H

=
∂E{θ̂}
∂θT

J−1

(
∂E{θ̂}
∂θT

)H

(35)

where the matrix expression A � B denotes that A − B is
positive semidefinite. Furthermore, J denotes the Fisher infor-
mation matrix (FIM) given by

J = E

{(
∂L(Z)
∂θT

)H
∂L(Z)
∂θT

}

= − E

{
∂

∂θ∗

(
∂

∂θ
L(Z)

)T
}

(36)

for the complex case, where superscript ∗ denotes complex con-
jugation. The parameters of L(Z) are suppressed for brevity.
The first equality of (36) is proven in [24], and the proof of the
second is straightforward by analogy with the real case [23].

If the estimator θ̂ is unbiased, then (35) becomes the fa-
miliar Cov{θ̂} � J−1. However, the estimators that we study
are biased, and since we are not able to evaluate the term
∂E{θ̂}/∂θT in (35), the true CRB cannot be determined an-
alytically. Still, by noting that

∂E{θ̂}
∂θT

=
∂
(
θ + b(θ̂)

)
∂θT

= ID +
∂b(θ̂)
∂θT

(37)

where ID is the D × D identity matrix, (35) is rewritten as

Cov{θ̂} �J−1 +
∂b(θ̂)
∂θT

J−1 + J−1

(
∂b(θ̂)
∂θT

)H

+
∂b(θ̂)
∂θT

J−1

(
∂b(θ̂)
∂θT

)H

=J−1 + (K + KH) + KJKH. (38)

We have here defined K = (∂b(θ̂)/∂θT)J−1. It is easily
shown that the term KJKH on the right-hand side is posi-
tive semidefinite and thus contributes to a tighter bound on
Cov{θ̂}. However, this cannot be proven for (K + KH), and
the relationship between the inverse FIM, J−1, and the true
CRB remains undefined. Still, J−1 is the best indication we can
obtain of a performance bound, and we shall refer to it as the
unbiased CRB (UCRB).

The inverse FIM is given by

J−1 =
1
N

⎡⎣ d−1∑
i=0

Ψ(1)(Le − i) vec(Σ−1)T

vec(Σ−1)∗ Le(Σ−1 ⊗ Σ−1)

⎤⎦−1

(39)

where ⊗ denotes the Kronecker product. The derivation is
shown in Appendix C. The bound on the variance of the ENL
estimator thus becomes

Var{L̂e} ≥ J−1
11 (40)

where J−1
ij denotes element (i, j) of J−1. Equation (40) must

be evaluated numerically, but we see that the variance bound
depends on the true Le and Σ and that the rate of convergence
is 1/N .

B. Robustness to Texture

The concept of texture in SAR images was discussed in
Section II-B. The product model was also introduced as a
scheme to develop statistical models that accommodate texture
and thereby provide more flexible and accurate descriptions
of PolSAR data than the Wishart distribution, which has been
assumed in the derivation of all estimators so far. The multilook
polarimetric K-distribution in (10) was presented as a con-
crete candidate for modeling of texture-modulated covariance
matrix data.

Models that include and quantify texture become relevant
when we want to investigate the influence of texture on the
ENL estimation performance. The textural variability of the
target will add to the randomness inflicted by the measurement
process through speckle. Consider multilook intensity data for
simplicity: It is evident that the presence of texture will increase
Var{I}, when compared to the variance produced by speckle
alone. This leads to underestimation of Le, as seen from (14).

To assess the effect of texture on different ENL estimators,
we would ideally evaluate the mean and bias of the candidate
estimators under a distribution that includes texture. Due to the
complexity of both the estimators and the aspiring distributions,
this is not possible. We must therefore resort to generating tex-
tured data and use them to evaluate statistics of the estimators
experimentally. The multilook polarimetric K-distribution is
used for this purpose.

We note that, assuming that the texture in all polarimetric
channels can be modeled by a scalar random variable, the phase
difference, amplitude ratio, and intensity ratio are all insensitive
to texture. This was pointed out by Lee et al. [9], who used the
fact to estimate the ENL, without explicitly stating how. The
invariance of the amplitude ratio and also the phase to texture
can be used to design robust ENL estimators. This approach has
not been examined due to the complicated distribution of the
phase difference, amplitude ratio, and intensity ratio [25], [26].

VI. UNSUPERVISED ESTIMATION

Some attempts have already been made to design a fully
automatic estimation algorithm that avoids manual selection of
a region of interest [15]–[17], as reviewed in Section III. Since
all these methods are related to the traditional CV estimator in
(15) and use only one polarization at the time, we here propose
a new unsupervised estimator based upon the polarimetric ML
estimator defined by (29).
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For an arbitrary SAR scene, there is no guarantee that we
can find an image subset with fully developed speckle and
no texture. If such a region exists, it may not contain enough
samples to ensure that empirical moments can be calculated
with sufficient accuracy. This motivates a different approach,
where moments are calculated and the estimator is evaluated in
small windows over the whole image. The ENL is then inferred
from the distribution of small sample estimates. However, this
method has a number of inherent problems that need to be
considered. Some of the windows will contain a mixture of
pixels from different classes, and some will contain texture.
Both of these conditions lead to underestimation of the ENL.
We may also encounter areas where the contribution of coherent
scatterers makes the zero-mean assumption on the scattering
coefficients invalid. The nonzero mean will increase the average
intensity and thus leads to overestimation of the ENL. Finally,
when small sample sizes are used, the bias of all the estimators
studied is significant. This is demonstrated in the experiments.

The method used in [15] and [16] is to produce a scatter

plot of ̂E{I} versus σ̂I values estimated over a whole scene.
The idea is that values computed under no texture and fully
developed speckle will dominate the population of estimates.
Hence, they will stand out as a linear feature, such that the
ENL can be inferred from the slope. Instead of performing line
extraction in a 2-D space of empirical moments, we follow
the approach of [17] and compute a single statistic, namely,
the ENL itself, hence producing a 1-D distribution of small
sample ENL estimates. We use the same reasoning, hoping that
a large enough proportion of the estimation windows satisfy
the statistical assumptions. In this case, the overall distribution
of estimates should be dominated by estimates computed from
truly Wishart distributed samples, and the mode value can be
used as an estimate of the ENL.

A. Nonparametric Estimation

The distribution of the ENL estimates will depend strongly
upon the properties of the given image, i.e., the homogeneity of
the scene, the extent of the homogeneous regions, the amount of
texture within the classes, and the presence of homogeneous re-
gions that exhibit coherent scattering. Due to the unpredictable
shape and possible multimodality of the distribution, we must
resort to nonparametric estimation and propose to use a kernel
density estimator (KDE) implemented with the Epanechnikov
kernel function [27], [28].

The KDE yields the following distribution estimate:

p̂(L̂e) =
1

nh

n∑
i=1

Kh

(
L̂e − 	̂e(i)

)
(41)

where L̂e is the stochastic small sample ENL estimator,
{	̂e(i)}n

i=1 is a set of n instances produced by this estimator
in separate windows, Kh(·) is the kernel function, and h is the
kernel bandwidth that determines the degree of smoothing. The
Epanechnikov kernel is defined as

Kh(x) =
3
4

(
1 −
(x

h

)2
)

11{| x
h |<1} (42)

where the indicator function 11{Ω} denotes 1 when condition Ω
holds and 0 when it does not. The KDE is chosen because it

is simple and has a convergence rate of n−4/5, as compared to
n−1, which is common for parametric estimators.

The kernel bandwidth has a strong impact on the magnitude
of the estimated distribution but not so much on the sample
mode. Since the aim is to extract the mode value and use it as
an ENL estimate, determination of a near optimal bandwidth is
not critical. We have therefore assumed that simple bandwidth
selection rules from the literature (see, e.g., [27] and [28]) are
sufficient. The Epanechnikov kernel is optimal with respect
to the asymptotic mean integrated squared error of the KDE.
Equally important, it provides a fast implementation due to its
finite support.

Let the final estimate extracted as the mode of the kernel
density estimate be denoted as L̂e.

B. Bias Correction

It will be shown in Section VII that one notable side effect
of using small sample estimates of the ENL is that they contain
significant bias. This bias transfers directly to the value inferred
from the distribution of estimates. An illustration is given in
the result section. It is possible to estimate the bias by means
of jackknife resampling, and the bias estimate can be used to
obtain a corrected ENL estimate.

Jackknifing [29], [30] is a resampling technique that can be
used to estimate the bias and variance in an estimator. If the
original sample contains m observations, the jackknife proce-
dure consists of recomputing the estimator m times, leaving out
one observation from the full sample at a time. This produces
m jackknife replications, {	̂e(i, j)}m

j=1, for a given small sam-

ple estimate, 	̂e(i). The bias estimate based on sample window
i is computed as

b̂(L̂e, i) = (m − 1)
(
	̂e(i, ·) − 	̂e(i)

)
(43)

where 	̂e(i, ·) is the mean of the m jackknife replications,
defined as

	̂e(i, ·) =
1
m

m∑
j=1

	̂e(i, j). (44)

Bias estimation introduces considerable overhead to the algo-
rithm, if we choose to compute a jackknife estimate b̂(L̂e, i) for
each of the n small sample windows in the image. We propose
to process only a user-specified number (or a percentage of
the total number) of samples, selecting those that correspond
to the estimates 	̂e(i) that are closest to the mode value, as
these are most likely to comply with the statistical assumptions.
This yields a collection of small sample bias estimates. The
final estimate b̂(L̂e) could have been obtained in the same
manner as L̂e, i.e., by nonparametric density estimation and
extraction of the mode. Instead, we suggest for simplicity to
use the median value, which has proven experimentally to be
consistently close to the mode value. The bias-corrected ENL
estimate thus becomes

L̂′
e = L̂e − b̂(L̂e)

= arg max
L̂e

{
p̂(L̂e)

}
− med

{
b̂(L̂e, i)

}
(45)

where med{·} is the median operator.
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One problem with the bias correction procedure is that the
bias estimator itself has a bias. If the number of observations m
becomes too small, then the correction is inaccurate. This must
be taken into consideration when selecting the sample size m.
The result section will indicate for which values of m a bias
correction is needed and for which values a reliable correction
can be obtained.

VII. RESULTS

In the experiments, we used synthetic and real data to
compare the following algorithms: 1) CV estimator [see (15)];
2) FM estimator [see (17)]; 3) TM estimator [see (20)];
4) ML estimator [see (29)]. The CV is the conventional esti-
mator, while the FM estimator [6] is a lesser known alterna-
tive from the literature. The TM estimator is our polarimetric
generalization of the CV estimator. The ML estimator is the
proposed estimator based on first log-determinant moment of
the multilook polarimetric covariance (or coherency) matrix.

A. Synthetic Data

We first tested the estimators on random generated data
from a single class. The synthetic data set consisted of N =
1000 000 coherency matrix samples drawn from a complex,
circular, and zero-mean Wishart distribution. The distribution
was parameterized by a scale matrix Σ that had been computed
by averaging a homogeneous region in the NASA/JPL AIRSAR
L-band image of Flevoland, the Netherlands, and thus repre-
sented a realistic model of natural vegetation. The number of
looks was set to L = 10.

1) Statistical Properties: From the population of N =
1000 000 Wishart samples, we drew Mb = 10 000 bootstrap
samples of variable size Nb and then used the bootstrap esti-
mator [29]–[31] to estimate the bias and variance of the ENL
estimators. The upper panel of Fig. 2 displays the estimated
bias versus sample size Nb and ranks the ML estimator as the
best, followed by the TM estimator, and then the FM estimator,
which is slightly better than the CV estimator. The order of
performance is the same for variance versus sample size Nb,
as shown in the middle panel.

The lower panel shows the distribution of ENL estimates
for a fixed sample size of Nb = 512. The distribution was
computed with a KDE estimator with Epanechnikov kernel and
kernel bandwidth h = 0.1. We see that all estimators produce
distributions that are centered approximately around the true
number of looks, L = 10, as the random generated data had no
correlation. We note that a considerable improvement in terms
of reduced variance is visible for the ML estimator. Its variance
is well above the UCRB (see the middle panel), but we have
observed experimentally that much of the gap can be attributed
to the nuisance parameters in Σ.

2) Robustness to Texture: The experiments were repeated
for multilook polarimetric K-distributed data with different
degrees of texture, which increase with decreasing values of the
distribution parameter αL, as discussed in Section II-B. Data
were generated with parameter values ranging from αL = 2,
which corresponds to a strongly heterogeneous environment
such as an urban area, to αL = 16, which may characterize
vegetation such as forest or certain crops. The limiting case,
αL = ∞, which is equivalent to no texture and Wishart distrib-
uted data, was also included.

Fig. 2. (Top) Estimator bias and (middle) variance as a function of sample
size Nb and (bottom) the distribution of ENL estimates for Nb = 512. Results
shown for the CV, FM, TM, and ML estimators. The variance plot includes the
UCRB. True L = 10 shown as dotted line.

Fig. 3 shows the distribution of the ENL estimators for
different values of αL with L = 10 (dotted line). The figure
illustrates that the mode and mean of the distributions depend
strongly on αL and that the estimate is severely distorted by
texture. The ML estimator is least affected, followed by the
TM estimator, with the FM estimator, and then the CV esti-
mator as the inferior.

B. Real Data

1) Unsupervised Estimation: After having established the
statistical properties of the ENL estimators with synthetic data,
we turned to real data for a realistic assessment of their ap-
plicability to unsupervised estimation. We chose to use two
data sets acquired by the airborne NASA/JPL AIRSAR L-band
instrument: one image of an agricultural area in Flevoland, The
Netherlands, from 1989, and one image of the San Francisco
Bay area in California, U.S., from 1988. Both data sets contain
four-looked coherency matrices, with a pixel resolution of
about 10 m × 10 m.

The landscape of the Flevoland image consists mainly of
homogeneous fields and some forest areas, straight roads, and
farm houses. The San Francisco Bay image contains mostly sea
and urban areas, as well as some parks and hills covered by
vegetation. There are few homogeneous areas of considerable
size, except for the ocean. One would therefore expect that it
is relatively simpler to estimate the ENL from the Flevoland
image.

Each image was processed by computing the estimators in
a sliding window of size k × k pixels, covering the whole
image. The window size was varied from k = 3 to k = 15.
No speckle filter was applied initially. The distribution of each
estimator was estimated from the collection of local estimates.
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Fig. 3. Distribution estimates for the CV, FM, TM, and ML estimators,
calculated from single-class multilook polarimetric K-distributed data random
generated with a fixed Σ and αL = {2, 4, 8, 16,∞}.

We used a KDE with Epanechnikov kernel function and a
kernel bandwidth of h = 0.1. The results are shown in Fig. 4
for the Flevoland image and Fig. 5 for the San Francisco image.
A modified Lee filter [32] with window size w = 7 was then
applied to the images to reduce the level of speckle. The results
were similar and are therefore only presented for the Flevoland
image. The estimate distributions, as shown in Fig. 6, were
obtained with kernel bandwidth h = 0.5. None of the estimates
were bias corrected at this stage.

2) Effect of Window Size: From the panels of Figs. 4 and 5,
we can study the evolution of the distribution of ENL estimates
as the window size increases. Denote by H0 the hypothesis
that the estimation sample is drawn from a homogeneous area
with fully developed speckle and no texture, i.e., the statistical
conditions assumed for ideal ENL estimation. Let H1 be the
complementary hypothesis, which indicates the presence of
multiple classes, texture, or coherent scattering. The overall
distribution can then be modeled as a mixture

f(L̂e) = π0f0(L̂e) + π1f1(L̂e). (46)

The first mixture component f0(L̂e) consists of estimates cal-
culated under H0, which occurs with relative frequency π0.
It is the desired component and should ideally be sufficiently
dominant to produce an identifiable mode close to the true ENL.
The other component results from estimates produced under
H1. This component modifies the shape of the overall distribu-
tion, and depending on the magnitude of its relative frequency,
π1 = 1 − π0, it may even give rise to additional modes.

Fig. 4. Distribution estimates for the CV, FM, TM, and ML estimators
calculated from the AIRSAR image of Flevoland. No speckle filter applied.
ENL estimated for window sizes of k = {3, 5, 7, 11, 15}.

Fig. 5. Distribution estimates for the CV, FM, TM, and ML estimators
calculated from the AIRSAR image of San Francisco. No speckle filter applied.
ENL estimated for window sizes of k = {3, 5, 7, 11, 15}.

Two expected effects can be seen as the number of samples
within the estimation window increases: First, the variance
becomes lower and the modes narrower. This is most clearly
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Fig. 6. Distribution estimates for the CV, TM, TM, and ML estimators calcu-
lated from the AIRSAR image of Flevoland. Modified Lee filter with window
size 7 × 7 applied. ENL estimated for window sizes of k = {3, 5, 7, 11, 15}.

Fig. 7. Local ENL estimates obtained with the ML estimator and window size
k = 7 for the AIRSAR image of Flevoland. No speckle filter applied.

observed for the ML estimator, which has a well-defined
mode for all window sizes. Second, the probability of having
mixed classes within the estimation window increases, and
consequently, so does the proportion of underestimated values.
This is seen as a growing negative skewness and the tendency
toward a bimodal distribution for all estimators. It also partially
explains the shift of the mode value toward a lower ENL with
increasing k, even though the bias of the ENL estimator also
contributes to the observed effect.

Fig. 7 shows a map of the locally estimated ENL values,
obtained with the ML estimator and k = 7 for the Flevoland
data set. It confirms that the mode in Fig. 4, centered around 3.2,
corresponds to values that are estimated within homogeneous
crop fields, while the mode emerging with increasing k around

Fig. 8. Local ENL estimates obtained with the ML estimator and window size
k = 7 for the AIRSAR image of San Francisco. No speckle filter applied.

2.7 relates to values estimated at class boundaries. In the same
manner, Fig. 8 demonstrates for the San Francisco image that
the main mode of the ML estimator with k = 7, located around
3.0, corresponds to values estimated over land. The second
mode at higher values is discussed in the sequel. The fact that
the mode value is more sensitive to k for the San Francisco data
set indicates that this image has less homogeneous regions on
the scale of the estimation window.

From the investigations with synthetic data, it is obvious that
the presence of texture will add to the underestimation, but this
effect is not affected by the window size k. Following the earlier
discussion, it seems reasonable to use the smallest window size
possible to suppress the mixed class effect while, at the same
time, maintaining low enough variance and bias to obtain the
required accuracy and precision in determination of the mode
value.

3) Effect of Coherent Scatterers: Fig. 5 shows the influence
of the window size, as discussed earlier, but also reveals an-
other source of disturbance that only seems to affect the ML
estimator. For increasing k, we see the emergence of a second
mode, which is located between 4 and 5, i.e., at values higher
than the true number of looks (L = 4). In Fig. 8, this cluster of
estimates is observed to be spatially located over ocean, and the
highest ENL estimates are obtained in the top right corner of
the image, where the incidence angle reduces to 5◦. We believe
that overestimation occurs because specular reflection from the
water surface contributes a strong coherent component, which
is consistent within local neighborhoods. This makes the zero-
mean assumption on the scattering coefficients invalid.

The given explanation is mathematically consistent, although
we have no firm evidence. The same phenomenon is observed
for the Flevoland data set; Fig. 7 shows that the highest ENL
estimates are found over water, i.e., in the triangular area in
the top right corner. However, this image contains too little
water surface for the overestimation effect to be clearly visible
in the distribution of estimates (Fig. 4). Other regions, such
as the large urban areas in the San Francisco image, are also
expected to contain significant coherent scattering, but these are
too heterogeneous to produce overestimated ENL values.

4) Effect of Speckle Filtering: The unsupervised estimation
procedure was also tested on speckle-filtered data. The sim-
plest speckle filter, a boxcar filter, smooths all pixels equally
by averaging over a fixed size window and thus acts like a
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Fig. 9. Local ENL estimates obtained with the ML estimator and window size
k = 7 for the AIRSAR image of Flevoland. Modified Lee filter with window
size w = 7 applied.

spatial-domain multilook operator. Hence, the effect on the
ENL estimate is a simple scaling. More sophisticated filters
perform adaptive smoothing. They take local variability in the
image into account in order to preserve details like edges and
points. As a consequence, the ENL will no longer be a constant
value but a spatially varying number.

We applied a modified Lee filter [32] because of its wide-
spread use. It is also simple enough that it allows us to quantify
the amount of averaging it performs. The modified Lee filter
is basically a linear minimum mean squared error filter, whose
output is a weighted sum of the center pixel data value on the
one hand and the average of a fixed size smoothing region
selected from the filter window on the other. The weight is
determined from the homogeneity of the smoothing region.
Hence, the maximum smoothing factor is equal to the num-
ber of pixels of the smoothing region, denoted as Nw, and
the minimum is none. From the specification of the modified
Lee filter, we have Nw = w(w + 1)/2 when the full window
size is w × w, and the dynamic ENL after adaptive speckle
filtering will lie in the range between Le, the original ENL
value, and Nw · Le. We see that a common window size of
w = 7 yields Nw = 28, which illustrates that speckle filtering
transforms a single-valued ENL into a wide range of values.

Fig. 6 shows the estimation results obtained on the Flevoland
image processed with a modified Lee filter with w = 7. A mode
becomes visible with increasing window size, but it occurs at
very low ENL values. Fig. 9 shows a map of the local estimates
produced with the ML estimator. It illustrates that the mode
emerging at 5 < L̂e < 10 corresponds to estimates obtained
over class boundaries. It can therefore not be related to the true
ENL. The desired mode that appeared in Fig. 4 has vanished,
as the distribution has been stretched due to the variable degree
of smoothing. The areas that produced ENL estimates around
the mode value of Fig. 4 now produce estimates in an interval
ranging from 40 to 100. The same observations were made for
the San Francisco image.

We acknowledge that other adaptive speckle filters will lead
to different distributions of the ENL. Nevertheless, our obser-
vations strongly suggest that unsupervised ENL estimation is
impossible for dynamically filtered data. This does not imply
that our method has failed, but rather that the Wishart model,
and in particular the parameterization with a single-valued

Fig. 10. ENL estimates obtained with the ML estimator as a function of
window size k for the AIRSAR images of Flevoland and San Francisco, with
and without bias correction. No speckle filter applied.

ENL, is inappropriate. The implications for statistical modeling
should be addressed by future research.

5) Effect of Estimator Bias: The effect of the estimator
bias is shown in Fig. 10. The plot shows the mode value
extracted by means of the KDE as a function of window size k.
The respective estimates, L̂e and L̂′

e, obtained before and
after bias correction are shown for both the Flevoland and the
San Francisco data set. We observe for the Flevoland data that
the bias-corrected estimate is relatively constant from k = 3
and onward. This indicates that the window size has no influ-
ence on the estimate after bias has been removed. The low value
of the bias-corrected estimate for k = 2 suggests that the bias
is overestimated for low values of k. This naturally concerns
both data sets. The ENL estimated from the San Francisco data
shows a decreasing trend with k, also after bias correction. We
interpret this as an effect of mixed classes, which increases with
window size.

6) Estimation Results: The estimation results in Fig. 10
suggest that the data sets have different ENL values. This is
not, however, supported by the knowledge that both images
are produced with the same data processor and that they have
very similar ground resolution. The difference could stem from
differences in acquisition parameters, but we believe it is more
likely due to a differing amount of texture found in the respec-
tive images and particularly in the areas where the estimates
contributing to the main mode in the pdf estimates originate.
The San Francisco image has very little homogeneous areas,
and much of the estimates around the mode are collected from
urban area and hilly terrain. With reference to the discussion of
texture influence, as illustrated by Fig. 3, this could well explain
the lower ENL values extracted from the San Francisco data
set. It is possible that also the ENL level estimated from the
Flevoland data is lowered with respect to the true value by the
presence of texture, but by a smaller amount.

It seems clear that the ability of our method to obtain an
estimate that is close to the true ENL depends entirely on
how susceptible the data set is to estimation. However, the
alternative to our unsupervised procedure is manual selection
of a sufficiently large region with approximately constant radar
cross section, which is not possible for the San Francisco image.
Such regions can be found in the Flevoland image, but the
resulting estimate still varies, depending on the exact position-
ing of the estimation window within seemingly homogeneous
areas. Another discussion goes to whether one should really
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Fig. 11. Computational complexity of the CV, FM, TM, and ML estimators
measured in CPU time per estimate calculation as a function of sample size.

aim at the true ENL value or rather a value that provides a
better model for the data by implicitly incorporating some of
the texture not accounted for by the Wishart model. The ENL is
not a physical entity but a parameter of the less than perfect sta-
tistical model, which could justify a more pragmatic approach.
If we choose to accept an ENL estimate that assimilates texture,
then our unsupervised procedure that collects small sample
estimates from the whole scene is appropriate, since the result
is representative for the whole image.

Earlier studies of the ENL for four-look AIRSAR data have
concluded that the data have characteristics close to that of
three-look [33]. By matching distributions of phase and ampli-
tude ratio that are assumed to be insensitive to texture, Lee et al.
estimated the ENL for an AIRSAR C-band image of Howland
Forest, U.S., to a value of 3.3 [9]. This is compatible with the
results shown in Fig. 10, but we still need to decide on a window
size in order to obtain a value to compare with. The discussion
on the window size effect related to mixed classes prescribes
the use of the smallest window size possible. On the other hand,
consideration of estimator bias forces us to increase the window
size slightly. We believe that k = 5 is a good compromise,
which should be applicable to various data sets. This window
size yields bias-corrected ENL estimates of 3.21 and 2.97 for
the Flevoland and San Francisco data sets, respectively.

C. Computational Complexity

We finally present some results on the computational com-
plexity of the tested algorithms. All algorithms are implemented
in C language and optimized for speed. The performance mea-
sure is CPU time, as measured by the Matlab profile function,
on a 2.0-GHz Intel Pentium M processor. Fig. 11 shows the
mean CPU time required per estimate calculation as a function
of sample size.

The figure shows that the CV estimator has the lowest com-
putational cost, followed by the TM estimator. This is expected
since these are the mathematically simplest functions, with
analytical solutions. The CV estimator is typically in the order
of five to fifteen times faster than the ML estimator, depending
on the sample size. The ranking of the inferior FM and ML es-
timators also depends on sample size, which can be explained.
Both of these estimators are solved numerically and must be
seeded with an initial value. For small sample sizes, the estimate
is more likely to lie far off the seed value, which is typically
chosen as the nominal number of looks. When this happens,

the numerical scheme needs more time to converge. The FM
estimator has higher variance than the ML estimator, as shown
in Fig. 2, and is therefore more affected. As the sample size
gets higher, the variance becomes lower. Thus, the convergence
time becomes shorter and less important, and algorithm speed
depends more on the complexity of the mathematical functions.
The digamma function in the ML estimator makes it slightly
slower than the FM estimator, which can be implemented with
the log-of-gamma function.

VIII. CONCLUSION

We have proposed two new estimators for the ENL that
are adapted for PolSAR data. The expressions are derived by
examining moment expressions of the multilook polarimetric
covariance matrix (or, equivalently, the coherency matrix). The
first estimator is found by rearranging the second-order TM of
the covariance matrix and is thus called the TM estimator. The
expression also provides a matrix-variate generalization of the
traditional definition of the ENL, established in the theory of
single-polarization SAR. The second estimator is found from
the log-determinant moment of the covariance matrix and is
also observed to be the ML estimator based on the Wishart
model for multilook PolSAR data. It is therefore coined the ML
estimator. The proposed estimators are, as far as we know, the
first ones to process the full multilook polarimetric covariance
matrix, thus utilizing all the available statistical information
of PolSAR data. They readily reduce to estimators for single-
polarization SAR data as a 1-D special case.

The new estimators have been compared with two estimators
from the literature. The first is the traditional CV estimator.
The second, which we have called the FM estimator, is the
best method in the sparse literature on ENL estimation for
PolSAR data. Both are based on moments of single-polarization
intensities. Assessment of the statistical properties of all estima-
tors shows that the TM estimator represents improvement with
respect to the previously known methods, but the ML estimator
is by far the superior one. We therefore launch it as the preferred
estimator, not only for PolSAR data but for SAR data in general.
We have compared the bias and the variance of the estimators
in experiments. A bound on the variance of an ENL estimator
has also been derived, which is closely related to the CRB.
In addition to achieving the lowest bias and variance, the ML
estimator is also shown to be less affected by texture, when the
assumption of constant radar cross section does not hold for the
input data sample.

We have finally examined the applicability of the ML esti-
mator to unsupervised estimation, which obsoletes the manual
selection of a region characterized by the appropriate statis-
tics assumed in the definition of the ENL. An unsupervised
estimation procedure is described. It is further shown through
experiments that the low variance property of the ML estimator
is the key feature that enables extraction of a reliable ENL
estimate from the distribution of small sample estimates that
have been calculated over the whole image without regards to
the appropriateness of local statistics. Possible sources of error
are discussed in detail, and practical solutions to issues such
as bias reduction and selection of processing parameters have
been proposed. The fully automatic unsupervised procedure
offers a robust alternative to manual procedures and represents
a potential improvement to an operational processing chain.
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APPENDIX A
PROOF OF ESTIMATOR CONVERGENCE

We here analyze the convergence properties of the estimators
that must be solved numerically because they have no analytic
solution.

The FM estimator is defined as the root of the polynomial
f(L), as given in (17). It can be shown that f(L) is a monotoni-
cally increasing function of L. To prove that f(L) has a root, we
shall study the limiting values of f(L) as L → ∞ and L → 0.

From [34], we have

Γ(L + 1/2)
Γ(L)

√
L

= 1 − 1
8L

+
1

128L2
+

5
1024L3

− · · · . (47)

Thus

lim
L→∞

f(L) = lim
L→∞

Γ(L + 1/2)
Γ(L)

√
L

√
〈I〉 − 〈

√
I〉

=
√

〈I〉 − 〈
√

I〉 ≥ 0. (48)

The limiting value is the difference between the root mean
square and the arithmetic mean of the detected amplitude,

√
I ,

which is always nonnegative by the known inequality for these
entities.

The next step is to determine the limit of (47) as L → 0. A
standard power series expansion of Γ(L) shows that

Γ(L) ∝ 1/L − γEM + O(L) (49)

where γEM is the Euler–Mascheroni constant and O(·) is
Landau notation to denote order. It follows that

Γ(L)
√

L ∝ 1√
L

− γEM

√
L + O(L3/2). (50)

Thus, the numerator Γ(L + 1/2) → Γ(1/2) =
√

π and the de-
nominator Γ(L)

√
L → ∞ as L → 0. The limit becomes

lim
L→0

Γ(L + 1/2)
Γ(L)

√
L

= 0 (51)

which proves that

lim
L→0

f(L) = −〈
√

I〉. (52)

The limit of f(L) is negative as L → 0 and f(L) is a
monotonically increasing function. Hence, it can be proved that
there exists exactly one root of f(L) in the interval 0 < L < ∞
if and only if inequality occurs in (48), i.e., the limit as L → ∞
must be strictly positive.

For a sample size of N = 1, f(L) has no root, since in this
case,

√
〈I〉 = 〈

√
I〉, and f(L) < 0 with probability equal to

one for finite L. However, for N ≥ 2, the limit is positive unless
all samples have the same value. Thus, as long as the samples
are nonidentical, a root exists and the estimator converges,
provided that it is implemented with a reliable root-finding
algorithm. We have used the bisection method.

The proof for the ML estimator follows the same path. The
ML estimator is defined as the root of g(L), as defined in (29). It
can be shown that g(L) is a monotonically decreasing function

of L in the interval d − 1 < L < ∞. Next, observe that the
digamma function can be expanded as

Ψ(L) ∝ ln(L) − 1
2L

− 1
12L2

(
1 + O

(
1
L2

))
(53)

which is used to show that

lim
L→∞

g(L) = lim
L→∞

〈ln |C|〉 − ln 〈|C|〉

−
d−1∑
i=0

(
ln
(

L − i

L

)
− 1

2(L − i)

− 1
12(L − i)2

[
1 + O

(
1

(L − i)2

)])
= 〈ln |C|〉 − ln 〈|C|〉 ≤ 0. (54)

The inequality on the bottom line is easily proved by means of
Jensen’s inequality on finite form. It is also readily shown that

lim
L→d−1

g(L) = ∞. (55)

The limit as L → d − 1 is positive, and g(L) is a monoton-
ically decreasing function. Thus, the existence of a root of
g(L) requires that the inequality in (54) is strictly negative.
Equality occurs in (54) if and only if there is no variation in the
sample, with N = 1 as a special case. Otherwise, for N ≥ 2,
a unique root of g(L) exists in the interval d − 1 < L < ∞
and the estimator converges. We note that the lower limit of
this interval, introduced by the discontinuity of g(L) at d − 1,
restricts the allowed range of the ML estimate. However, this
is not a conceptual problem, since estimates L̂e < d are in
conflict with the condition for the Wishart distribution to be
nonsingular.

APPENDIX B
DERIVATION OF LOG-DETERMINANT MOMENTS

In this appendix, we derive low-order moments of
ln(|Z|/|Σ|). By combining (23) and (24), the moment gener-
ating function of ln(|Z|/|Σ|) was found to be

M
ln
(

|Z|
|Σ|

)(r) =
d−1∏
i=0

Γ(L − i + r)
Γ(L − i)

. (56)

The first-order moment thus becomes

E
{
ln
(
|Z|
|Σ|

)}
=

[
d

dr

d−1∏
i=0

Γ(L−i+r)
Γ(L−i)

]∣∣∣∣∣
r=0

=

⎡⎣d−1∑
i=0

⎛⎝Γ′(L−i+r)
d−1∏
j=0
j �=i

Γ(L−j+r)

⎞⎠⎤⎦∣∣∣∣∣∣
r=0

d−1∏
j=0

Γ(L−j)

=

[
d−1∑
i=0

Ψ(0)(L−i+r)
d−1∏
j=0

Γ(L−j+r)

]∣∣∣∣∣
r=0

d−1∏
j=0

Γ(L−j)

=
d−1∑
i=0

Ψ(0)(L−i). (57)
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To arrive at this result, we have used the product rule of
differentiation repeatedly and utilized the relation Γ′(L) =
Γ(L)Ψ(0)(L), where Γ′(L) denotes the derivative of Γ(L).

In the same manner, the second-order moment is derived as

E
{

ln2

(
|Z|
|Σ|

)}
=

d−1∑
i=0

Ψ(1)(L − i) +

(
d−1∑
i=0

Ψ(0)(L − i)

)2

.

(58)

By combining the first-order and the second-order moment, it
is discovered that

Var {ln |Z|} = Var
{

ln
(
|Z|
|Σ|

)}
=

d−1∑
i=0

Ψ(1)(L − i). (59)

This expression can also be used to estimate L, but the per-
formance is inferior to the estimator derived from (57), as the
second-order moment is more difficult to estimate than the first-
order moment.

APPENDIX C
DERIVATION OF FISHER INFORMATION MATRIX

In this appendix, we derive the FIM of the complex pa-
rameter vector θ = [Le, vec(Σ)T]T. The log-likelihood func-
tion of a size N complex Wishart distributed sample Z =
{Z1, . . . ,ZN} was given in (34). It can be expanded to

L(Z;Le,Σ) =
N∑

i=1

((n − p) ln |Zi| − n ln |Σ|

− ln Γd(Le) − tr(Σ−1Zi)
)
. (60)

The partial derivatives of L(Z) (with parameters suppressed)
with respect to Le follow readily as

∂L(Z)
∂Le

= fN

(
〈ln |Z|〉 − ln |Σ| −

d−1∑
i=0

Ψ(0)(Le − i)

)
(61)

∂2L(Z)
∂L2

e

= − N

d−1∑
i=0

Ψ(1)(Le − i). (62)

The first partial derivative with respect to Σ is found from
standard rules of complex matrix calculus [35]

∂L(Z)
∂Σ

= −NLeΣ−1 + NΣ−1〈Z〉Σ−1. (63)

To obtain the second partial derivative, we need

∂Σ−1〈Z〉Σ−1

∂Σ

=
∂Σ−1

∂Σ

(
Id ⊗ 〈Z〉Σ−1

)
+ (Id ⊗ Σ−1)

∂
(
〈Z〉Σ−1

)
∂Σ

= (−Σ−1 ⊗ Σ−1)
(
Id ⊗ 〈Z〉Σ−1

)
+(Id ⊗ Σ−1)(−Σ−1 ⊗ Σ−1) (Id ⊗ 〈Z〉)

= −
(
Σ−1 ⊗ Σ−1〈Z〉Σ−1

)
−
(
Σ−1 ⊗ Σ−1Σ−1〈Z〉

)
. (64)

This result occurs after repeated applications of the chain rule
and the product rule in [36, Th. 4.3]. When differentiating with

respect to Σ, it takes the form

∂(AB)
∂Σ

=
∂A
∂Σ

(Id ⊗ B) + (Id ⊗ A)
∂B
∂Σ

(65)

for two arbitrary complex matrices A and B with compatible
dimensions. We have also used ∂Σ−1/∂Σ = −Σ−1 ⊗ Σ−1

[35]. It follows that

∂2L(Z)
∂Σ2 = NLeΣ−1 ⊗ Σ−1 − N

(
Σ−1 ⊗ Σ−1〈Z〉Σ−1

)
−N
(
Σ−1 ⊗ Σ−1Σ−1〈Z〉

)
. (66)

From (61) and (63), we finally obtain

∂

∂Le

(
∂L(Z)

∂Σ

)
=

∂

∂Σ

(
∂L(Z)
∂Le

)
= −NΣ−1 (67)

and are now equipped for the derivation of J, the FIM of θ.
By elaborating on (36), J can be expressed as

J =
[
J11 J12

J21 J22

]
(68)

with quadrant submatrices defined as

J11 = − E
{

∂2

∂L2
e

L(Z)
}

= N

d−1∑
i=0

Ψ(1)(Le − i) (69)

J12 = − E

{
∂

∂Le

(
∂L(Z)

∂vec(Σ)

)T
}

= Nvec(Σ−1)T (70)

J21 = − E
{

∂

∂vec(Σ)∗

(
∂L(Z)
∂Le

)}
= Nvec(Σ−1)∗ (71)

J22 = − E

{
∂

∂vec(Σ)∗

(
∂L(Z)

∂vec(Σ)

)T
}

=NLe(Σ−1 ⊗ Σ−1). (72)

In the evaluation of the submatrices of J, we have used
(62), (66), and (67), together with the differential relation
∂/∂vec(A) = vec(∂/∂A), which is valid for an arbitrary com-
plex matrix A [35]. We thus have

J = N ·

⎡⎣ d−1∑
i=0

Ψ(1)(Le − i) vec(Σ−1)T

vec(Σ−1)∗ Le(Σ−1 ⊗ Σ−1)

⎤⎦ (73)

and the inverse FIM in (39), defining the bound discussed in
Section V-A, follows readily.
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