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Vinyl Chloride monomer (VCM) is one of the most important commodity 

chemicals and it is produced mainly by the cracking of ethylene dichloride (EDC). By-
products formation is inevitable, creating several inefficiencies, and accurate model of the 
process is essential for its optimization 

In the present work, an EDC cracker model was set-up using the furnace model 
from gPROMS ProcessBuilder, developed by PSE. The cracking kinetic mechanism 
implemented consists of 108 reversible reactions and 47 components, as reported by 
Choi et al.  [1] 

The model predictions are compared to predictions from another model which 
used a cracking kinetic model tuned to plant data. The deviations for the main 
components were in the range of 1.4-1.9%. The deviations for impurities were more 
significant.  

A dynamic simulation of a cycle was carried out. The predictions of pressure 
drop, VCM flow rate and EDC flow rate over the cycle were compared to plant data. 
Subsequently, state estimations were performed to assess the feasibility of improving the 
model predictions and the initial results are positive. 

Finally, a study regarding the possibility of reducing the cracking kinetic scheme 
was initiated. Allowing a deviation of 0.1% from the original results, it was verified that 48 
reactions could be excluded without compromising the model accuracy. More tests 
considering other impurities in the furnace feed should be done to further validate this 
possible kinetic scheme reduction. 
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1.Introduction 

The commercial significance of the vinyl chloride 

monomer (VCM) can be highlighted by the production 

of polyvinyl chloride (PVC), the world's second most 

abundant plastic. PVC is used in the most diverse 

sectors, ranging from healthcare to construction and 

electronics. [2] 

Currently, vinyl chloride is mainly produced 

through the thermal cracking of ethylene dichloride 

(EDC). This is a balanced process, which means that all 

intermediates and by-products are recycled in a way 

that ensures a tight closure of the material balance to 

only VCM as the final product, starting from ethylene, 

chlorine and oxygen. [3] The process begins with 

chlorination of ethylene to ethylene dichloride: 

𝐶2𝐻4 + 𝐶𝑙2 → 𝐶2𝐻4𝐶𝑙2 (1) 

Followed by EDC dehydrochlorination to VCM, through 

thermal cracking according to equation 2. 

𝐶2𝐻4𝐶𝑙2 → 𝐶2𝐻4𝐶𝑙 + 𝐻𝐶𝑙 (2) 

The HCl produced during the EDC cracking is 

recycled to the oxychlorination section, where it is used 

together with ethylene to produce EDC (eq.3)  

𝐶2𝐻4 + 2𝐻𝐶𝑙 +
1

2
𝑂2 → 𝐶2𝐻4𝐶𝑙2 + 𝐻2𝑂 

(3) 

The overall reaction (eq.4) is exothermal so the 

VCM plant should be able to cover a large part of its 

energy needs.  

𝐶2𝐻4 + 0.5𝐶𝑙2 + 0.25𝑂2 → 𝐶2𝐻3𝐶𝑙 + 0.5𝐻2𝑂 (4) 

The EDC cracking takes place in a pyrolysis 

furnace (figure 1) 

 
Figure 1 - EDC cracker furnace diagram 

In principle, the complex thermal cracking of 

EDC is considered to proceed via free-radical reactions. 

Rigorous reaction mechanisms have been studied and 



2 
 

improved several times by various researchers. [4] 

Ranzi et al. introduced a reaction kinetic scheme with 

more than 200 elementary reactions with more than 40 

molecular and radical species. Borsa et al. [3] deve-

loped the most complex cracking kinetic mechanism for 

EDC pyrolysis, including 135 compounds and radical 

species and more than 800 reactions. Choi et al. [1] 

established a mechanism that involves 108 reversible 

reactions and 47 molecular/radical species. The 

addition of carbon tetrachloride as promoter was first 

investigated by Choi et al. [1] Schirmeister et al. [5] 

simplified the EDC pyrolysis mechanism aiming the 

data accuracy and expenditure optimization for model 

adjustment. A total of 31 reactions, 18 compounds, and 

8 radical species were used to describe all relevant 

products, intermediates, and byproducts. [4] A typical 

EDC conversion would be between 50 and 60%, in 

order to limit by-product formation and obtain 

selectivities to VCM around 99%. [5] 

Even though it is possible to achieve high yields, 

the formation of by-products is inevitable, causing 

significant inefficiencies in the process. 

Coke formation is an important reason for 

concern, since its deposition inside the reactor coils 

demands periodical shut downs of the unit. Besides 

coke, there are other gas phase impurities such as 

chloroprene and butadiene that cause down-stream 

difficulties in distillation columns. 

 Having this in consideration, it is important to 

accurately model the process aiming the model based 

process optimization. 

 

2. Materials and Methods 

In this work, the models were created and 

simulated in gPROMS ProcessBuilder software, 

developed by Process Systems Enterprise. The 

gPROMS advanced process modelling platform is a 

powerful equation-oriented modelling and optimization 

tool on which all of PSE's gPROMS products are built. 

Besides the integral parts of gPROMS, it is also 

possible to use external software components, which 

provide a range of computational services to the 

models. These are defined as parameters named 

Foreign Object (FO) and include physical properties 

packages, external unit operation modules, or even 

complete computational fluid dynamics (CFD) software 

packages. 

2.1 Multiflash 

Multiflash is the standard gPROMS® physical 

properties package, supplied by KBC Advanced 

Technologies. It is a highly rigorous properties package, 

which supports all commonly-used thermo-dynamic and 

transport properties, including a wide range of 

equations of state and activity coefficient thermo-

dynamic models. This is achieved with a Multiflash input 

file (.mfl), in which all the components, physical 

properties models, among other things that are 

necessary to the problem, are defined.  

2.3 ReadData Foreign Object  

With the ReadData FO, it is possible to add 

information to the model, regarding physical properties 

or even data to be use as input to the model variables. 

This information is obtained from a .txt file, from which 

is converted into arrays. 

2.4 State Estimation 

State estimation is a widespread and well-

established technique in control engineering and 

weather forecasting.  

If on-line data of some output variables are 

available, a state estimator can adjust the model 

prediction using these measurements to obtain a better 

estimate of the state. This is the most important 

application of on-line state estimation according to 

Simon. [7] 

In gProms the Extended Kalman Filter is 

adopted, since it is one of the simplest and most 

important tools for state estimation purposes. [7] During 

state estimation, the model receives on-line measured 

data regarding the input and output variables. For each 

time unit, the estimator updates the output variable 

according to a prediction/correction approach. Firstly, 

there is the prediction step, where model equations are 

taken into account, followed by the correction step, 

where available measurements are used to correct the 

predicted state estimate. Hence for each instant the 

model will give two values for the output, resulting from 

each of these steps.  

For each output variable and parameter a 

variance is defined. The variance set to the parameters 

can be interpreted as a measure of how much its initial 

value can change during state estimation, in order to 

meet the objective. A higher variance will allow larger 

change to the parameter value in comparison to a 

smaller variance. On the other hand, the variance of the 

plant data can be seen as a measure of the confidence 

the model can have on it. A smaller variance indicates 

more accuracy of the measurement and state 

estimation would give more importance to such 

measurements in comparison to those with higher 

variance. 

To implement this technique in gPROMS, two 

files are required. The first is a configuration file, where 

all the parameters, inputs and output variables to be 

considered are specified, as well as their variances. 

The second file is a text file that contains all the plant 

data regarding the input and output variables. 

 

3. Model Set-up – Furnace model 

The EDC cracker was set-up using the furnace 

model libraries within gPROMS ProcessBuilder. 

The furnace comprises several models inside of 

itself, consisting in three mains sections (Figure 2):  

 Convection Section – Where the hydrocarbon 

stream is heated; 
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 Radiant Section (Coil) – Where cracking reactions 

occur; 

 Transfer Line Exchanger (TLE) – Where the coil 

outlet stream is quickly quenched to prevent 

degradation of the highly reactive product through 

secondary reactions;  

 

The radiant section consists of multiple coils 

operating in parallel. In the furnace model, each coil is 

assumed to behave the same and one representative 

coil is modelled. 

Both the convection section and the coil models 

consist basically in several cracking tube models. 

The cracking mechanism implemented was the 

one reported by Choi et al. [1] , consisting of 108 

reversible reactions, with 47 components, of which 22 

are radical species. 

 

Figure 2- Furnace model from within gPROMS ProcessBuilder 

3.1 Cracking tube model 

In the cracking tube model, it is assumed a one-

dimensional plug flow due to the turbulent flow, as well 

as low viscosity for the reaction side stream. This model 

calls for other sub-models: cracking kinetic model, coking 

kinetic model, fluid properties model, heat transfer 

coefficient model and friction factor coefficient model. 

The cracking kinetic model is used to determine 

the reaction rate. For the case when the reaction is 

considered irreversible the equation 5 is used, while the 

equation 6 applies for the reversible reactions.  

𝑟𝑗 = 𝑘𝑓𝑗 ∏ 𝐶𝑖
𝑛𝑓,𝑘𝑗

𝑁𝐶

𝑘=1

 (5) 

𝑟𝑗 = 𝑘𝑓𝑗 ∏ 𝐶𝑖
𝑛𝑓,𝑘𝑗

𝑁𝐶

𝑘=1

− 𝑘𝑟𝑗 ∏ 𝐶𝑘
𝑛𝑟,𝑘𝑗

𝑁𝐶

𝑘=1

 (6) 

In these equations 𝑘𝑓𝑖 and 𝑘𝑟𝑖 are the kinetic 

constants for the forward and reverse reactions 

respectively, 𝑛𝑓,𝑖𝑗 and 𝑛𝑟,𝑖𝑗 are the reaction orders and 𝐶𝑖 

is the concentration of component 𝑖. The kinetic 

constants for the forward reactions (𝑘𝑓,𝑗) are calculated 

according to the equation 7. 

𝑘𝑓,𝑗 = 𝐴𝑗𝑇𝑏𝑗  exp (
−𝐸𝑎,𝑗

𝑅. 𝑇
) (7) 

Where T is the fluid’s temperature (K), 𝐴𝑗 is the 

pre-exponential factor, 𝐸𝑎,𝑗 is the activation energy of 

reaction 𝑗 and 𝑏𝑗 is the temperature exponent used to 

correct deviations from the Arrhenius equation. The 

kinetic constant for the reverse reaction is determined 

using the equilibrium constant. The equilibrium constant 

is calculated from the change of standard entropy (∆𝑆𝑗
0) 

and enthalpy (∆𝐻𝑗
0) during the reaction at system’s 

temperature (𝑇) and pressure (𝑃) 

The coking model was also developed during the 

present work. For this model it was considered that coke 

is formed through the dehydrogenation of Tar. Tar 

droplets form at high temperature in the pyrolysis furnace 

and are transported through the heat exchanger to the 

quench tower. When these droplets impinge on the wall 

surface they suffer dehydrogenation, originating coke [8]. 

Thus the coking reaction rate is considered to be the 

reaction rate of tar dehydrogenation. 

In the coking model, the mass balance for Tar is 

done considering that the concentration of Tar is given by 

the difference between the Tar that is formed and is 

consumed by dehydrogenation. 

The reaction rate of Tar formation (equation 8) is 

a function of acetylene and chloride concentrations, since 

it was concluded that the influence of other coking 

promoters were negligible. 

𝑟𝑡𝑎𝑟 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑧) = 𝑘𝑡𝑎𝑟 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐶𝐶2𝐻2
(𝑧)𝐶𝐶𝑙(𝑧) (8) 

𝑟𝑡𝑎𝑟 𝑑𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑡𝑖𝑜𝑛(𝑧) = 𝑘𝑡𝑎𝑟 𝑑𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑇𝐴𝑅(𝑧) (9) 

Both kinetic constants for Tar formation (equation 

8) and Tar dehydrogenation (equation 9) follow the 

Arrhenius equation. The values for the activation 

energies and pre-exponential factors were obtained from 

a previous project done by PSE (EDCM1). 

The fluid properties Model is used to determine all 

the properties required for the cracking tube model. 

Multiflash does not support radical species and their 

properties. For this reason, two sub models are called 

whether it is using a molecular based mechanism or a 

radical one.  

When using the molecular properties model, the 

Multiflash FO is used to get the information regarding the 

gML to LSKM 

CONVECTION 

SECTION 

TLE 

COIL 

LSKM to gML 
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following properties of the mixture: Density, viscosity, 

thermal Conductivity, heat capacity, enthalpy and 

components molecular weight. 

In the case of a radical based mechanism, the 

required properties are imported using the ReadData 

foreign object. From this file, the model receives the 

following properties for each component: molecular 

weight (𝑀𝑤), enthalpy of formation (∆𝐻𝑓), entropy of 

formation (∆𝑆𝑓) and the parameters for heat capacity 

calculation (𝑎0, 𝑎1, 𝑎2 and 𝑏). 

The enthalpy of the mixture is calculated based 

on the components enthalpy of formation, according to 

equation 10.  

∆𝐻 = ∑[∆𝐻𝑓,𝑖 × 𝑤𝑖]

𝑁𝐶

𝑖=1

+ 𝐶𝑝
̅̅ ̅[𝑇(𝑧) − 𝑇𝑟𝑒𝑓] (10) 

Where 𝑇𝑟𝑒𝑓 is the reference temperature (298.15 

K) and 𝐶𝑝
̅̅ ̅ is the average heat capacity of the mixture, 

given by the weighted average of the heat capacities of 

each component (equation 11). 

𝐶𝑝
̅̅ ̅ = ∑

𝐶𝑝,𝑖 × 𝑤𝑖

𝑀𝑤,𝑖

𝑁𝐶

𝑖=1

 (11) 

The heat capacity of each component is 

determined using a 3rd order polynomial fitting as shown 

in equation 12. 

𝐶𝑝,𝑖 = ∫ 𝑎0. 𝑇3 + 𝑎1. 𝑇2 + 𝑎2. 𝑇 + 𝑏. 𝑑𝑇

𝑇

𝑇𝑟𝑒𝑓

 

 

(12) 

Due to the lack of data, and considering the small 

concentration of radicals and by–products, the remaining 

properties (viscosity and thermal conductivity) were 

obtained using Multiflash for the main components (EDC, 

VCM and HCl). 

3.1 Temperature Profile interpolation model 

The temperature profile along the coil has an 

extreme importance in the accuracy of the results. In 

previous works, the temperature in the process was 

determined by the heat balanced based on the flowrates 

of the flue gas, fuel and air fed to the furnace.  [9]. 

In this work, a model was developed where the 

temperature profile is determined by polynomial 

approximation, according to equation 13. This is 

achieved by considering as inputs to the model five real 

temperature measurements (T1 to T5 in Figure 3Erro! A 

origem da referência não foi encontrada.) as well as 

the respective axial positions. Besides this, the model 

also receives the Coil Inlet Temperature (CIT) from the 

upstream process simulation that corresponds to axial 

position zero. 

𝑇(𝑧) = 𝑎 + 𝑏. 𝑧 + 𝑐. 𝑧2 + 𝑑. 𝑧3 + 𝑒. 𝑧4 + 𝑓. 𝑧5 + 𝑔. 𝑧6 (13) 

Considering only the last two temperature 

measurements (T4 and T5 in Figure 3Erro! A origem da 

referência não foi encontrada.), a linear regre-ssion is 

applied in order to predict the temperature for axial 

position equal to 1 (T6 in Figure 3). By having the sixth 

temperature, the model is able to calculate the remaining 

constants of the equation 13 and determine the 

temperature profile inside the coil. Figure 3 shows the 

temperature profile in the coil, where the CIT appears in 

green, the five temperature measurements in blue and in 

purple is the sixth temperature determined by the linear 

regression. 

 
Figure 3 - Temperature Profile in the coil representation 

 

4. Simulation Results 

Following the EDC cracker set-up, it was 

necessary to test the performance and accuracy of the 

model (EDCM2), which has a considerable size.  

In a previous work, an EDC cracker model was 

developed by PSE to simulate a specific industrial unit 

(EDCM1). Since it was considered that the model 

accurately described the system, at an early stage, 

EDCM1 was used to validate the results from the EDC 

cracker model developed in the present work (EDCM2). 

To make this comparison possible, the required 

input variables were exactly the same in both models: 

feed composition and flow rate, coil inlet pressure (CIP) 

and Process gas temperatures (Temperature Profile 

Interpolation Model). 

It was considered that the furnace feed was 

mainly EDC (>99 wt%) and a small amount of CCl4. 

Carbon tetrachloride is known to be an efficient source of 

Cl radical and it can be used to promote the pyrolysis 

reaction. However, the Cl radical also acts as a promoter 

for undesirable coke formation. [1].  

Regarding the output, this analysis was done 

focusing on the variables considered relevant to describe 

the good behaviour of the model: Conversion of EDC, 

outlet composition and pressure drop. The results for 

EDC conversion and outlet composition will reflect the 

accuracy of the cracking kinetic model. Regarding the 

outlet composition, besides acetylene, only the two main 

components were considered (EDC and VCM) since they 

alone make 80% of the total. Acetylene was only 

considered in this analysis due to its relevance for the 

coking model. 

The pressure is mainly affected by coking 

deposition, thus it can be used as an indication of the 

efficiency of the coking kinetic model implemented in this 

work.  
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Along with the input variables already pointed out, 

the cracking and coking kinetics are also inputs given to 

the model. 

As mentioned before, in the present work 

(EDCM2) the cracking kinetics from Choi et al. [1] were 

implemented. However, in the EDCM1 the kinetics used 

were the same but tuned according to the real data from 

the plant. On the other hand, the coking kinetics were 

strictly the same in both models. The activation energy 

and the pre-exponential factor were obtained from a 

previous work using the data from the real plant.   

In Table 1, the deviation between the results of 

the two models is presented. 

Table 1 – Deviation between the predictions from EDCM2 and EDCM1 
(using purely Choi kinetics and Choi kinetics tuned to the real data) 

Output variable 
EDCM1 w/ 

Choi kinetics 
(%) 

EDCM1 w/ 
Choi kinetics 
tuned to real 

data (%) 

Pressure drop 0.11 1.4 

Outlet 

flowrate 

EDC 0.16 1.9 

VCM 0.11 1.4 

Acetylene 0.10 48 

The objective is that the results from EDCM2 

meet the results from EDCM1 with the tuned kinetics 

since this is the case that more accurately represents the 

reality. If in the EDCM1, the kinetics used were purely the 

ones from Choi all these errors would be within 0,2%, as 

shown in Table 1. Thus the deviations from EDCM1 with 

tuned kinetics and EDCM2 result from the difference 

between the cracking kinetics. 

EDCM2 under predicts the acetylene compo-

sition in about 50%, as shown in Table 1. As acetylene is 

relevant for the coking formation, this discrepancy will 

have an impact on the pressure drop predictions.  

It was then verified that the reaction rate for Tar 

formation from acetylene in EDCM2 was in average 3.5 

times lower than the one predicted by EDCM1. Having 

this in consideration, the value of 3.5 was used as a 

factor to be multiplied by the kinetic constant of Tar 

formation from acetylene.  

4.1 Simulation of a cycle (DynamicSimulation) 

After evaluating the start of run simulation results, 

simulation of a complete cycle is performed, considering 

a period of around 12 months. The model inputs for the 

simulation were obtained from plant data and the 

cracking kinetics from Choi et al. were used. 

The input variables analysed are the same as the 

ones mentioned before. While for the output variables, in 

this validation the outlet flowrates of the main 

components were considered instead of the outlet 

composition. 

Considering the significant discrepancy in the 

acetylene concentration previously presented, for the 

coking kinetics two cases were considered (case A and 

B), presented in Table 2. Case A considers the coking 

kinetics previously described and already used for 

EDCM1 and EDCM2. In case B, the scaling factor 

influence is tested so the coking kinetics are the same as 

in case A but having the kinetic constant for tar formation 

from acetylene multiplied by 3.5. The model predictions 

for cases A and B were then compared to the available 

measurements, as it can be seen in Figures 4 to 8. For 

the first 20% of the cycle, real data was not reliable.  

 

Table 2 – Description of the two cases considered in this analysis. 

 Case A Case B 

Cracking 
kinetics 

Choi et al. 
(2001) 

Choi et al. (2001) 

Coking 
kinetics 

Parameters 
used in 
EDCM1 

Same as Case A, but: 
𝑘𝑇𝑎𝑟 𝑓𝑟𝑜𝑚 𝑎𝑐𝑒𝑡𝑦𝑙𝑒𝑛𝑒 

= 3.5 × 𝑘𝑇𝑎𝑟 𝑓𝑟𝑜𝑚 𝑎𝑐𝑒𝑡𝑦𝑙𝑒𝑛𝑒(EDCM1) 

Figure 4 shows the pressure drop predictions for 

both cases as well as the real data. In case B due to the 

scaling factor considered, the coke formation is bigger 

than in case A and the pressure drop in the coil 

increases. For this reason, the results from case B are 

better matched to the data, presenting an average 

deviation of 1,8% against 9,1% from case A. 

 
Figure 4 – Coil pressure drop predictions for case A and case B against 

real Data with time being normalised. 

The effect of scaling factor on outlet flow rate 

predictions are not significant (<0.1%) as presented in 

the figures below (Figures 5 to 7). The average deviation 

between model predictions and real data is shown in 

Table 3. 

Figure 5 shows the model predictions for EDC 

outlet flow rate from both cases and the respective data. 

The predictions have an average deviation of 4.4% and 

4.5%, for case A and B, respectively.  
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Figure 5 – EDC outlet flowrate predictions for case A and case B 

against real Data with time being normalised. 

It is verified that the flowrate predicted by the 

model is in general lower than the real data, thus it 

seems that the model slightly over predicts EDC 

conversion. EDC conversion was calculated according to 

the equation 14, for cases A and B, as well as for the 

data. The EDC inlet was obtained from the unit real data 

which was used as an input to the model. The EDC outlet 

corresponds to the model predictions in each case. 

ConversionEDC =
EDCinlet − EDCoutlet

EDCinlet

 (14) 

Figure 6 shows EDC conversion over time. For 

both cases, the EDC conversion is higher than the one 

calculated from the data in about 3.3%. 

 
Figure 6 – EDC conversion in the outlet of the coil over time for case A 

and B and real data with time being normalised. 

 

In figure 7 the results for VCM outlet flowrate 

are presented.  

 
Figure 7 – VCM outlet flowrate predictions for case A and case B 

against real Data with time being normalised. 

 

The model predictions have an average 

deviation from the real data of 1.8% for both cases. The 

model predicts in average a higher VCM outlet flowrate 

as it would be expected, since the model over predicts 

the EDC conversion. 

Table 3 presents the average deviation from the 

model predictions and the real data for each output 

variable for both cases. 

Table 3 – Average deviation from real data for each output variable 
predictions in case A and B. 

 Case A (%) Case B (%) 

Pressure drop 9,1 1,8 

EDC outlet 
flowrate 

4,4 4,5 

VCM outlet 
flowrate 

1,8 1,8 

 

5. State Estimation 

In state estimation the objective is to adjust the 

model predictions to the real data, by changing some 

chosen related parameters.   

To apply this technique, it is necessary to set 

variances for each adjusted parameter and the data 

corresponding to the output variables.  

The variance in the case of the parameters can 

be seen as a measure of how much the model can vary 

its initial value, in order to meet the objective. A higher 

variance will allow larger change to the parameter value 

in comparison to a smaller variance. On the other hand, 

the variance of the real data can be seen as a measure 

of the confidence the model can have on it. A smaller 

variance indicates more accuracy of the measurement 

and state estimation would give more importance to such 

measurements in comparison to those with higher 

variance. 

Table 4, shows the parameter to be adjusted by 

the model, “coking reaction rate adjustment” (𝐶𝑅𝑅𝑎𝑑𝑗) 

with the only objective of fit the pressure drop data. 
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The adjusted parameter is being multiplied by the 

expression used to calculate the coking reaction rate, as 

indicated by its name (eq.15) 

𝑟𝑐𝑜𝑘𝑒 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑡𝑎𝑟 𝑑𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑡𝑖𝑜𝑛 × 𝐶𝑅𝑅𝑎𝑑𝑗 (15) 

For 𝐶𝑅𝑅𝑎𝑑𝑗, an initial value of 1 is set, so if state 

estimation is not being employed, this value does not 

change, hence it will not affect any result. During state 

estimation, the model is allowed to change this 

parameter over time. If this parameter increases, the 

coking formation will also increase, leading to an 

increase in pressure drop. The decrease of this 

parameter will have the opposite effect. 

Two cases were considered to be presented in 

this analysis (case 1 and 2), that vary from one another 

only in the variance defined to the coking reaction rate 

adjustment (table 4). 

Following the line of thought described above, in 

case 1 the model is allowed to make more significant 

changes in the coking reaction rate adjustment 

parameter, since the variance set to this parameter is 

higher. 

 

 

 Table 4 – Parameters adjusted in state estimation as well 
as the output variables considered and respective variances for cases 

1 and 2. 

Type Parameter/Variable  
Variance 

Case 1 Case 2 

Adjusted 

Parameter 
𝐶𝑅𝑅𝑎𝑑𝑗 5×10

-6
 5×10

-7
 

Outputs 

Variable 

Pressure drop 5×10
-6

 5×10
-6

 

EDC outlet flow rate 1×10
20

 1×10
20

 

VCM outlet flow rate 1×10
20

 1×10
20

 

The variances set to the outlet flow rates are 

much higher than the order of magnitude of these 

variables (more than 1 × 1017 times). These values were 

defined to assure the variances are high enough for the 

model not to consider its data as relevant since it is only 

intended to meet the pressure drop data. 

On the other hand, the variance set to pressure 

drop is relatively small. Hence the model will adjust the 

parameter with the only objective of meeting the pressure 

drop data. 

Figures 9  to 12 show the model predictions with 

state estimation for both cases. The model predictions 

without state estimation (Simulation) are also presented, 

so it is possible to verify if state estimation has improved, 

or not, the results when compared to the real data.  

Similarly to section 4, the data corresponding to 

the first 20% of the cycle was considered to be 

unreliable. In addition to that, for state estimation 

purposes, only the first 70% of the cycle was considered. 

Figure 9 shows the state estimation results for 

pressure drop. The model predictions are similar for 

cases 1 and 2, with average deviations from real data of 

about 2.6% and 2.8%, respectively, as shown in table 5. 

Both cases show improvements when compared with the 

results without state estimation, which presents an 

average deviation of 4.1% (table 5). 

 
Figure 8 – Pressure drop predictions from state estimation against 

real data with time being normalised. 

Despite the proximity of the results from case 1 

and 2, the first one is still able to present better 

predictions. This is in agreement with what was 

expected, since in case 1 the model has more freedom to 

change the coking rate parameter in order to adjust the 

pressure drop predictions to the data.   

  Figure 10 shows the evolution of the reaction rate 

adjustment parameter over time. In the Simulation there 

is no change of this parameter from its initial value, since 

the model is not doing any state estimation.  

 
Figure 9 – Reaction rate adjustment variation from state estimation 

with time being normalised. 

For the other two cases, it can be seen that the 

parameter does not vary at the beginning of the cycle. 

This is because in that period there is no data for 

pressure drop. Considering the model is only working 

towards the pressure drop adjustment if there isn’t any 

data the model does not change the parameter. 

As it was expected, in case 1 the coking 

reaction rate adjustment parameter will have more 

significant oscillations, since the set variance is higher 

than in case 2. 

 As the pressure drop increases, the model 

intensifies the coke formation, by increasing the coking 

reaction rate adjustment parameter. At some point, 

around 35% of the period, the data shows a lower peak 
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in pressure drop. Thus the model responds similarly by 

decreasing the parameter. Around 50% of the time, the 

parameter starts to increase again until another decrease 

in pressure drop occurs (around 58% of the time). The 

parameter continues decreasing since then, even 

assuming negative values at the end of the cycle.  

 The fact the parameter has a negative value 

means the coking reaction rate is also negative, which in 

reality would represent coke dissipation. Obviously in a 

real system, after being formed, coke will not disappear 

unless the operation is stopped and a decoking process 

is implemented.  

 In case 2, it can be verified the parameter has a 

similar behaviour than in case 1, but with oscillations of 

lower amplitude. Contrary to case 1, the parameter never 

reaches negative values. 

Therefore, it is possible to verify that the 

variance settings on measurements and parameters are 

important to get meaningful values of the adjusted 

parameters. 

For the remaining output variables, the results 

with state estimation (cases 1 and 2) show improvements 

when compared to the Simulation case.  

 In figure 11, the results for EDC outlet flow rate 

are presented. Case 1 and 2 have average deviations of 

5.3% and 5.5%, respectively. Without state estimation, 

the model predictions present an average deviation of 

6.3%. 

 
Figure 10 – EDC outlet flowrate predictions from state estimation 

against real data with time being normalised. 

Figure 12 shows the results for VCM outlet flow 

rate. For this component, the model predictions present 

an average deviation of 3.4% for case 1 and 3.1% for 

case 2. The predictions without state estimation have an 

average deviation of 4.2%, which is, as expected, higher 

than the other two cases.  

 
Figure 11 - VCM outlet flowrate predictions from state estimation 

against real data with time being normalised. 

 

 Table 6 shows the average deviations of the 

model predictions from real data, for each case 

considered and output variable. 

Table 5 - Average deviations (%) of state estimation predictions from 
the real data for each case and variable 

 Case 1 Case 2 
Prediction 

Only 

Pressure 
drop 

2,58 2,76 4,54 

EDC outlet 

flowrate 
5,28 5,54 6.29 

VCM outlet 

flowrate 
3,38 3,12 3,56 

 

 

 

Table 6 - Improvement of the model predictions with state estimation 
relatively to the prediction only case. 

 Case 1 Case 2 

Pressure drop 43,27 39,2 

EDC outlet flowrate 16,1 12,0 

VCM outlet flowrate 5,09 12,33 

 

6. Kinetic Reduction 

As a final step in this work, a study regarding the 

possibility of reducing the cracking kinetic scheme was 

attempted. The objective was to verify if all the 108 

reactions included in the mechanism are in fact essential 

for the proper modelling of the furnace. 

In this study, effect of each reaction (except the 

main reactions) on key output variables are analysed by 

disabling those reactions from the scheme. 
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The key output variables considered in this 

study are: EDC conversion and selectivity and outlet 

composition (considering the whole set of components) 

Allowing a deviation of 0.1% from the model 

results when considering all the reactions, it would be 

possible to exclude 48 reactions. It is important to point 

out that these reactions are the ones that when excluded 

didn’t affect the results more than 0.1% for any of the 54 

variables considered. This was verified, even when all 48 

reactions were excluded simultaneously.  

In the furnace feed stream, there were only 

ethylene dichloride and carbon tetrachloride present. 

Hence it is not possible to conclude if these reactions 

would not be relevant in case there were more impurities 

in feed. It would be necessary to test that possibility, by 

including in the feed other components that may be 

present as impurities. 

 

7. Discussion and Conclusion 

In this work, an EDC cracker model (EDCM2) 

was setup using the furnace model libraries within 

gPROMS ProcessBuilder, to model the VCM production 

through EDC cracking. 

In a previous work, an EDC cracker model 

(EDCM1) was developed by PSE to model a specific 

industrial unit. Since it was considered that EDCM1 is 

able to accurately simulate the reality of that unit, in an 

early stage, was used to validate the results from 

EDCM2. The same inputs were given to both models, 

excepting for the cracking kinetics. This difference lead to 

deviations between the results from the two models 

(table 2).  

It was verified that EDCM2 under predicts 

acetylene outlet composition in about 50% when 

compared to EDCM1. Considering the relevance of this 

component as the main coke precursor, such deviation 

will have an impact on the pressure drop prediction, 

predominately affected by coke deposition. It was then 

verified that the coking reaction rate in EDCM2 was 3.5 

times lower than EDCM1. Thus the value of 3.5 was 

used as a factor to be multiplied to the kinetic constant of 

Tar formation from acetylene. 

Following this analysis, the model predictions 

from (EDCM2) was compared against data from a real 

plant such as pressure drop and the outlet flow rate of 

the main components (EDC and VCM). 

Two cases were considered (cases A and B), 

similar to each other in all the aspects, except for the 

coking kinetics. In case B the reaction rate of coking 

formation is 3.5 times higher than in case A, by 

considering the scaling factor above mentioned. A 

sensitivity analysis was also performed considering 

higher and lower values for this scaling-factor, though it 

was concluded that 3.5 was actually the one presenting 

the best fit to the data. 

The increment of coke formation in case B leads 

to an increase in pressure drop prediction with time. Thus 

the results from case B, with an average deviation of 

1.8%, fit better the data than case A where pressure drop 

does not increase as much, presenting a deviation of 

9.1%. 

When analysing the model predictions for the 

outlet flowrate of the main components, it can be verified 

that these are not significantly affected by the factor 

applied in case B. The average deviations between both 

cases predictions and the real data are similar for all the 

components.  

State estimations were also performed, focusing 

on the adjustment of pressure drop predictions by 

changing the coking reaction rate adjustment parameter. 

The model predictions were then compared to the results 

without state estimation (Simulation). 

For all the output variables analysed, the results 

with state estimation (cases 1 and 2) show improvements 

when compared to the Simulation case. Cases 1 and 2 

differ from one another in the variance defined for the 

adjusted parameter. 

Pressure drop presents average deviations of 

2.6 and 2.8% with state estimation, while the normal 

simulation would give results with about 4% of deviation. 

EDC outlet flow rate presents average 

deviations of 5.3% and 5.5% for case 1 and 2, 

respectively. Without state estimations, the deviation 

would be 6.3%. 

For VCM outlet flow rate the deviations are less 

significant than the previous component. In the 

Simulation case the results have an average deviation of 

about 4%, which is improved by state estimation 

reaching deviations of less than 3.5%. 

Overall, with state estimation, it is possible to 

improve the model predictions for all the output variables. 

The variable for which state estimation had a more 

significant impact is, as expected, pressure drop with an 

improvement of around 40%. For the outlet flowrates 

improvements between 5 and 20% were achieved (table 

6).  

Even though the Case 1 is the one presenting 

an higher improvement in the accuracy of pressure drop 

predictions, that is achieved by taking the reaction rate 

adjustment parameter to not realistic values. Therefore, it 

is concluded that the variance settings on measurements 

and parameters are important to get meaningful values of 

the adjusted parameters. 

The final step of this work was to study the 

possibility of reducing the cracking kinetic scheme. 

Allowing a deviation of 0.1% from the results considering 

the original mechanism, it was verified that 48 reactions 

could be excluded without compromising the results.  

In the feed stream, only ethylene dichloride and 

carbon tetrachloride were considered for simulation 

purposes. However, the furnace feed may contain other 

components formed as by-products in the upstream 

process, predominately during oxychlorination. Some key 

impurities formed during that step are 1,1,2-

trichloroethane, trichloroethylene, 1,1 and 1,2-

dichloroethylenes, ethyl chloride, chloromethanes 

(methyl chloride, methylene chloride, chloroform), as well 

as polychlorinated high-boiling components [3]. Hence it 
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was not possible to conclude if these reactions would not 

be relevant in case there were more impurities in feed. 

7.1 Future Work 

Despite the work done, several improvements 

may and should be made to the model developed. This 

would include further testing of state estimation for the 

full cycle using fine tuning the different variances for the 

measurements and adjusted parameters. Further fine 

tuning of the state estimator could be performed by using 

data from multiple cycles.   

It is also necessary to continue the kinetic 

reduction study initialized. In order to conclude about its 

feasibility, more tests would have to be done, considering 

other possible impurities in the furnace feed, such as 

chloroform, methyl chloride, ethyl chloride and 1,1,2-

trichloroethane. 

State estimation with the reduced kinetic 

scheme is expected to improve the computational 

performance significantly. 
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