
1	  

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

PEPPHER 
Vision & Overview 

Siegfried Benkner (on behalf of PEPPHER consortium) 

University of Vienna 

This project is part of the portfolio of the 
G.3 - Embedded Systems and Control Unit 
Information Society and Media Directorate-General 
European Commission  

www.peppher.eu 
 

Copyright © 2010 The PEPPHER Consortium  

Contract Number: 248481 

Starting Date: 2010-01-01 

Duration: 36 months  

PEPPHER Workshop @ HIPEAC 2011 
Heraklion, Crete, Greece, January 22, 2011 

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

EU Project PEPPHER 

Performance Portability & Programmability for Heterogeneous 

Manycore Architectures 

•  EU ICT Call 4, Computing Systems; Start: Jan. 2010, 36 Months;  

•  Coordinated by University of Vienna 
 

Goal: Enable portable, productive and efficient programming of  
         heterogeneous manycore systems. 

Holistic Approach 
•  Higher-Level Support for Parallel Program Development 

•  Auto-tuned Algorithms & Data Structures 

•  Compilation Stragtegies 

•  Runtime Systems 

•  Hardware Mechanisms 
 

Crosscutting Domains: Embedded – General Purpose – HPC 

Focus: 
Single node architectures  



2	  

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

¨  University of Vienna (Coordinator), Austria 
Siegfried Benkner, Sabri Pllana and Jesper Larsson Träff 

¨  Chalmers University, Sweden 
Philippas Tsigas 

¨  Codeplay Software Ltd., UK 
Andrew Richards 

¨  INRIA, France 
Raymond Namyst 

¨  Intel GmbH, Germany 
Herbert Cornelius 

¨  Linköping University, Sweden 
Christoph Kessler 

¨  Movidius Ltd., Ireland 
David Moloney 

¨  Karlsruhe Institute of Technology, Germany 
Peter Sanders 

Project Consortium 

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

Move towards heterogeneous manycore architectures 

•   Different types of cores on a chip 

•   Same cores but different clock frequencies 

•   Partitioning groups of homogeneous cores, … 

à Parallelization & Specialization 
 
Examples 
 

•  Cell Processor: PPU + 8 SPUs 

•  SARC Research Processor 

•  CPU + GPU/Accelerators 

•  Tianhe-1A, Roadrunner, TSUBAME 

•  Nvidia Tegra, AMD Fusion, SandyBridge 

Heterogeneous MC Architectures 

Cell BE SARC 

... GPU Cluster 



3	  

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

Much harder than for homogeneous systems 

•  Need of allocating and managing resources 
•  Explicit memory management (DMA transfers, double buffering, …) 

•  Partitioning of code for different cores 
•  Different memory models, ISAs, compilers, programming models 

Performance Portability is a major challenge 
•  Increasing architectural diversity  
•  Compilers can’t keep pace with shorter and shorter innovation cycles 

Current Solutions? 
•  IBM CellSDK, NVIDIA CUDA, ATI Stream SDK, OpenCL, …  

•  Intel TBB/ArBB, HMPP, PGI Accelerator, StarSs, OpenMP 4.0?… 

•  Codeplay Offload++ 

Programming Heterogeneous Multicore 

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

Will we need new programming models? 
•  No „one-size-fits-all“ model  
•  Need to integrate different models 

 

Programmability/Productivity                            
•  Raise level of abstraction 
•  Hide/Automate low-level optimization tasks 

Portability of major importance 
•  Increasing complexity of architectures 
•  Increasing architectural diversity 

 

Performance Portability                       
•  Consider different aspects  not just FLOPs 
•  Energy/Power as important as performance 

 

PEPPHER 
 

Compositional 
Approach 

 
 

Adaptation 
Auto-Tuning 

Algorithmic Choice 
 
 

Abstract  
Hardware Models 

 
 

Abstract 
Performance Models 

 

Programming Heterogeneous Multicore 



4	  

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

Scope and Focus of PEPPHER 

Goal  
Methodolgy for development of performance portable code from (existing) 
components by stepwise annotation. 
 

Component Model & Prototype Framework 
•  Performance-aware components with rich meta-data 
•  Meta-data and platform description language 
•  Annotation framework  
•  Advanced Runtime System for heterogeneous architectures 

Non-Goals 
•  Parallelization per se 
•  New programming model or language 
•  New compiler 
•  New hardware 

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

PEPPHER Vision 

Compositional Approach to Parallel Software 

•  Components that hide implementation specific details (Mainstream Programmer) 

•  Component implementations variants (Expert Programmer, Autotuning) 

•  Performance-aware components based on rich meta-data 

•  Smart runtime system to select best component implementation variant 

C1 

C2 

::: 

... 

::: 

source code 
with annotated 
component calls 

Mainstream  
Programmer 

Component implementation  
variants for different core  

architectures, algorithms, ... 

Dynamic selection  
of ”best”  

implementation variant 

C1 C1 

C1 C1 

C2 C2 

Expert Programmer 
(Compiler/Autotuner) 

C1 

C1 

C2 

C1 C2 

C1 C2 

Platform 1 

Platform 2 

Target  
Platforms 

Compiler / 
Runtime 

Task Scheduler 

Feed-back of 
measured 

performance 



5	  

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

C1 

C21 

C3 

... C2n 

stmt!

stmt!

stmt!

stmt!

PEPPHER Application Development 

(Implicit) Tasking Model 
-  PEPPHER components executed by tasks 
-  Multi-Level Parallelism (components may be parallel inside) 

-  Runtime Component Variant Selection 

C1 C1 C1 

C2 C2 C2 

C3 C3 C4 

Expert programmer 
•  Implements component variants for  
   specific architectures (class) 
•  Algorithm & Data Structure Library 
•  Provides performance models, meta-data 

Mainstream programmer 
-  Builds application using components 
-  Annotates component calls     

(e.g. expresses performance constraints)    
-  High-Level coordination mechanisms 

Algorithms 
Data Structures 

Platform Models 

Component Repository 

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

PEPPHER Components 

Component Interface 
•  Declaration of functionality 
•  Performance aspects  

(execution-time, power) 

 
 
 
 

 
Implementation Variants 
•  Different architectures/platforms 

•  Different algorithms 

•  Different input characteristics 
•  Different performance goals 

•  Written by expert programmer  
   or generated (auto-tuning) 

Component Implementation Variants 

…	  

«interface»	  
C	  

f(param-‐list)	  

«variant»	  
Cn	  

f(param-‐list){…}	  

«variant»	  
C1	  

f(param-‐list){…}	  

Interface	  
meta-‐data	  

Variant	  
meta-‐data	  

Variant	  
meta-‐data	  

Features  
•  Different programming languages 

(C/C++, OpenCL, Cuda, OpenMP) 

•  Task & Data parallelism 

•  Performance-Awareness 

Constraints 
•  Stateless; Non-preemptive 
•  Composition on CPU only 



6	  

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

Component Meta-Data 

Interface Meta-Data (XML) 
•  Parameter intent (read/write) 
•  Supported performance apsects  
    (execution-time, power) 

Implementation Variant Meta-Data (XML) 
•  Required components (if any) 
•  Supported target platforms (PDL) 
•  Performance Model 
•  Input data constraints (if any) 
•  Tunable parameters (if any) 

Key issues 
•  Make platform specific optimizations/dependencies explicit. 
•  Make components performance and resource aware. 
•  Support runtime variant selection. 
•  Support code transformation and autotuning. 

XML Schema for Variant Meta-Data 

XML Schema for Interface Meta-Data 

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

Performance-Aware Components 

Each component is associated with an abstract performance model.  

 

 

 

 

 

 

¨  Invocation Context: captures performance-relevant information of input data 

                                     (problem size, data layout, etc.) 

¨  Resource Context: specifies main HW/SW characteristics (cores, memory, …) 

¨  Performance Descriptor: usually includes (relative) runtime, power estimates 
 

Generic performance prediction function: 

 

Component 
Performance 

Model 

Performance 
Descriptor 

PerfDsc getPrediction(InvocationContextDsc icd, ResourceContextDsc rcd) 

Invocation 
Context 

Descriptors 

Resource 
Context 

Descritpor 



7	  

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

Architecture/Platform Models 

XML Platform Description Language (PDL)  

to capture relevant aspects of heterogeneous  

architectures at different abstraction levels. 

 

PDL comprises 

•  Processing Units (master, worker, hybrid) 

•  Memory Regions 

•  Interconnects 

Platform descriptors are used by 

•  Expert programmers  

•  Compiler / Autotuner 

•  Runtime system 

 

 

 
 

<Master id="0"quantity="4”> 
  <PUDescriptor> 
    <Property fixed="true” 
      <name>ARCHITECTURE</name> 
      <value>x86</value> 
    </Property>     . . .  
  </PUDescriptor> 
  <Worker quantity="2" id="1"> 
    <PUDescriptor> 
      <Property fixed="true”> 
        <name>ARCHITECTURE</name> 
        <value>gpu</value> 
      </Property> 
    </PUDescriptor> 
  </Worker> 
  <Interconnect type="rDMA"  

from="parent" to="1" scheme="unicast"/> 
</Master> 

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

Support for parallel design patterns 
•  Master/worker, pipelining, … 

 
Annotations for specifying tuning points 
 
Example: Pipeline pattern 

Tunable Patterns 

@pipeline[exit_criterion] with buffer[fifo] { 
    @stage  
    stage_A(...) 
 
    @stage replication <count>   // replicates the stage <count> times 
    stage_B(...) 
 
    @stage buffer [priority]          // change buffer to priority, to keep ordering 
    stage_C(...) 
    ... 
} 



8	  

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

     Adaptive Data-Structures & Algorithms 

¨  Toolbox of non-blocking shared data structures and 

     parallel algorithms written by expert programmers. 

     e.g: stack, queue, list; sort, suffix, skyline, … 

 

¨  Parameterize algorithms and data structures with  

    platform models (PDL) (e.g. degree of parallelism, memory usage, …) 

¨  Investigate static and dynamic adaptation and auto-tuning methods. 
     Specialization/optimization for specific platforms/inputs/optimization goals. 
 

Based on existing work:  

•  Parallel C++ STL for GNU compiler (Karlsruhe) 

•  Lock-Free Shared Abstract Data Types (Chalmers) 

  

 

X 

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

Tasks  
•  Explicit dependencies with other tasks 
•  Multiple implementations (GPU, CPU)  
 
Automatic data transfer 
•  Virtual Shared Memory (VSM) layer  
•  Minimize data transfers btw. PUs 
 
Flexible scheduling strategies 
•  Performance-aware 
•  Scheduling algorithm = plug-in 

Performance Feed-back 

PEPPHER Runtime System 

PEPPHER  
Components	  

Applications 
	  

PEPPHER Run-time (StarPU)	  

Drivers (CUDA, OpenCL, OpenMP)	  

CPU	  

PEPPHER 
Libraries	  

GPU	   ?PU	  

Heterogenous Runtime System (based on INRIA’s StarPU)  
•  Selection of component variants based on available hardware resources 

•  Data-aware & performance-aware task scheduling onto heterogeneous PUs 

PEPPHER 
Tasks 



9	  

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

Transformation / Compilation 

PEPPHER Transformation System 

•  Generation of glue-code for  

    runtime component selection. 

•  Pre-selection of component implementations  

    based on platform models (PDL). 

•  Generation of parallel tasks from  

    data distribution annotations. 

•  Optimization of data management. 

 

Compilation of Offload++ to OpenCL (Codeplay) 
•  Offload component variants 

Annotated 
Source 

Program 

Optimized 
Source 

Program 

Platform 
Descr. 
PDL 

Source-to-Source 
Transformation 

Task and Platform 
Repository 

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

Hardware-related Research Issues 

Investigate HW-support mechanisms for  
•  performance tuning,  

•  data-structures and synchronization,  

•  memory management and utilization, 

•  runtime scheduling. 

Simulation and experimental evaluation on prototype board (Movidius).  

StarPU	  

OpenCL	  

Ta
sk
	  	  	  
Al
lo
ca
to
r	  

M
em

or
y	  

Al
lo
ca
to
r	  

SABRE	  Debugger	  

PeppherSim	  

M
es
sa
gi
ng
	  

In
st
ru
m
en

ta
Wo

n	  

Th
re
ad
	  	  0
	  

CP
U
	  IS
S	  

Th
re
ad
	  	  1
	  

CP
U
	  IS
S	  

Th
re
ad
	  	  n
-‐1
	  

AR
M
	  IS
S	  

M
od

el
	  	  A

PI
	  

He
te
ro
ge
ne

ou
s	  

Co
re
	  	  I
SS
	  

Th
re
ad
	  	  m

-‐1
	  

DR
AM

	  

Th
re
ad
	  	  m

	  
Si
m
ul
aW

on
	  

En
gi
ne

	  	  

XM
L	  
	  P
ar
se
r	  

Ar
ch
ite

ct
ur
e	  

De
sc
rip

Wo
n	  



10	  

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

PEPPHER Benchmark Set 

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

Related Research Efforts 

¨   HiPEAC NOE (Europe) 

¨   ParLab (Berkeley) 

¨   Pervasive Parallelism Laboratory (Stanford) 

¨   CellSs (Barcelona) 

¨   Sequoia (Stanford) 

¨   PetaBricks (MIT)   

¨   Elastic Computing (Univ. Florida) 

¨  ... and many more … 

 



11	  

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

Conclusion 

Paradigm shift to (heterogeneous) manycore architectures leads  

to huge research challenges.  

•   Raise level of abstraction in parallel programming 

•   Performance Portability of major concern 

•   Memory management (locality) most critical issue in future architecture 

•   Auto-tuning & adaptivity to fight architectural complexity 

 

PEPPHER proposes: 

•  Component-based approach combining different programming models/APIs 

•  Performance-aware components with explicit platform dependencies (PDL) 

•  Smart runtime system 

•  Adaptive/auto-tuned algorithms and data structures 

•  Investigations of HW mechanism to support performance 

         S. Benkner, University of Vienna PEPPHER Workshop @ HIPEAC 2011, Heraklion, Crete, Greece, January 22, 2011 

¨  European Commission  

¨  HiPEAC Consortium 

¨  PEPPHER Consortium 

Acknowledgments 

Some	  of	  the	  consorWum	  members	  (from	  le[):	  D.	  Moloney,	  E.	  Marth,	  S.	  Pllana,	  V.	  Osipov,	  M.	  Wimmer,	  B.	  Bachmayer,	  P.	  Tsigas,	  J.L.	  Träff,	  C.	  Kessler,	  J.	  Singler,	  
	  S.	  Benkner,	  D.	  Cederman,	  U.	  Dastgeer,	  H.	  Cornelius,	  S.	  Thibault,	  A.	  Richards,	  M.	  Sandrieser,	  U.	  Dolinsky,	  R.	  Namyst,	  C.	  Augonnet,	  H.C.	  Hoppe	  


