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ESTIMATION OF WIND FARM EFFICIENCY
BY ANFIS STRATEGY

Abstract: A wind power plant which consists of a group of wind turbines at
a specific location is also known as wind farm. The engineering planning of a wind
farm generally includes critical decision-making, regarding the layout of the turbines
in the wind farm, the number of wind turbines to be installed and the types of wind
turbines to be installed. Two primary objectives of optimal wind farm planning are
to minimize the cost of energy and to maximize the net energy production or to maxi-
mize wind farm efficiency. In the design process of a wind farm the aerodynamic
interactions between the single turbines have become a field of major interest. The
upwind turbines in a wind farm will affect the energy potential and inflow conditions
for the downwind turbines. The flow field behind the first row turbines is characterized
by a significant deficit in wind velocity and increased levels of turbulence intensity.
Consequently, the downstream turbines in a wind farm cannot extract as much power
from the wind as the first row turbines. Therefore modeling wind farm power produc-
tion, cost, cost per power unit and efficiency is necessary to find optimal layout of the
turbines in the wind farm. In this study, the adaptive neuro-fuzzy inference system
(ANFIS) is designed and adapted to estimate wind farm efficiency according to tur-
bines number in wind farm. The simulation results presented in this paper show the
effectiveness of the developed method.

Key words: wind turbine, wind farm efficiency, power production, neuro-
fuzzy, ANFIS.

Introduction

Wind energy is a promising renewable energy resource to help overcome
global warming and environmental pollution from the use of fossil fuel. Renewa-
ble energy sources are the greatest resource for this purpose. The world’s fastest
growing renewable energy source is the wind energy [1]. Wind turbines are mac-
hines which convert the wind energy to the electricity [2]. Rapid advances in tec-
hnical aspects and materials lead to an increase in size and output of the produced
power [3]. A problem is in wind turbine sizing and choosing the optimal confi-
guration of the turbine’s parts [4]. Merely, by considering technical aspects, the
best turbine is the most efficient one, which has the highest coefficient of energy
or capacity factor [5]. However, taking economic aspects into account can modify
the optimum size and design. Rotor radius, generator capacity and hub height are
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the most influential sizing parameters of the turbines. However, some limitations
are available for their relationship and ratios. It may vary from site to the site and
will be a function of the wind speed distribution at a given site.

Wind farms composed of large capacity wind turbines are main electrical
energy sources. The modeling and simulation of the complete model of a wind
farm with high number of wind turbines suppose the use of a high-order model
and a long computation time if all the wind turbines are modeled. In order to
reduce the model order and computation time, equivalent models was developed
to represent the collective response of the wind [6]. These models are based on
aggregating wind turbines into an equivalent wind turbine. As wind turbines
become larger, wind farm layout design becomes more important. In [7] authors
was enabled simultaneously optimization of the placement and the selection of
turbines for commercial-scale wind farms that are subject to varying wind condi-
tions. Among several wind farm layout design factors, wind turbine arrangement
according to separation distance is one of the most critical factors for power out-
put, annual energy production, availability, and life time of the wind turbine.
Acrticle [8] showed the effect of separation distance between two turbines and it
was found to be crucial for the conceptual design of a wind farm layout. There-
fore, during wind farm layout design, separation distance and interaction between
wind turbines must be carefully considered because they are directly connected
to the initial investment cost, payback period and economic efficiency. In article
[9] the characteristics of turbine spacing for optimal wind farm efficiency were
investigated using combined numerical models. The results showed that the spa-
cing between the first and the second turbines had the importance to the entire
farm’s efficiency. In [10] authors focused on the site specific optimization of
wind turbines by minimizing cost of electricity production. The study utilizes the
complete and comprehensive capital cost model for wind turbines plus technical
aerodynamic model based on blade element momentum theory with twenty blade
elements. In article [11] was measured the productive efficiency of a group of
wind farms during the period 2001-2004 using the frontier methods Data Enve-
lopment Analysis (DEA) and Stochastic Frontier Analysis (SFA).

The objective of the present study is to analyze relationship between wind
farm efficiency, power production, cost, cost per power unit and the number of
wind turbines in wind farm. Aiming at optimizing such systems to ensure optimal
functioning of the wind farm, new techniques are used today such as the fuzzy logic
(FL) [12], artificial neural network (ANN) [13] and neuro-fuzzy [14].

Artificial neural networks are adaptable demonstrating apparatuses with
proficiencies of taking in the numerical mapping between data and yield variables
of nonlinear frameworks. A standout amongst the most compelling sorts of neural
system framework is adaptive neuro-fuzzy inference system (ANFIS) [15].
ANFIS indicates great taking in and expectation competencies, which makes it a
proficient device to manage experienced vulnerabilities in any framework.
ANFIS, as a hybrid intelligent system that enhances the ability to automatically
learn and adapt, was used by researchers in various engineering systems.
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The key objective of this examination is to create an ANFIS for estima-
tion of the wind farm efficiency. An endeavor is made to recover association bet-
ween wind farm efficiency in regard to number of wind turbines. The training
experimental data will be extracted by an analytical, closed-form wake model
[16] which quantifies the aerodynamic interaction between turbines.

Wind Farm Efficiency Model

Analytical wake model named as Jensen’s wake model [16] is chosen in
the study, since energy is considered as saved inside the wake by this model. The
wake grows straightly with downstream separation. In this manner, this model is
suitable for the far wake locale. The wake has a sweep, at the turbine which is
equivalent to the turbine range R,- while, R, is the radius of the wake in the model.
R, is considered as radius of the downstream wake; the relationship between R,
and X is that downstream distance when the wake spreads downstream the radi-
us Ry; that increases linearly proportional, X. The wake extends directly with
downstream separation, as expressed in Jensen's model as demonstrated in
Figure 1.
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Figure 1: Schematic of wake model

Following equation [38] was used to determine the wind speed after wind
turbine rotor as it shown in Figure 1:
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In the equation (1) we have:

— Uy is the mean wind rate or which might be clarified as the free stream
wind speed and in this study was utilized uy = 12m/s,

— axial induction factor is denoted by a which can be calculated from
the Cr , thrust coefficient. This can be determined from the equation:

Cr=4a(1—-a)

— X is the distance downstream of the turbine, while R, is related with

R, as represented using following equation:

1—a
Ri=Rr 11724

— 0 is the entertainment constant and by using the following equation:
0.5
- ani
0
In the above equation, z is used to denote the hub height and roughness
of the surface is denoted by z,. The value for surface roughness varies from field
to field. For plain terrains the value for z, = 0.3.
The accessible wind force could be computed by utilizing the accom-
panying comparison:

1
P, = EcAug‘ (2)

If the power production from each wind turbine contains the efficiency 3
of wind turbine then the following equation for the energy or power generated
from a wind turbine can be used:

1 3
B, = schu 3
If that the efficiency of wind turbines is equal to 40%, then the equation will be:
B, = 4—chu3 4)

In the above equation A represents cover surface of the turbine blades
during rotation and it is A = p40? since the used rotor radius in the study is R,. =
40 m, and c = 1.2. The following equation will be derived:

P, = 301u3W (5)
For the calculation of power into kW we have the following equation:
P, = 0.3u®kW (6)

94



Effectiveness is a term which is utilized for the measure of vitality con-
centrated as a piece of the aggregate vitality accessible. The effectiveness might
be ascertained from the accompanying comparison:

Y03 xu -
~ N(0.3 X ud)
~waxap @

where N, represents the turbines number in wind farm, P, is total delive-
red power from all wind turbines in wind farm.

The expense demonstrate that is utilized as a part of the present study is
the same as that was utilized within prior studies [40, 41]. This model encourages
a decrease of 1/3 in expense for every new wind turbine establishment. In this
way, it might be said that this expense model is a capacity of number of turbines.
From the above view the aggregate expense could be explained utilizing the
accompanying comparison:

C=N, E+1e_°'°°174*Nf2 (9)

3 3
where N, represents the number of turbines in wind farm.

It is useful to analyze also the cost per power unit (CPPU) if only one
wind turbine is installed in wind farm and it can be defined as following:

CPPU = — (10)
In this study the used values are as under:
=200m
Rr =40m
ug=12m/s
a = 0.326795
6 = 0.09437

Adaptive neuro-fuzzy inference application

An ANFIS model was established in this study to estimate the efficiency,
cost, cost per power unit and power production in wind farm in relation to number
of turbines in the wind farm. For the present study equations (1) to (10) were used
to extract training experimental data for the ANFIS network modeling. One 50%
of the extracted data were utilized for preparing while the other half is utilized for
checking and acceptance of the model. With a legitimate preparing plan and fine
separated information sets, ANFIS can efficiency, cost, cost per power unit and
power production in wind farm quite accurately since it learns from training data.
This measurement-free architecture also makes it immediately available for ope-
ration once they are trained.

There were three membership functions on each input. In this study bell-
shaped membership functions were chosen with maximum equal to 1 and mini-
mum equal to 0. Figure 2 shows an ANFIS model with three inputs.

95



Layer 2 Layer 3 Layer 4 Layer 5

Figure 2: ANFIS structure

In this work, the first-order Sugeno model with two inputs and fuzzy IF-
THEN runs of Takagi and Sugeno's sort was utilized:

if xisAandyis Cand zis E then f; = pyx + q1y + iz +t (11)

The first layer has input variables i.e. membership functions (MFs), input
1, input 2 and input 3. This layer simply supplies the data qualities to the follo-
wing layer. At the beginning there are three ANFIS networks which estimates
power production, cost and cost per power unit of wind farm in depend on number
of wind turbines in the wind farm. The outputs of the three ANFIS networks
represent inputs to the new ANFIS network with three inputs (Figure 2). The
input 1: x is power production, input 2: y is cost per power unit and input 3: z is
total cost of the wind farm. In the first layer every node is an adaptive node with
a node function

0 =wm(x,y,2),

where m(x, y, z); are membership functions.
Bell-shaped membership functions (3) with maximum 1 and minimum 0
was chosen in this study:

1
f(x;a,b,¢) =——— (12)
X—C
1+ (%)
where the bell-shaped function depends on three parameters a, b and c. The para-

meter b is usually positive. The parameter ¢ located the center of the curve as it
is shown in Figure 3.
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Figure 3: Bell-shaped membership function (a=2, b=4, c=6)

The second layer (participation layer) checks for the weights of every
Mfs. It accepts the info values from the first layer and goes about as Mfs to speak
to the fuzzy sets of the separate information variables. Each hub in the second
layer is non-versatile and this layer reproduces the approaching signs and sends
the item out like

w; = M(x); * M(x) 41 (13)

Every hub yield speaks to the terminating quality of a standard or weight.

The third layer is known as the standard layer. Every hub (every neuron)
in this layer performs the precondition matching of the fuzzy tenets, i.e. they regi-
ster the initiation level of each one lead, the amount of layers being equivalent to
the amount of fuzzy guidelines. Every hub of these layers figures the weights
which are standardized. The third layer is likewise non-versatile and each hub
figures the proportion of the guideline's terminating quality to the total of all stan-
dards' terminating qualities like

«_ Wi 14
Wi = wy + w, (14
i=1,2.
The outputs of this layer are called normalized firing strenghts or norma-

lized weights.

The fourth layer is called the defuzzification layer and it provides the
output values resulting from the inference of rules. Every node in the fourth layer
is an adaptive node with node function

0t = wixf = w; (pix + q;y +1;) (15)

where {p;, q;, '} is the consequent parameters.

The fifth layer is known as the yield layer which totals up all the inputs
hailing from the fourth layer and converts the fuzzy characterization results into
a fresh (paired). The single hub in the fifth layer is not versatile and this hub
figures the general yield as the summation of all approaching indicators
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The hybrid learning algorithms were used to identify the parameters in
the ANFIS architectures.

Results

The proposed ANFIS structure has three inputs as it shown in Figure 4.
There are three bell-shaped membership functions for each input. The three inputs
are:

1. inputl: Wind farm power production,

2. input2: Wind farm cost per power unit,
3. input3: Wind farm cost.

XN
e
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System

XX

inputz

input2

Figure 4: Fuzzy inference system with three inputs

Since Bell-shaped membership function was used for the fuzzy regres-
sion of the training data it is necessary to determine the parameters (a, b, c) of
the function as it depicted in the equation (12). After training procedure of the
proposed ANFIS network the optimal parameter of the bell-shaped function were
obtained. The ANFIS RMSE after training procedure was 0.0040505. The trai-
ning procedure lasted 1000 epochs or 3 hours.

Figure 5 shows ANFIS decision surface for power production (kW) in
wind farm in depend on the number of wind turbines. It is clear that the power
production increases almost linearly in relation to the number of wind turbines
increasing.
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Figure 5: ANFIS predicted relationship between the number of wind turbines
and produced power in wind farm

Figure 6 depicts ANFIS predicted cost model for increasing of wind tur-
bines in wind farm. From this figure it is clear that the cost is reduced for 1/3 after

10" wind turbine.
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Figure 6: ANFIS predicted relationship between the number of wind turbines and total cost
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It is interesting to analyze cost when one wind turbine is installed in the
wind farm or cost per power unit. The graph in Figure 7 depicts cost per power
unit in function of number of wind turbines in wind farm. It is clear that the least
cost could be attained if the ideal force preparation is procured from a specific
number of wind turbines. The chart portrays that the goal capacity (10) gives the
diminishment in expense in the way that as the amount of wind turbines expands,
there is a lessening in the normal expense of one wind turbine. Thus, the expense
is beginning to decline.

After analyzing the ANFIS model when the number of wind turbines
reaches to 52, it is going to be optimized. For 53 number of wind turbines the
ANFIS found 0.001329007 cost per power unit and 26690 kW power production.
For 54 number of wind turbines the ANFIS found 0.001329019 cost per power
unit and 27170 kW power production. ANFIS model shows when the 55 wind
turbine is added, the cost per unit power increases and it reaches 0.001329215.
Hence, the most optimized cost per power unit is for 53 installed turbines. Table
1 shows results overview for two characteristic wind farms.

Table 1. The ANFIS results for two characteristic wind farms

: : Wind farm power | Wind farm effi-
Wind turbines # ANFIS RMSE production ciency
53 0.001329007 26690 kW 97.14%
54 0.001329019 27170 kW 97.1%
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Figure 7: ANFIS predicted relationship between the number of wind turbines
and cost per power unit
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Figure 8, Figure 9 and Figure 10 shows ANFIS predicted relationships
between wind farm power production, total cost, cost per power unit and wind
farm efficiency. For wind farm with 53 turbines the efficiency is 97.14%, and for
wind farm with 54 the efficiency is 97.1%.
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Figure 8: ANFIS predicted relationship between wind farm power production,
cost per power unit and wind farm efficiency
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Figure 9: ANFIS predicted relationship between wind farm power production,
cost and wind farm efficiency
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Figure 10: ANFIS predicted relationship between wind farm cost per power unit,
cost and wind farm efficiency

The wind farm power production, cost per power unit and total cost as
function of the number of wind turbines is implemented in MATLAB Simulink
block diagram as it shown in Figure 11. This approach is very usefull for fast
estimation of the main parameters of wind farms according to the number of
installed wind turbines. Here can be seen results for wind farm wind number of
wind turbines 53.
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Figure 11: Simulink block diagram for estimation of the wind farm power production,
cost per power unit, total cost and efficiency
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Conclusion

As a result of increasing wind farms penetration in power systems, the
wind farms begin to influence power system, and thus the analyzing of wind
farms has become an interesting research topic. The optimal placement of wind
turbines in a wind farm and the optimal number of wind turbines will maximize
the total wind energy extraction efficiency of a wind farm. In a wind farm, wind
turbines have interactions between them. The effect of these interactions is cha-
racterized by wind velocity deficit, which leads to less power available for the
downstream turbines.

In this investigation a systematic approach to achieving optimal number
of wind turbines in wind farm by means of ANFIS strategy was investigated. A
Simulink model was developed in MATLAB with the ANFIS network for the
wind farm power production, total cost, cost per power unit and wind farm effi-
ciency estimation. The principle point of interest of planning the ANFIS coordi-
nation plan is to estimate wind farm efficiency as one very important parameter
for overall produced energy according to number of wind turbines.

The fundamental favorable circumstances of the ANFIS plan are: com-
putationally proficient, well-versatile with enhancement and versatile procedures.
The created procedure is straightforward, as well as solid and may be not difficult
to execute continuously requisitions utilizing some interfacing cards like the
dSPACE, information procurement cards, NI cards, and so forth for control of
different parameters. This can additionally be consolidated with master frame-
works and unpleasant sets for different requisitions. ANFIS can likewise be uti-
lized with frameworks taking care of more perplexing parameters. An alternate
playing point of ANFIS is its speed of operation, which is much quicker than in
other control procedures; the monotonous assignment of preparing participation
capacities is carried out in ANFIS. A standout amongst the most essential gim-
micks of the proposed ANFIS system is recognizable proof and estimation of the
wind ranch productivity, power generation, aggregate cost and expense for every
force unit.
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Hp Hanu6op [Nerkoruh

[NPOLHEHA EOKACHOCTHU ®APME BETPA
KOPUITREHLEM AH®UC CTPATETMJE

Caskerak: Enexmpana na gemap Koja ce cacmoju o0 euuie mypouHa Ha
semap Ha oopeheroj roxayuju, maxohe je nosHama noo HA3U8OM ,, papma eempa *.
Hrorcervepcro nianuparee papme eempa 2eHepanrHo yKabyuyje 0OHOuLere 00nyKd 0
pacnopedy mypouna na ghapmu eempa, 6pojy mypouna na eemap Koje mpeoa nocma-
sumu u epcmu mypouna Ha eemap Koje he oumu nocmassmere. Jea npumapua yussa
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ONMUMANHOZ NAAHUPARA (hapme 6empa Cy 0a e WMo uiie CMAarU MPOUaK npous-
800me eHepeuje U 0a ce wimo suule nosehia Hemo nPou3eoo0rba exnepeuje uiu 0a ce
wmo euwie noseha eguxacnocm papme eempa. Y npoyecy ousajruparea ghapme
8empa aepoouHamuiKe uHmepaxKyuje usmehy jeOunauHux mypoura cy nocmane nosoe
anaenoe unmepecosarsa. ,, Jpwind “ mypbune (oxpenyme sempy npu paoy) na gpapmu
sempa he ymuyamu Ha eHepeemcKu NOMeHyujal u ycioge domoka xod ,,downwind
mypouna (okpenymux 00 eempa npu pady). llosse npomoka uza npeoe peda mypouna
Kapaxmepuuie 3HAYAjHO CMArberbe Yy OP3UHU 6empa U NOefiaHy HUBOU UHMEH3UMemd
mypOynenyuje. /laxne, mypoure y HACmMasKy Ha apmu eempa He MO2y 0d U3BVKY
MONUKO CHAze 00 6empa Kao mypoure y npeom pedy. Cmoea, HeonxooHo je ouzajHu-
pamu npouzsoomwy enepeuje apme eempa, mpouiKoge, Mpouiax no eHepeemcKoj
jeounuyu u epuxacrocm 0a 6u ce NPOHAUIAO ONMUMATHU PACNOPed MYPOUHA HA
Gapmu eempa. YV 080j cmyouju, adanmuena Mpexca 3aCHO8aHA HA cucmemy ¢asu
sakmyuusarea (the adaptive neuro-fuzzy inference system (ANFIS)) (a0anmuena ney-
POHCKA Mpedica) je Ou3ajHupana u npuaazohena 0a uzepuiu NPoOPadyH eqpukacHocmu
Gapme sempa npema 6pojy mypbuna na gapmu eempa. Pezyimamu cumynayuje
npeocmasbeHu y 0860M pady noxasyjy eQuracrocm pasgujeHe memooe.

Kibyune peuu: mypbuna na semap, egpuxacnocm gapme gempa, npouzeo0-
mwa enepeuje, neuro-fuzzy, ANFIS.
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