Chapter 2

EUCLIDEAN PARALLEL POSTULATE

2.1 INTRODUCTION. Thereisawell-developed theory for a geometry based solely on the
five Common Notions and first four Postulates of Euclid. In other words, there is a geometry
in which neither the Fifth Postulate nor any of its aternativesis taken as an axiom. This
geometry is called Absolute Geometry, and an account of it can be found in several textbooks -
in Coxeter’s book “Introduction to Geometry”, for instance, - or in many college textbooks
where the focus is on devel oping geometry within an axiomatic system. Because nothing is
assumed about the existence or multiplicity of parale lines, however, Absolute Geometry is not
very interesting or rich. A geometry becomes alot more interesting when some Paralléel
Postulate is added as an axiom! In this chapter we shall add the Euclidean Parallel Postulate to
the five Common Notions and first four Postulates of Euclid and so build on the geometry of
the Euclidean plane taught in high schoal. It is more instructive to begin with an axiom different
from the Fifth Postul ate.

2.1.1 Playfair’s Axiom. Through agiven point, not on agiven line, exactly one line can be
drawn paral€ to the given line.

Playfair s Axiom is equivaent to the Fifth Postulate in the sense that it can be deduced from
Euclid sfive postulates and common notions, while, conversely, the Fifth Postul ate can deduced
from Playfair’s Axiom together with the common notions and first four postul ates.

2.1.2 Theorem. Euclid’ s five Postulates and common notions imply Playfair's Axiom.

Proof. First it hasto be shown that if P isagiven point not on agiven linel, then thereisat
least oneline through P that is parallel tol. By Euclid's Proposition | 12, it is possible to draw
alinet through P perpendicular tol. Inthefigure below let D be the intersection of | witht.
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By Euclid's Proposition | 11, we can construct aline m through P perpendiculartot. Thus
by construction t isatransversal to | and m such that the interior angles on the same side at P
and D are both right angles. Thus mis paralle to | because the sum of the interior anglesis
180°. (Note: Although we used the Fifth Postulate in the last statement of this proof, we could
have used instead Euclid's Propositions | 27 and | 28. Since Euclid was able to prove the first
28 propositions without using his Fifth Postulate, it follows that the existence of at least one
line through P that is pardllel to |, can be deduced from thefirst four postulates. For acomplete
list of Euclid's propositions, see “College Geometry” by H. Eves, Appendix B.)

To complete the proof of 2.1.2, we have to show that misthe only line through P that is
pardle tol. SoletnbealinethroughPwithm® n andlet E1 Pbeapointon n. Sincem
1 n, B EPD cannot be aright angle. If mb EPD <90°, asshown inthe drawing, then
mb EPD + mb PDA islessthan 180°. Hence by Euclid’ sfifth postulate, the line n must
intersect | onthe samesideof transversal tasE, and sonisnot parale tol. If mb EPD >
90°, then asimilar argument showsthat n and | must intersect on the side of | opposite E.
Thus, misthe one and only line through P that is parallel to . QED



A proof that Playfair’s axiom implies Euclid’ sfifth postulate can be found in most
geometry texts. On page 219 of his*“College Geometry” book, Eves lists eight axioms other
than Playfair’ s axiom each of whichislogically equivaent to Euclid’ sfifth Postulate, i.e., to the
Euclidean Parallel Postulate. A geometry based on the Common Notions, the first four
Postul ates and the Euclidean Parallel Postulate will thus be called Euclidean (plane) geometry.
In the next chapter Hyperbolic (plane) geometry will be developed substituting Alternative B for
the Euclidean Parallel Postulate (see text following Axiom 1.2.2)..

2.2 SUM OF ANGLES. One consegquence of the Euclidean Parallel Postulate is the well-
known fact that the sum of the interior angles of atriangle in Euclidean geometry is constant
whatever the shape of the triangle.

2.2.1 Theorem. In Euclidean geometry the sum of the interior angles of any triangleis aways
180°.
Proof: Let DABC be any triangle and construct the unique line DE through A, parald to the

sideBC, as shown in the figure

ThenmbBEAC = mDACB and mBDAB = mb ABC by the alternate angles property of parallel
lines, found in most geometry textbooks. ThusmbBACB + mBABC + mBDBAC = 180°. QED

Equipped with Theorem 2.2.1 we can now try to determine the sum of the interior angles of
figuresin the Euclidean plane that are composed of afinite number of line segments, not just
three line segments as in the case of atriangle. Recall that a polygonisafigurein the Euclidean

plane consisting of points P,, P,,..., P, called vertices, together with line segments PP, , PP, ,
....PP,, caled edges or sides. More generally, afigure consisting of the union of afinite
number of non-overlapping polygons will be said to be apiecewise linear figure. Thus




are piecewise linear figures asis the example of nested polygons below.

Thisexampleis aparticularly interesting one because we can think of it asafigure
containing a‘hole’. But isit clear what is meant by the interior angles of such figures? For
such a polygon as the following:

we obvioudy mean the angles indicated. But what about a piecewise linear figure containing
holes? For the example above of nested polygons, we shall mean the angles indicated below



This makes sense because we are really thinking of the two polygons as enclosing aregion
so that interior anglethen refersto the angle lying between two adjacent sides and inside the
enclosed region. What this suggestsis that for piecewise linear figures we will also need to
specify what is meant by itsinterior.

Thelikely formulafor the sum of the interior angles of piecewise linear figures can be
obtained from Theorem 2.2.1 in conjunction with Sketchpad. In the case of polygons thiswas
probably done in high school. For instance, the sum of the angles of any quadrilaterd, i.e., any
four-sided figure, is 360°. To seethisdraw any diagonal of the quadrilateral thereby dividing
the quadrilateral into two triangles. The sum of the angles of the quadrilateral isthe sum of the
angles of each of the two triangles and thus totals 360°. If the polygon has n sides, then it can
be divided into n-2 triangles and the sum of the angles of the polygon is equal to the sum of the
angles of the n-2 triangles. This proves the following resuilt.

2.2.2 Theorem. The sum of the interior angles of an n-sided polygon, n3 3,is (n- 2) X180°.

2.2.2a Demonstration.

We can use asimilar method to determine the sum of the angles of the more complicated
piecewise linear figures. One such figureis apolygon having “holes’, that is, a polygon
having other non-overlapping polygons (the holes) contained totally withinitsinterior. Open a
new sketch and draw afigure such as



An interesting computer graphics problemisto color in the piecewise linear figure between the
two polygons. Unfortunately, computer graphics programswill only fill polygons and the
interior of the figure is not a polygon. Furthermore, Sketchpad measures angles greater than
180° by using directed measurements. Thus Sketchpad would give a measurement of -90° for a
270° angle. To overcome the problem we use the same strategy as in the case of a polygon: join
enough of the vertices of the outer polygon to vertices on the inner polygon so that theregionis
sub-divided into polygons. Continue joining vertices until all of the polygonsaretrianglesasin
the figure below. Color each of these trianglesin adifferent color so that you can distinguish
them easily.

We call thisatriangular tiling of the figure. Now use Theorem 2.2.2 to compute the total
sum of the angles of all these new polygons. Construct a different triangular tiling of the same
figure and compute the total sum of angles again. Do you get the same value? Hence complete
the following result.



2.2.3 Theorem. When an n-sided piecewise linear figure consists of a polygon with one
polygonal holeinside it then the sum of itsinterior anglesis :
Note: Here, n equals the number of sides of the outer polygon plus the number of sides of the
polygonal hole.

End of Demonstration 2.2.2a.

Try to prove Theorem 2.2.3 algebraically using Theorem 2.2.2. The case of a polygon
containing h polygonal holesis discussed in Exercise 2.5.1.

23 SIMILARITY AND THE PYTHAGOREAN THEOREM

Of the many important applications of similarity, there are two that we shall need on many
occasionsin the future. The first is perhaps the best known of all resultsin Euclidean plane
geometry, namely Pythagoras' theorem. Thisisfrequently stated in purely algebraic terms as

a’+b® = ¢?, whereasin more geometrically descriptive termsit can be interpreted as saying
that, in area, the square built upon the hypotenuse of a right-angled triangle is equal to the
sum of the squares built upon the other two sides. There are many proofs of Pythagoras
theorem, some synthetic, some agebraic, and some visual aswell as many combinations of
these. Here you will discover an algebraic/synthetic proof based on the notion of smilarity.
Applications of Pythagoras theorem and of itsisoscelestriangle version to decorative tilings of
the plane will be made later in this chapter.

2.3.4 Theorem. (The Pythagorean Theorem) In any triangle containing aright angle, the
square of the length of the side opposite to the right angleis equal to the sum of the squares of
the lengths of the sides containing the right angle. In other words, if the length of the

hypotenuseis ¢ and the lengths of the other two sidesarea andb, then a® + b® = ¢’.
Proof: Let DABC be aright-angled triangle with right angle at C, and let CD be the

perpendicular from C to the hypotenuse AB as shown in the diagram below.
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ShowDCAB issimilar to DDAC.

ShowDCAB issimilar to DDCB.

Now let BD havelength x, sothat AD haslength c- x. By similar triangles,
a ¢ b

?

Now eiminate x from the two equationsto show a* + b* = ¢?.

Thereis an important converse to the Pythagorean theorem that is often used.

2.3.5 Theorem. (Pythagorean Converse) Let DABC be atriangle such that a°® + b = c”.
Then DABC isright-angled with B ACB aright angle.

2.3.5a Demonstration (Pythagorean Theorem with Areas)
Y ou may be familiar with the geometric interpretation of Pythagoras theorem. If we build
squares on each side of DABC then Pythagoras theorem relates the area of the squares.
Open anew sketch and draw aright-angled triangle DABC. Using the ‘ Square By Edge’
tool construct an outward square on each edge of the triangle having the same edge length
asthe side of the triangle on which it is drawn.
Measure the areas of these 3 squares: to do this select the vertices of a square and then
construct itsinterior using “Construct Polygon Interior” tool. Now compute the area of
each of these squares and then use the calculator to check that Pythagoras' theoremiis
valid for the right-angled triangle you have drawn.
End of Demonstration 2.3.5a.

This suggests a problem for further study because the squares on the three sides can be
thought of assimilar copies of the same piecewise linear figure with the lengths of the sides
determining the edge length of each copy. So what does Pythagoras theorem become when the



sguares on each side are replaced by, say, equilateral triangles or regular pentagons? In order to
investigate, we will need toolsto construct other regular polygons given one edge. If you
haven't already done so, move the document called Polygons.gsp into the Tool Folder and
restart Sketchpad or simply open the document to make its tools available.

2.3.5b Demonstration (Generalization of Pythagorean Theorem)
Draw anew right-angled triangle DABC and use the ‘ 5/Pentagon (By Edge)’ script to
construct an outward regular pentagon on each side having the same edge length asthe side
of the triangle on which it is drawn. As before measure the area of each pentagon. What do
you notice about these areas?
Repeat these constructions for an octagon instead of a pentagon. (Note: Y ou can create an
“Octagon By Edge” script from your construction for Exer cise 1.3.5(b).) What do you
notice about the areasin thiscase? Now complete the statement of Theorem 2.3.6 below
for regular n-gons.

End of Demonstration 2.3.5b.

2.3.6 Theorem. (Generalization of Pythagoras theorem) When similar copies of aregular
n-gon, n 3 3, are constructed on the sides of aright-angled triangle, each n-gon having the same
edge length as the side of the triangle on which it sits, then

The figure below illustrates the case of regular pentagons.




2.3.7 Demonstration. Reformulate the result corresponding to Theorem 2.3.6 when the
regular n-gons constructed on each side of aright-angled triangle are replaced by smilar
triangles.

This demonstration presents an opportunity to explain another feature of Custom Tools
called Auto-Matching. We will be using this feature in Chapter 3 when we use Sketchpad to
explore the Poincaré Disk model of the hyperbolic plane. In this problem we can construct the
first isosceles triangle and then we would like to construct two other similar copies of the
origina one. Here we will construct a“similar triangle script” based on the AA criteriafor
similarity.

Tool Composition using Auto-Matching
Open a new sketch and construct DABC with the vertices label ed.

Next construct the line (not a segment) DE.

Select the vertices B-A-C in order and choose "Mark Angle B-A-C" from the
Transform Menu. Click the mouse to deselect those points and then select the point D.
Choose “Mark Center D” from the Transform Menu. Deselect the point and then

sdect thelineDE. Choose “Rotate...” from the Transform Menu and then rotate by
Angle B-A-C.

Select the vertices A-B-C in order and choose “Mark Angle A-B-C” from the
Transform Menu. Click the mouse to deselect those points and then select the point E.
Choose “Mark Center E” from the Transform Menu. Desdlect the point and then
sdlect theline DE. Choose “Rotate...” from the Transform Menu and rotate by
Angle A-B-C.

Construct the point of intersection between the two rotated lines and label it F. DDEF is
similar to DABC. Hide the three lines connecting the points D, E, and F and replace
them with line segments.

Now from the Custom T ools menu, choose Create New Tool and in the dialogue box,
name your tool and check Show Script View. Inthe Script View, double click on the
Given “Point A” and adialogue box will appear. Check the box labeled
Automatically Match Sketch Object. Repeat the process for points B and C.

In the future, to use your tool, you need to have three points labeled A, B, and C aready
constructed in your sketch where you want to construct the similar triangle. Then you only
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need to click on or construct the points corresponding to D and E each time you want to use the
script. Your script will automatically match the points labeled A, B, and C in your sketch with
those that it needsto run the script. Notice in the Script View that the objects which are
automatically matched are now listed under “ Assuming” rather than under “Given Objects’.
If there are no objects in the sketch with label s that match those in the Assuming section, then
Sketchpad will require you to match those objects manually, asif they were “Given Objects.”

Now open anew sketch and construct atriangle with vertices labeled A, B, and C.

In the same sketch, construct aright triangle. Use the “similar triangle” tool to build

triangles similar to DABC on each side of theright triangle. For each similar triangle,

select the three vertices and then in the Construct menu, choose “ construct polygon

interior”. Measure the areas of the similar triangles and see how they are related.
End of Demonstration 2.3.7.

2.4 INSCRIBED ANGLE THEOREM: One of the most useful properties of acircleis
related to an angle that isinscribed in the circle and the corresponding subtended arc. Inthe
figure below, DABC isinscribed in the circle and Arc ADC is the subtended arc. We will say
that DAOC isacentra angle of the circle because the vertex islocated at the center O. The
measure of Arc ADC isdefined to be the angle measure of the central angle, DPAOC.

2.4.0 Demonstration. Investigate the relationship between an angle inscribed in acircle and
the arc it intercepts (subtends) on the circle.

Open a new script in Sketchpad and draw acircle, labeling the center of the circle by O.
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m/BCA = 53°
m/BDA = 53° D
m/BOA = 106°

Select an arbitrary pair of points A, B on the circle. These points specify two possible arcs -
let’ s choose the shorter onein the figure above, that is, the arc which is subtended by a
central angle of measure lessthan 180°. Now select another pair of points C, D on the
circle and draw line segments to form DBCA and DBDA. Measure these angles. What do
you observe?

If you drag C or D what do you observe about the angle measures? Now find the angle
measure of DBOA. What do you observe about its value?

Drag B until the line segment AB passes through the center of the circle. What do you now
observe about the three angle measures you have found?

Use your observations to complete the following statements; proving them will be part of later
EXercises.

2.4.1 Theorem. (Inscribed Angle Theorem): The measure of an inscribed angle of acircle
equals that of itsintercepted (or subtended) arc.

2.4.2 Corollary. A diameter of acircle aways inscribes a any
point on the circumference of the circle.

2.4.3 Corollary. Givenalinesegment AB, thelocus of apoint P such that DAPB = 90" isa

circlehaving AB as diameter.
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End of Demonstration 2.4.0.

The result you have discovered in Corollary 2.4.2 isavery useful one, especialy in
congtructions, sinceit gives another way of constructing right-angled triangles. Exercises 2.5.4
and 2.5.5 below are good illustrations of this. The Inscribed Angle Theorem can also be used
to prove the following theorem, which is useful for proving more advanced theorems.

2.4.4 Theorem. A quadrilateral isinscribed in acircleif and only if the opposite angles are
supplementary. (A quadrilateral that isinscribed in acircleiscaled acyclic quadrilateral.)

2.5 Exercises

Exercise 2.5.1. Consider a piecewise linear figure consisting of a polygon containing h holes
(non-overlapping polygonsin the interior of the outer polygon) has atotal of n edges, wheren
includes both the interior and the exterior edges. Express the sum of the interior anglesasa
function of nand h. Prove your result istrue.

Exercise 2.5.2. Prove that if aquadrilatera is cyclic, then the opposite angles of the
quadrilateral are supplementary, i.e., the sum of opposite anglesis 180°. [ Thiswill provide half
of the proof of Theorem 2.4.4. ]

Exercise 2.5.3. Give a synthetic proof of the Inscribed Angle Theorem 2.4.1 using the
properties of isosceles trianglesin Theorem 1.4.6. Hint: there are three casesto consider: here
y isthe angle subtended by the arc and 6 is the angle subtended at the center of thecircle. The
problemistorelatey too.

Case 1: The center of the circle lies on the subtended angle.

Case 2: The center of the circle lieswithin the interior of the inscribed circle.
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Case 3: The center of the circleliesin the exterior of the inscribed angle.

A

End of Exercise 2.5.3.

For Exercises 2.5.4, 2.5.5, and 2.5.6, recall that any line tangent to acircle at aparticular
point must be perpendicular to the line connecting the center and that same point. For al three
of these exercises, the Inscribed Angle Theorem is useful.

Exercise 2.5.4. Use the Inscribed Angle Theorem to devise a Sketchpad construction that will
congtruct the tangentsto a given circle from agiven point P outside the circle. Carry out your

congtruction. (Hint: Remember Corollary 2.4.2).

Exercise 2.5.5. In the following figure
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the line segmentsPA and PB are the tangents to acircle centered at O from a point P outside

thecircle. Provetha PA and PB are congruent.

Exercise 2.5.6. Let| and m be linesintersecting at some point P and let Q beapoint onl. Use
the result of Exercise 2.5.5 to devise a Sketchpad construction that constructs a circle tangentia
to| and m that passes through Q. Carry out your construction.

For Exercises 2.5.7 and 2.5.8, we consider regular polygons again, that is, polygons with
all sides congruent and all interior angles congruent. If aregular polygon has n sides we shall
say itisaregular n-gon. For instance, the following figure

isaregular octagon above, i.e., aregular 8-gon. By Theorem 2.2.2 the interior angle of aregular
n-gonis

- 28, oo
éTg180.

o

The measure of any central angleis . Inthefigure DDEF isan interior angle and

DABCisacentra angle.
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Exercise 2.5.7. Prove that the vertices of aregular polygon always lie on a circumscribing
circle. (Becareful! Don’'t assume that your polygon has a center; you must prove that thereis
apoint equidistant from all the vertices of the regular polygon.)

Exercise 2.5.8. Now suppose that the edge length of aregular n-gonis| and let R be the
radius of the circumscribing circle for the n-gon. The Apothem of then-gon isthe
perpendicular distance from the center of the circumscribing circle to a side of the n-gon.

The Apothem

(& With this notation and terminology and using some trigonometry complete the following
R=1 , =R , Apothem=R
Use thisto deduce

1 L, ey . _ 1)
(b) areaof n-gon = 5 nR smé?ﬂ, (c) perimeter of n-gon = 2nR sméﬁﬂ.

(d) Then use the well-known fact from calculus that
lim $M9 = ¢

e®0 0O

to derive the formulas for the area of acircle of radius R as well as the circumference of such a
circle.

Exercise 2.5.9. Use Exercise 2.5.8 together with the usual version of Pythagoras' theorem to
give an agebraic proof of the generalized Pythagorean Theorem (Theorem 2.3.6).

Exercise 2.5.10 Provethe converse to the Pythagorean Theorem stated in Theorem 2.3.5.
26 RESULTSREVISITED. Inthissection wewill see how the Inscribed Angle Theorem

can be used to prove resultsinvolving the Simson Line, the Miquel Point, and the Euler Line.
Recall that we discovered the Simson Line in Section 1.8 while exploring Pedal Triangles.
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2.6.1 Theorem (Simson Line). If P lieson the circumcircle of DABC, then the perpendiculars

from P to the three sides of the triangle intersect the sides in three collinear points.

Proof. Use the notation in the figure bel ow.
Why do P, D, A and E dl lie on the same circle? Why do P, A, C, and Ball lieon
another circle? Why do P, D, B and F dl lieon athird circle? Verify al three of these
statements using Sketchpad.

In circle PDAE, mBDPDE @b PAE = mb PAC. Why?
In circle PACB, mMDPAC @mbPBC = mbPBF . Why?
In circle PDBF, mBPBF @mbPDF . Why?

Since mMBDPDE @mb PDF , points D, E, and F must be collinear. QED

In Exercise 1.9.4, the Miquel Points of atriangle were constructed.
2.6.2 Theorem (Miquel Point) If three points are chosen, one on each side of atriangle, then
the three circles determined by a vertex and the two points on the adjacent sides meet at a point

caled the Miquel Point.
Proof. Refer to the notation in the figure below.
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Let D, E and F be arbitrary points on the sides of DABC. Construct the three circumcircles.
Suppose the circumcircles for DAFD and DBDE intersect at point G. We need to show the
third circumcircle also passes through G. Now, G may lieinside DABC, on DABC, or outside
DABC. We prove the theorem here in the case that G liesinside DABC, and |eave the other
two cases for you (see Exercise 2.8.1).

DFGD and BDAF are supplementary. Why?
DEGD and BDBE are supplementary. Why?

Notice MDFGD + mBDGE + mBEGF = 360°. Combining these facts we see the following.
(180°- mbA) +(180°- mbB)+mbEGF =360°. So mbEGF =180- mbC or BC and
DEGF are supplementary. ThusC, E, G, and F dl lie on acircle and the third circumcircle
must pass through G. QED

The proof of Theorem 2.6.3 below uses two results on the geometry of triangles, which were
proven in Chapter 1. Thefirst result states that the line segment between the midpoints of two
sidesof atriangleis paralle to the third side of the triangle and it is haf the length of the third
side (seeCorollary 1.5.4). The second results states that the point which is 2/3 the distance
from avertex (along a median) to the midpoint of the opposite side is the centroid of the triangle
(see Theorem 1.5.6).

2.6.3 Theorem (Euler Line). For any triangle, the centroid, the orthocenter, and the
circumcenter are collinear, and the centriod trisects the segment joining the orthocenter and the
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circumcenter. The line containing the centroid, orthocenter, and circumcenter of atriangleis
caledthe Euler Line.

Proof. Inthediagram below, Atisthe midpoint of the side oppositeto Aand O, G, and H are
the circumcenter, centroid, and orthocenter, respectively. Since A, G, and Atare collinear, we can
show that O, G, and H are dso collinear, by showing that DAGH @ A®GO. To do this, it
suffices to show that DAHG ~ DA®G . If we also show that the ratio of similiarity is 2:1, then

wewill aso provethat G trisects OH .

A

A

The proof that DAHG ~ DA®G with ratio 2:1 proceeds asfollows: Let | be the point where the

ray CO intersectsthe circumcircle of DABC. Then IB*CB (why?). It followsthat
DBCI ~DAO withratio 2:1 (why?) Itisaso truethat AIBH isaparaleogram (why?) and

hence AH =1B =2(0OA9. SinceG isthe median, we know that AG = 2(GA§¢. Thuswe have
two corresponding sides proportional. The included angles are congruent because they are
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dternate interior angles formed by the parallel lines AR and OA¢ and the transversal BA.

(Why are AH and OA( paralle?) Thus, DAHG ~ DA®G with ratio 2:1 by SAS.

Of course, aswe noted in Chapter 1, we must be careful not to rely too much on apicture
when proving atheorem. Use Sketchpad to find examples of triangles for which our proof
breaks down, i.e. trianglesin which we can’t form the triangles DAHG and DA©®G. What
sorts of triangles arise? Y ou should find two specia cases. Finish the proof of Theorem 2.6.3
by proving the result for each of these cases (see Exercise 2.8.2).

2.7 THE NINE POINT CIRCLE. Another surprising triangle property isthe so-called Nine-
Point Circle, sometimes credited to K.W. Feuerbach (1822). Sketchpad is particularly well
adapted to its study. The following Demonstration will lead you to its discovery.

2.7.0 Demonstration: Investigate the nine points on the Nine Point Circle.

TheFirst set of Threepoints:
In anew sketch construct DABC. Construct the midpoints of each of its sides; label these
midpoints D, E, and F.
Construct the circle that passes through D, E, and F. (Y ou know how to do this!)
Thiscircleis caled the Nine-Point Circle. Complete the statement: The nine-point circle
passes through

The Second set of Three points: In genera the nine-point circle will intersect DABC in three
more points. If yours does not, drag one of the vertices around until the circle does intersect
DABC in three other points. Label these points J, K, and L.
Construct the line segment joining J and the vertex opposite J. Change the color of this
segment to red. What is the relationship between the red segment and the side of the triangle
containing J? What is an appropriate name for the red segment?
Construct the corresponding segment joining K and the vertex opposite K and the segment
joining L to the vertex opposite L. Color each segment red. What can you say about the
three red segments?
Place a point where the red segments meet; label this point M and complete the following
statement: The nine-point circle aso passes through
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The Third set of Three points: Thered segmentsintersect the circle at their respective
endpoints (J, K, or L). For each segment there exists a second point where the segment
intersectsthe circle. Label them N, O and P.
To describe these points measure the distance between M and each of A, B, and C. Measure
also the distance between M and each of N, O, and P. What do you observe? Confirm your
observation by dragging the vertices of DABC.
Complete the following statement: The nine-point circle also passes through

Y ou should create a Nine Point Circle tool from this sketch and save it for future use.

End of Demonstration 2.7.0.

To understand the proof of Theorem 2.7.1 below, it is helpful to recall some results
discussed earlier. Asin the proof of the existence of the Euler Line, it is hecessary to usethe
fact that the segment connecting the midpoints of two sides of atriangleis paralle to the third
side of thetriangle. Also, werecall that aquadrilateral can be inscribed in acircleif and only if
the opposite angles in the quadrilateral are supplementary. It isnot difficult to show that an
isoscel es trapezoid has this property. Finaly, recall that atriangle can beinscribed in acircle
with aside of the triangle coinciding with a diameter of the circleif and only if thetriangleisa
right triangle.

2.7.1 Theorem (The Nine-point Circle) The midpoints of the sides of atriangle, the points
of intersection of the atitudes and the sides, and the midpoints of the segments joining the

orthocenter and the vertices al lie on acircle called the nine-point circle.

Y our fina figure should be similar to
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Proof:

(See Figure1) In DABC label the midpointsof BC,
CA, and AB, by A, B' and C' respectively. Thereisa
circlecontaining A', B and C'. In addition, we know
A'CAB' isaparalleogram, and so AC' = AB'.

(SeeFigure2) Construct the atitude from A
intersecting BC atD. As C' B isparalld to BC and
AD isperpendicular to BC, then AD must be
perpendicular toB C . Denote the intersection of B C
and AD by P. ThenDAPB @PDPB , PB @PB' and
AP @DP.

(SeeFigure 3) Consequently, DAPB @DPB by
SAS. So AB' = B'D. By trangtivity with AC' = AB'
wehaveB'D = AC'. ThusA'C'B'D isanisosceles

ISR S EE TR [ SRR U N —— |
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trapezoid. Hence, by the remarks preceding this
theorem, A', C', B', and D are points which lie on one
circle. (SeeFigure 4)

By asimilar argument, the feet of the other two
altitudes belong to this circle.

(See Figure 5) Let J denote the midpoint of the
segment joining vertex A and the orthocenter H. Then,
again by the connection of midpoints of the sides of a

triangle, C' J isparallel to BH.

(See Figure 6) Now C'A'|| AC and AC*BH but
BH||C'J. HenceC'A'~ C'J.

(SeeFigure 7) Therefore C' lieson acirclewith

diameter A' J.
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A similar argument showsthat B' lieson thecircle

with diameter A'J, and hence J liesonthecircle
determined by A, B', and C'. Likewise, the other two
midpoints of the segments joining the vertices with the
orthocenter lie on the same circle.

QED

2.8 Exercises. Inthisexercise set, Exercise 2.8.3 —2.8.7 are related to the nine point circle.

Exercise 2.8.1. Using Sketchpad, illustrate a case where the Miquel Point lies outside the
triangle. Prove Theorem 2.6.2 in this case.

Exercise 2.8.2. Prove Theorem 2.6.3 for the two special cases.
(a) Thetriangleisisosceles.
(b) Thetriangleisaright triangle.

Exer cise 2.8.3. For special triangles some points of the nine-point circle coincide. Open anew
sketch and draw an arbitrary DABC. Explorethe various possibilities by dragging the vertices of
DABC. Describe the type of triangle (if it exists) for which the nine points of the nine-point
circlereduceto:

4 points: 5 points:
6 points: 7 points:
8 points:

Exer cise 2.8.4. Open anew sketch and draw an arbitrary triangle DABC.
Congtruct the circumcenter O, the centroid G, the orthocenter H, and the center of the nine-
point circle N for thistriangle. What do you notice?
Measure the length of ON, NH, NG, and OH . What results for agenera triangle do your
calculations suggest?
Measure the radius of the nine-point circle of DABC. Measure the radius of the
circumcircle of DABC. What results for ageneral triangle do your calculations suggest?
Drag the vertices of the triangle around. Do your conjectures still remain valid?
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Exer cise 2.8.5. Open anew sketch and draw an arbitrary DABC. Let H be the orthocenter and
O bethe circumcenter of DABC. Construct the nine-point circlesfor DOHA, DOHB, and

DOHC. Use sketchpad to show that these nine-point circles have two pointsin common. Can
you identify these points? Check your observation by dragging the vertices A, B, and C around

If one starts with given vertices A, B, and C, then the locations of the midpoints P, Q, and R
of the sides of DABC are uniquely determined. Similarly, the locations of the feet of the
atitudes D, E, and F will be determined once A, B, and C are given. The remaining two problems
in this exercise set use the geometric properties we have developed so far to reverse this process,
i.e., we congtruct the vertices A, B, and C knowing the midpoints or the feet of the altitudes. Use
the notation from the following figure.

Exercise 2.8.6.

(a) Prove the line segment PQ isparalld to side AB.

(b) Given points P, Q, and R, show how to construct points A, B, and C so that P, Q, and Rare
the midpoints of the sides of DABC.

(c) Formulate a conjecture concerning the relation between the centroid G of DABC and the
centroid of DPQR.

Exercise2.8.7.
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(a) Assume DABC is acute (to ensure the feet of the altitudes lie on the sides of the triangle).
Provethat PC = PB = PE = PF and that P lies on the perpendicular bisector of the line segment

EF.

(b) Given points D, E, and F, show how to construct points A, B, and C so that D, E, and F are
the feet of the altitudes from the vertices of DABC to the opposite sides. (Hint: remember the
nine-point circle).

29 THE POWER OF A POINT AND SYNTHESIZING APOLLONIUS. Another
application of similarity will beto a set of ideas involving what is often called the power of a
point with respect to a circle. The principal result will be decidedly useful later in connection
with the theory of inversion and its relation to hyperbolic geometry.

Demonstration 2.9.0. Discover the formulafor the power of point P with respect to a given
circle.
Open anew sketch and draw acircle. Select any point P outside the circle and let A, B be the
points of intersection on the circle of alinel through P.

Compute the lengths PA, PB of PA, and PB respectively; then compute the product PAPB
of PAand PB. Drag | while keeping P fixed. What do you observe?

Investigate further by considering the case when | istangential to the given circle. Usethis
to explain your previous observation.

What happens to the product PA'PB when P istaken as a point on the circle?

Now let P be apoint insidethe circle, | aline through P and A, B its points of intersection
with the circle. Again compute the product PA-‘PB of PA and PB. Now vary I.

Investigate further by considering the case when | passes through the center of the given
circle.

Can you reconcile the three values of the product PA'-PB for P outside, on and inside the

given circle? Hint: consider thevalueof OP?2 — r? where O isthe center of the given
circleandr isitsradius.
End of Demonstration 2.9.0.

Thevalue of PAPB in Demonstration 2.9.0 is often called the power of P with respect to
the given circle. Now complete the following statement.
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2.9.1 Theorem. Let P beagiven point, S agiven circle, and | aline through P intersecting S at
Aand B. Then

1. theproduct PAPB of the distancesfromPto Aand Bis whenever Pis
outside, whenever itisinsde or whenitison S;

2. thevalue of the product PA'PBis equal to where O isthe center of S

andr istheradiusof S.

The proof of part 2 of Theorem 2.9.1 in the case when P is outside the given circleisan
interesting use of similarity and the inscribed angle theorem. In the diagram below let C be a

point on the circle such that PC is atangent to the circle. By the Pythagorean Theorem
OF” - r?* = PC? so it suffices to show that PAPB = PC?2.

2.9.2 Theorem. Givenacircle S and apoint P outside S, let | be aray through P intersecting
S at pointsA and B. If Cisapoint on thecircle such that PC isatangentto S at C then

PAPB = PC.

Proof. The equation PAPB = PC*suggests use of similar triangles, but which ones?

Let CD beadiameter of thecircle. By the Inscribed Angle Theorem mBPAC = mPBDC and

DCBD isaright angle. Thus mBBDC + mPDCB =90° and asPC istangent to thecircle
mBDCB + mb PCB = 90°. Therefore, MDPAC = mBPCB. By AA smilarity DPAC is

similar to DPCB proving PA/PC = PC/PB or PAPB = PC?. QED
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Theorem 2.9.3. Givenacircle S andapoint Pinside S, let| be aline through P intersecting
S at pointsAand B. Let CD be the chord perpendicular to the segment OP . Then the value of

the product PAPBisequal to r* - OP? = PC* where O isthe center of S andr isthe radius of
S.

Proof.

By AA smilarity DACP issimilar to DDBP so that PA/PC = PD/PB. Thus PA -PB=PC-PD.
By HL, DCPO is congruent to DDPO so that PC=PD. By the Pythagorean Theorem

PD’ + OP* = OD?. Re-arranging and substituting, we obtain PCxPD = r” - OP?. Therefore,
PAXPB = r*- OP? asdesired. QED

Thereis aconverse to theorem 2.9.2 that also will be useful later. You will be asked to
provide the proof in Exercise 2.11.1 below.

2.9.4 Theorem. Givenacircle S and apoint P outside S, let | be aray through P intersecting

S at pointsAand B. If Cisapoint on S such that PAPB = PC? then PC isatangentto S at
C.

In Chapter 1 we used Sketchpad to discover that when a point P moves so that the distance
from P to two fixed points A, B satisfies the condition PA = 2PB then the path traced out by P is
acircle. Infact, thelocus of apoint P such that PA= mPB isawaysacircle, when misany
positive constant not equal to one. From restorations of Apollonius’ work ‘Plane Loci * we
infer that he considered this locus problem, now called the “ Circle of Apollonius’. However,
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thisisamisnomer since Aristotle who had used it to give a mathematica justification of the
semicircular form of the rainbow had already known the result.

That thislocusisacircle was confirmed algebraically using coordinate geometry in
Chapter 1. However, it can be also be proven by synthetic methods and the synthetic proof
exploits properties of similar triangles and properties of circles. Since the synthetic proof will
suggest how we can construct the Circle of Apollonius with respect to fixed points A, B through
an arbitrary point P we shall go through the proof now. The proof requires several lemmeas,
which we consider below.

2.9.5 Lemma Given DABC, let D be onAB, and E on AC such thatDE isparalel toBC.
Then

AD _ AE AB _AC
DB~ EC DB EC’

Proof. Let F be the intersection of BC with theline parallel to AB passing through E. Then
DAED ~ DECF by AA similarity and '2:3 = écE: . The quadrilateral EFBD isaparalelogram,

AD AE AB A
therefore EF=DBand — =—— . A smilar argument shows—— = _AC QED
DB EC DB EC

2.9.5a Lemma (Converse of Lemma 2.9.5). Given DABC, let D be onAB, and E on AC
AD AE AB _AC

suchthat — =— ~— (seefigure below), thenDE isparalel toBC.
DB EC DB EC
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Proof. Assumeﬂ?) =&: . Thelinethrough
DB EC

D pardlel to BC intersects AC at point F with

DF pardld toBC . By Lemma2.9.5,

AB _ AC AB AC
———.BUt—z_aIS)aSO
DB FC DB EC

AC _ AC

c —— = —— whichimpliesthat F = E. Thus
B FC EC

)

E = DF ispardlel toBC.
AD

If — :E,theproofissimilar. QED
DB EC

2.9.6 Theorem The bisector of the internal angle DABC of DABC divides the opposite side
AC intheratio of the adjacent sides BA and BC. In other words,

AD _ AB

DC BC
Proof. Suppose BD bisects DABC in DABC. At C construct aline parallel to BD, intersecting
AB at E, producing the figure below.

But then DABD @B CBD and DBEC @PABD
since they are corresponding angles of parallel lines.
In addition, PBCE @D CBD sincethey are dternate
interior angles of parallel lines. Hence DCBE is
isosceles and BE = BC. By the previouslemma

AB _ AD
BE DC
But BE=BC, so
AB_ AD
BC DC
This completes the proof.
QED
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2.9.7 Exercise. The converseto Theorem 2.9.6 states that if

AB _ AD

BC DC’
then BD bisects DABC in the figure above. Prove this converse. Y ou may use the converse to
Lemma2.9.5, proven in Lemma2.9.5a

2.9.8. Theorem The bisector of an external angle of DABC cuts the extended opposite side at a

point determined by the ratio of the adjacent sides. That isto say, if AB is extended and
intersects the line containing the bisector of the exterior angle of C at E, then

AC _AE
BC BE
Proof: There are two cases to consider.
Either mBDBAC < mBABC or mBBAC > mbABC. (If mBBAC =mbABC,
then the bisector of the exterior angle at C isparallel to AB.)

Assumetha mBBAC < mBABC . Then (as shown in the figure) the bisector of DBCG
will intersect the extension of AB at E, and AE >AB. AtB, construct aline parallel to CE,
intersecting AC at F.
Then BPBFC @PECG

sincethey are
corresponding angles

of parald lines;
And BDECG @PBCE

since CE bisects
BBCG ; and
DBCE @DPCBF sincethey are alternate interior angles of parald lines.

rir

_ . AC AE
Hence DBFCisisoscelesand FC = BC. Now by a previous lemma, = :E' But
FC= BC, (0] A_C :E .

BC BE

This proves the assertion for the case when mBBAC < mbABC .
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If mBDBAC > mBDABC , thentheline containing the bisector of DBCG intersectsthe

extension of AB at point E on the other side of A, with A between E and B. A similar argument
proves the assertion for this case aswell and the theoremisproved. QED

2.9.9 Exercise. The converse to Theorem 2.9.8 states that if

AC _ AE
BC BE

in the figure above, then CE bisects the external angle of DABC at C. Prove this conjecture.

We are now able to complete the proof of the main theorem.

2.9.10 Theorem (Circle of Apollonius). The set of al points P such that the ratio of the
distancesto two fixed points A and B (that is P%B) isconstant (but not equal to 1) isacircle.

Proof: Assume the notation above and that PA = mPBwhere m >1 isacongtant. There are two
points on AB indicated by C and D in the figure with the desired ratio. By the converseto

Theorem 2.9.6 and the converse to Theorem 2.9.8, PCand PD aretheinterna and external
angle bisectors of the angle at P. Thusthey are perpendicular (why?), so DPCPD isaright

angle. Thismeansthat P lieson acircle with diameter CD. QED
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In the previous proof what happensin the casewhere m<1? Also, seeExercise2.11.2.

210 TILINGSOF THE EUCLIDEAN PLANE. The appeal of many of the most interesting
decorations or constructions we see around us, whether manufactured or in nature, is dueto
underlying symmetries. Two good illustrations of this are the so-called ‘ Devils and Angels
designs by the Dutch graphic artist M. C. Escher. Underlying both is the idea of tilings of the
plane, in the first example the Euclidean plane, in the second example the hyperbolic plane.
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But examples can be found everywhere from floor coverings, to wallpaper, to the mosaics of
Roman villas and to decorations of structures as varied as Highway 183 in Austin and ISlamic
mosques. An understanding of the geometry underlying these designs and their symmetries
increases our understanding and appreciation of the artistic design aswell as geometry itself.
The classification of these symmetriesis actually afascinating problem linking both algebra and
geometry, aswe shall see later.

Some of the smplest, yet most striking designs come from ‘tilings' by regular polygons or
by congruent polygons. Examples can be found everywhere in Ilamic art because of the ban
imposed by the Koran on the use of living formsin decoration and art. This style of
ornamentation is especially adapted to surface decoration sinceit is strongly rooted in Euclidean
plane geometry. Sketchpad will enable us to reproduce these complicated and colorful designs.
Once the underlying geometry has been understood, however, we can make our own designs
and so learn alot of Euclidean plane geometry in the process. Four examplesillustrate some of
the basic idess.



Example 1

The above example shows atypical Arabic design. Thiswas drawn starting from aregular
hexagon inscribed in acircle.

Demonstration 2.10.0. Construct the design in Example 1 using Sketchpad.
First draw aregular hexagon and its circumscribing circle. Now construct aregular 12-
sided regular polygon having the same circumscribing circle to give afigure like the one
below.

= —

To construct a second 12-sided regular polygon having one side adjacent to the first regular
hexagon, reflect your figure in one of the sides of the first regular hexagon. Now complete
the construction of the previous Arabic design.

End of Demonstration 2.10.0.

35



2.10.1 Exercise. If theradius of the circumscribing circle of theinitial regular hexagonisR,
determine algebraically the area of the six-pointed star inside one of the circles.

Continuing this example indefinitely will produce a covering of the plane by congruent
copies of three polygons - a square, arhombus and a six-pointed star. Notice that all these
congruent copies have the same edge length and adjacent polygons meet only at their edges, i.e.,
the polygons do not overlap. The second example

Example 2
if continued indefinitely also will provide a covering of the plane by congruent copies of two
regular polygons - two squares, in fact. Again adjacent polygons do not overlap, but now the
individual tiles do not meet along full edges.

The next example

Example 3
isone very familiar one from floor coverings or celling tiles; when continued indefinitely it
provides a covering of the plane by congruent copies of asingle, regular polygon - a square.
But now adjacent polygons meet along the full extent of their edges. Finally, notice that
continuations of the fourth example
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Example 4
produce a covering of the plane by congruent copies of two regular polygons, one a square the
other an octagon; again the covering is edge-to-edge.
To describe al these possibilities at once what we want isagenera definition of coverings
of the plane by polygons without overlaps. Specializations of this definition can then be made
when the polygons have specia features such as the onesin the first four examples.

2.10.2. Definition. A tiling or tessellation of the Euclidean planeisacollection T,, T,, ..., T,,,
of polygons and their interiors such that

no two of the tiles have any interior pointsin common,

the collection of tiles completely coversthe plane.

When all the tilesin aplane tiling are congruent to a single polygon, thetiling is said to have
order one, and the single region is caled the fundamental region of thetiling. If eachtileis
congruent to one of n different tiles, also called fundamental regions thetiling is said to have
order n.

Now we can add in specia conditions on the polygons. For instance, when the polygons are
all regular we say that the tiling isaregular tiling. Both the second, third and fourth examples
above areregular tilings, but the first is not regular since neither the six-pointed polygon nor the
rhombusisregular. To distinguish the second example from the others we shall make a crucia
distinction.

2.10.3. Definition. A tessellation is said to be edge-to-edge if two tiles intersect along afull
common edge, only at acommon vertex, or not at al.

Thus examples one, three and four are edge-to-edge, whereas example two is not edge-to-
edge. The point of this edge-to-edge condition isthat it reduces the study of regular tilingsto
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combinatorial problemsfor the interior angles of the regular polygons meeting at avertex. Itis
in thisway that the Euclidean plane geometry of this chapter, particularly the sums of angles of
polygons, comes into play. So from now on atiling will always mean an edge-to-edgetiling
unlessit isexplicitly stated otherwise.

A magjor problem in the theory is to determine whether a given polygon can serve as
fundamental region for atiling of order one, or if acollection of n polygons can serve as
fundamental regionsfor atiling of order n. The case of a square is well-known from floor
coverings and was given dready in example 3 above.

2.10.4. Demonstr ation. Investigate which regular polygons could be used to create an edge-to-
edge regular tiling of order one.

Usethe*3/Triangle (By Edge)’ script to show that an equilateral triangle can tile the plane
meaning that it can serve as fundamental region for aregular tiling of order one. Try the same
with aregular hexagon using the ‘ 6/Hexagon (By Edge)’ script - what in nature does your
picture remind you of ? Now use the * 5/Pentagon (By Edge) to check if aregular pentagon can
be used afundamental region for aregular tiling of order one. Experiment to see what patterns
you can make. One example is given below; can you find others?

End of Demonstration 2.10.4.

Can you tile the plane with aregular pentagon? To see why the answer is no we prove the
following result.

38



2.10.5. Theorem. The only regular polygonsthat tile the plane are equilateral triangles, squares
and regular hexagons. In particular, aregular pentagon does not tile the plane.

Proof. Suppose aregular p-sided polygon tiles the plane with g tiles meeting at each vertex.

Since the interior angle of aregular p-sided polygon has measure 180?%22, it follows that
g180(1- 2/ p) =360. But then
1 1 1
—+—==, ie,(p-2(g- 2)=4.
P q 2
The only integer solutions of this last equation that make geometric sense are the pairs

(p.q) =(36), (4.4), or (6,3).

These correspond to the case of equilateral triangles meeting 3 at each vertex, squares meeting 4
at each vertex and regular hexagons meeting 3 at each vertex. QED

Tilings of the plane by congruent copies of aregular polygon does not make avery
attractive design unless some pattern is superimposed on each polygon - that’s a design
problem we shall return to later. What we shall do first istry to make the tiling more attractive
by using more than one regular polygon or by using polygons that need not be regular. Let’s
look first at the case of an equilateral triangle and a square each having the same edge length.

Demonstration 2.10.5a. Construct aregular tiling of order 2 where the order of the polygons
is preserved at each vertex.
Open a new sketch and draw a square (not too big since thisis the starting point) and draw
an equilateral triangle on one of its sides so that the side lengths of the triangle and the
sguare are congruent. Use the scripts to see if these two regular polygons can serve asthe
fundamental regions of aregular tiling of order 2 where the order of the polygonsis
preserved at each vertex. Here' s one such example.
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5
Notice that the use of colors can bring out a pattern to the ordering of the polygons at each
vertex. Aswe move in counter-clockwise order around each vertex we go from

S(green) ® Jyellow) ® T(white) ® T(blue) ® T(white)
(and then back to S(green)) where S= square and T = equilateral triangle. Thisis one example
of an edge-to-edge regular tiling of order two. Consider how many are there.

End of Demonstration 2.10.5a.

2.10.6 Theorem. Up to smilarity there are exactly eight edge-edge regular tilings of order at
least 2, where the cyclic order of the polygonsis preserved at each vertex.

Keeping the order S® S® T® T® T of squares and triangles produced one such tiling.
Convince yourself that S® T® T® S® T produces adifferent tiling. Why are these the only
two possible orderings for two squares and three triangles? How many permutations are
possiblefor thelettersS ST, T,and T?

What are the other six tilings? Algebraic conditions limit drastically the possible patterns so
long asthetiling is edge-to-edge and that the order of the polygonsis the same at each vertex.
Using the angle sum formulas for regular polygons one can easily see that you need at least
three polygons around a vertex, but can have no more than six. In the case of a p-gon, ag-gon,
and anr-gon at each vertex, you get the equation

0 0
ch- 2 gd- 2 "2 —360

180§ 0 g+180 q I+ 180§

Y ou can check that (4,8,8), (4,6,12), and (3,12,12) are solutions. (There are afew other solutions
aswell, but they will not make geometric sense.) ThusS® O® O,S® H® D,and T® D® D
all producetilings, where O stands for Octagon, H for hexagon, and D for Dodecagon. We are
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still missing three tilings, but you can have fun looking for them! (See Exercise2.11.3.) Now
wewill take alook at some less regular tilings.

It is surprising how much of geometry can be related to tilings of the plane. Let’s consider
two instances of this, the second being Pythagoras' theorem. Thefirst instance is atheorem
known familiarly as Napoleon' s theorem after the famous French general though thereisno
evidence that he actually had anything to do with the theorem bearing his name! Recall that
earlier we proved the form of Pythagoras' theorem saying that the area of the equilateral triangle
on the hypotenuse is equal to the sum of the areas of the equilateral triangles on the other two
sides. On the other hand, Napoleon’ s theorem says that the centers of these three equilateral
triangles themselves form an equilateral triangle, aswe saw in Exercise 1.8.5. The figure below
makes this result clearer.

Here D, E, and F are the centers of the three equilateral triangles where by center is meant
the common circumcenter, centroid and orthocenter of an equilateral triangle. Napoleon's
theorem saysthat DDEF isequilateral - it certainly looks asif its Sides are congruent and
measuring them on Sketchpad will establish congruence. Y ou will provide a proof of the result
in Exercise 2.11.5. The question we consider hereis how all thisreatesto tilings of the plane.
Notice now that we have labeled the interior angles of the triangle because we are going to alow
polygons which are not necessarily regular. Since theinterior can then be different, the
particular interior angle of polygons that appears at a vertex is going to be just asimportant as
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which polygon appears. Now we will see how we can continue the figure above indefinitely and
thustile the plane.

One should notice that the edge-to-edge condition imposes severe restrictions on the angles
that can occur at avertex. Label the anglesin the original figure asfollows.

Of course, the angles of the equilateral triangles are al the same but we have used different
lettersto indicate that they are the interior angles of equilateral triangles of different size. Since
a+b+c+d+ e+ f =360 three copies of the right-angled triangle and one copy of each of
the three different sizes of equilateral triangle will fit around a vertex with no gaps or overlaps.
The figure can thus be constructed indefinitely by maintaining the same counter-clockwise
order a® e® c® f® b® d at each vertex. Now draw the figure for yoursdlf! It may be
instructive to use a different color for each equilateral triangle to highlight the fact that the
equilateral triangles are not necessarily congruent.

2.10.6a Demonstration.
Open anew sketch and in the top left-hand corner of the screen draw aright-angled triangle
as shown in the figure above. Make sure that your construction is dynamic in the sense that
the triangle remains right-angled whenever any one of the verticesis dragged.
Usethe ‘Circle By Center + Radius' construction to construct a congruent copy of your
triangle in the center of the screen. Draw an outwardly pointing equilateral triangle on each
side of thisright-angled triangle.
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Continue adding congruent copies of the right-angled triangle and the equilateral trianglesto
the sides of the triangles aready in your figure. (One way to add congruent copies of the
right triangle isto use your * Auto-Matching’ similar triangle script. Just label your
origina right triangle appropriately.)
Experiment alittle to see what figures can be produced. Check that your construction is
dynamic by dragging the vertices of thefirst right-angled triangle you drew.

End of Demonstration 2.10.6a.

Here' sonethat looks asif it might tile the plane if continued indefinitely.

Napoleon Tiling

The figure above of the Napoleon Tiling has an overlay of hexagons over it. To see whereit
came from, apply Napoleon’s Theorem to thetiling. That is around each right triangle connect
the centers of the equilateral triangle to create a new equilateral triangle. Six of those new
equilateral triangles make up each hexagon above. Thus Napoleon’s theorem brings out an
underlying symmetry in the design because it showed that aregular tiling of the plane by
regular hexagons could be overlaid on the figure. The same design could have been obtained by
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putting a design on each regular hexagon and then tiling the plane with these patterned regular
hexagons.

This brings out a crucia connection between tilings and the sort of designs that are used for
covering walls, floors, ceilings or any flat surface. A designis said to be wallpaper design if a
polygonal portion of it provides atiling of the plane by trandationsin two different directions.
Thus all the examples obtained in this section are wallpaper designs. It isvery clear that the
Islamic design in problem 2.10.1 is awall-paper design because the portion of the design inside
theinitia regular hexagon will tile the plane as the figure below clearly shows.

2.10.7. Exercise. Find asguare portion of Example 4 in Seection 2.10 that tiles the plane. In
other words, show that that example is awallpaper design.

Example 2 is sometimes called the “ Pythagorean Tiling”. It is created by atrandation of
two adjacent non-congruent squares. Thistiling occurs often in architectural and decorative
designs as seen in thissidewalk tiling. To see why thistiling might be called a*“ Pythagorean
Tiling” open anew sketch and draw thetiling asit appears in example 2 using two squares of
different sizes. Construct an overlaying of this design by atiling, which consists of congruent
copies of asingle square. What is the area of this square? Use Pythagoras' theorem to relate
this areato the area of the two original squares you used to construct your pattern.



2.11 Exercises.

Exercise2.11.1. Prove Theorem 2.9.4. Givenacircle S andapoint Poutside S, letl bea
ray through P intersecting S at pointsAand B. If Cisapointon S such that PAPB = PC?,

then PC istangentto S at C.

Exercise 2.11.2: Given points A, B and P use Sketchpad to construct the Circle of Apollonius
passing through P. In other words, construct the set of points Q such that QA = mQB where
PA/PB=m.

Exercise 2.11.3. Produce two different order-preserving edge-to-edge regular tilings of order 2,
just using triangles and hexagons. Produce an order-preserving edge-to-edge regular tiling of
order 3 using triangles, squares, and hexagons. (We now have the eight tilings mentioned in
Theorem 2.10.5!)

Exercise 2.11.4. Using Sketchpad construct the Napoleon Tiling. Choose aregular hexagon in
your figure and describeits areain terms of the origina triangle and the three equilateral
triangles constructed on its sides. Now choose a different (larger or smaller area) regular
hexagon having a different area and describe the area of this hexagon in terms of the origina
triangle and the three equilateral triangles.

Exercise 2.11.5. While the tiling above makes avery convincing case for the truth of
Napoleon’s theorem it doesn’t prove it in the usual meaning of ‘ proof’. Here is a coordinate
geometry proof based on the figure on the following page and on the notation in that figure.

(&) Thepoints D, E, and F are the centers of the equilateral triangles constructed on the sides

of the right-angled triangle DABC. Show that length BF =c//3. Determine aso the lengths of

AD and BE.

(b) If BPABC =6 and BDCAB = ¢, writethevaluesof sinf, cosf, sing, and cos¢ in terms
of a,b, andc.

(c) Write down the addition formulas for sine and cosine.

cos(u +V) = , Sin(U+V) =
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(d) Let thelengths of FE, DF, and DE bex, y and z respectively. Use the Law of Cosines
to show that

z2 :%(312 +b? + 2abcos 30° )

Determine corresponding values for x and y. Deducethat x=y = z.

o

=

Use all the previous results to finish off a coordinate geometry proof of Napoleon’s theorem.

Exercise 2.11.6. Instead of starting with aright-angled triangle, start with an arbitrary DABC
and draw equilateral triangles on each of its sides and repeat the previous construction.
Open anew sketch and draw asmall triangle near the top corner of the screen; label the
vertices A, B, and C. By using the ‘ Circle By Center+Radius' tool you can construct
congruent copies of thistriangle.
Draw one congruent copy of DABC in the center of the screen. Draw an equilateral triangle
on each of itssides.
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Continue this construction preserving cyclic order at each vertex to obtain atiling of the
plane. The following figure is one such example.

Construct the centers of all the equilateral triangles and draw hexagons asin the case of
right-angled triangles. Do you think Napoleon’ s theorem remains valid for any triangle, not
just right-angled triangles?

Exercise 2.11.7. Can the plane betiled by copies of the diagram for Y aglom’s Theorem (given
below) as in the manner of thetiling corresponding to Napoleon’s Theorem? If so, produce the
tiling using Sketchpad. Recall that Y aglom’s Theorem said if we place squares on the sides of
aparalelogram, the centers of the squares also form a square.
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2.12 Onefinal Exercise.

Exercise 2.12.1. To theleft in the figure below are two triangles, one obtuse, the other right-
angled. Theinterior angles of the two triangles have been labeled. Since the sum of these six
anglesis 360° there should be atiling of the plane by congruent copies of these two trianglesin
which the cyclic order of the angles at each vertex is the same as the one shown in the figure to
theright.

Open a new sketch and continue this construction to provide atiling of the plane. Unlike the
previoustilings, the triangles in thistiling are not congruent. Explain why thistiling is more
like a Nautilus Shell.
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Construct the circumcenters of the three outwardly pointing obtuse triangles on the sides of
one of the right-angled triangles and join these circumcenters by line segments. What, if
any, isthe relation of the triangle having these three circumcenters as vertices and the
origina obtuse triangle? Isthere any relation with the origina right-angled triangle? Use
Sketchpad if necessary to check any conjecture you make. (Don’t forget to drag!)

Investigate what happens if you construct instead the three circumcenters of the right-angled
triangles on the sides of one of the obtuse triangles? Draw the triangle having these
circumcenters as vertices. What, if any, is the relation between the origina right-angled triangle
and the triangle having the three circumcenters as vertices? I s there any relation with the original
obtuse triangle? Again use Sketchpad if necessary to check visually any conjecture you make.
(Don't forget to drag!)
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