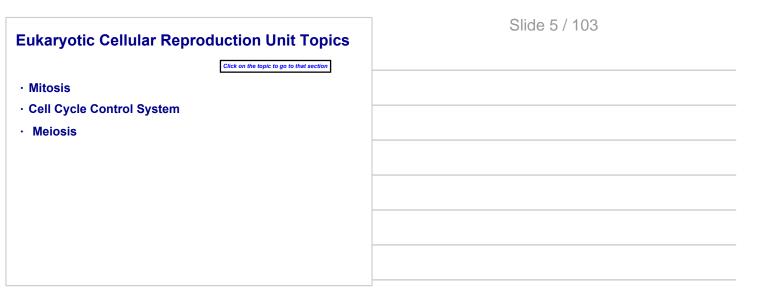


New Jersey Center for Teaching and Learning Progressive Science Initiative®

This material is made freely available at *www.njctl.org* and is intended for the non-commercial use of students and teachers. These materials may not be used for any commercial purposes without the written permission of the owners. NJCTL maintains its website for the convenience of teachers who wish to make their work available to other teachers, participate in virtual professional learning community, and/or provide access to course materials to parents, students and others.

We, at the New Jersey Education Association (NJEA) are proud founders and supporters of NJCTL, an independent non-profit organization. NJEA embraces NJCTL's mission of empowering teachers to lead school improvement for the benefit of all students.

Click to go to website: www.njctl.org



Vocabulary		Slide 3 / 103
	by to go to the definition. contact inhibition contractile ring crossing over cytokinesis diploid gamete gap 1 (G_1) gap 2 (G_2) G_0 phase haploid homologous chromosomes independent assortment interkinesis interphase karyotype	

Vocabulary

vuca	ibulary	
Click on each word belo kinetochore	w to go to the definition. prophase (I) (II)	
leukemia	radiation	
lymphoma	sarcoma	
malignant	sex chromosome	
meiosis (I) (II)	sister chromatid	
metaphase (I) (II)	spindle	
metastasize	somatic cell	
mitosis	stem cell transplant	
mitotic phase (M phase)	synthesis (S phase)	
monosomy	telophase (I) (II)	
multiple myeloma	tetrad	
nondisjunction	trisomy	
polyploidy	tumor	
prometaphase		

Slide 4 / 103

	Slide 6 / 103
Mitosis	
Return to Table of Contents	

The big idea...

Mitosis is a type of cellular reproduction where a cell will produce an identical copy of itself with the same number and patterns of genes and chromosomes.

Meiosis, on the other hand, is a special process used to make **gametes** (sex cells like sperm and eggs). These cells have half the number of chromosomes of the original cell, and each is unique.

Why Undergo Mitosis?

Cells undergo mitosis for a number of reasons.

Organisms use mitosis to:

- · repair damage (as in scars)
- · regenerate lost parts (as in the lizard who loses its tail)
- · grow in size
- · reproduce asexually


Slide 8 / 103

Eukaryotic Cell Cycle

The eukaryotic cell cycle has two major divisions: Interphase and the Mitotic phase.

During interphase the cell metabolic activity is very high. It is busy growing and copying it DNA and organelles so it can divide.

The mitotic phase is the actual dividing of the cell. It involves a series of steps (or subphases).

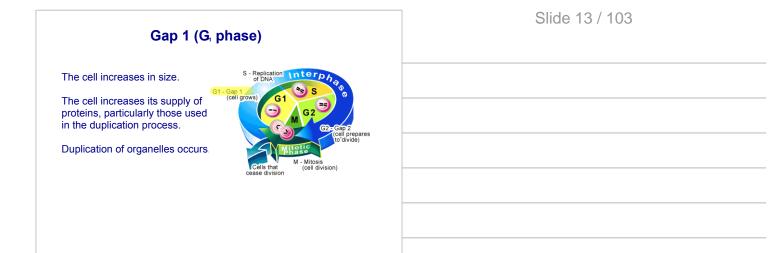
Slide 9 / 103

 1Which one of the following is NOT a function of mitosis?

 A growth
 B generation of lost parts

 C asexual reproduction

 D tissue repair


 E all are correct

2Which of the following occurs during inter	phase?
---	--------

- ◯ A division of the cell
- $\bigcirc\,\mathsf{B}~$ cell growth and duplication of the chromosomes
- ◯ C reduction in size of cell membrane
- $\bigcirc\, D$ $\;$ reduction in number of organelles

	Slide 12 / 103
Interphase	
Most cells spend more than 90% of the total time of the cycle is spent in interphase.	
There are 3 distinct sub-phases to interphase:	
· Gap 1 (G ₁)	
· Synthesis (S Phase)	
· Gap 2 (G ₂)	

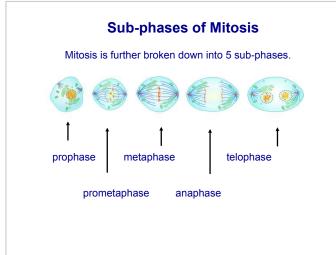
Synthesis (S-phase)	Slide 14 / 103
DNA replication occurs. At the end of this sub-phase, each thromosome in the cell has doublet. The two copies of a chromosome intervence the called a centromere. Each copy is then know as a sister chromatic. $0 - \frac{1}{\sqrt{2} - 20 \mu m}$	

Gan 2 (Ginhaso)	Slide 15 / 103
Gap 2 (G₂ phase) The cell completes its growth in preparation for division. Increases its supply with even more proteins.	

3 Thinking back to prokaryotes, eukaryotic chromosomes differ from prokaryotic chromosomes in that they:	Slide 16 / 103
○ A are circular in structure	
⊖ B are simpler	
$\bigcirc C$ are housed in a membrane-enclosed nucleus	
○ D are copied after cell division	

4Eukaryotic cells spend most of their time in the cell cycle in which phase?	Slide 17 / 103
◯A interphase	
○ B metaphase	
○ C anaphase	
○ D telophase	

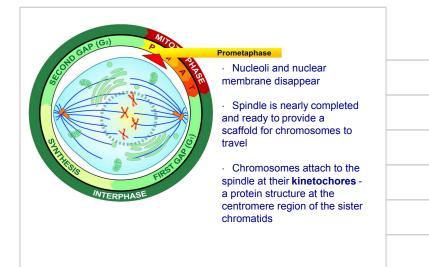
5lf the s daugh	ynthesis phase was eliminated from the cell cycle, the er cells would	Slide 18 / 103
ОA	have half the genetic material found in the parental cell	
⊖В	be genetically identical	
ОС	synthesize the missing genetic material on their own	
ΟD	none of these answers are correct	


Slide 19 / 103

Mitotic Phase

After a cell completes its preparation for division, it enters the mitotic phase.

There are 2 sub-phases to this phase -**Mitosis** (the division of the nucleus) and **Cytokinesis** (the division of the cytoplasm).



centrosomes	 Prophase Arrays of microtubles called spindles start to form from 2 centrosomes (microtubule organizing centers in the cell) Centrosomes start to travel to the opposite ends (poles) of the cell Nuclear envelope starts to break apart 	

Slide 21 / 103

Slide 22 / 103

Slide 23 / 103

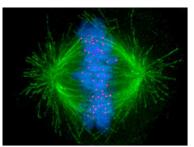

Centrosomes vs. Kinetochores

Image of a human cell during division showing:

spindles from the centrosome in green

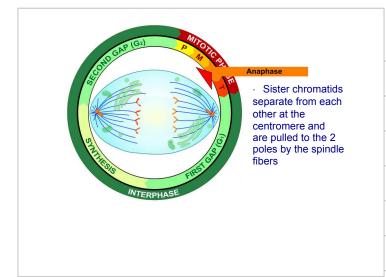
chromosomesin blue

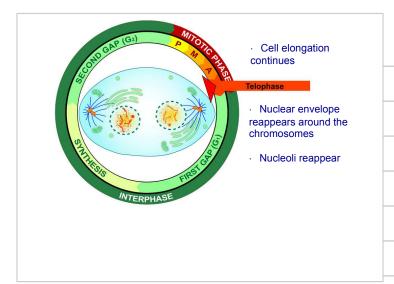
kinetochoresin pink

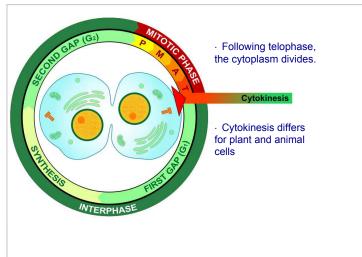
Stoll CAP (Ga) D TOTO	Metaphase · Spindle is completely formed
Prestore and the second	• Chromosomes align on the Metaphase plate (the equator of the cell)

Slide 24 / 103

6The phase of mitosis during which the nuclear envelope breaks apart is called

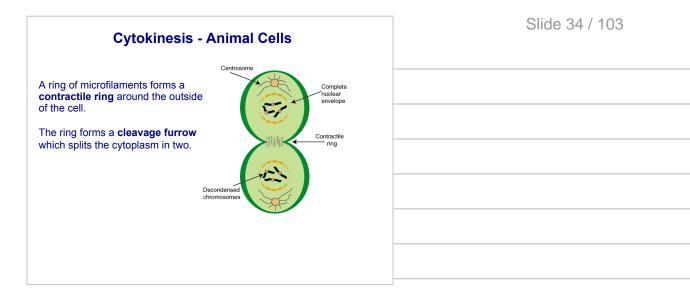

◯ A interphase	
⊖ B prophase	
◯ C metaphase	
◯ D anaphase	

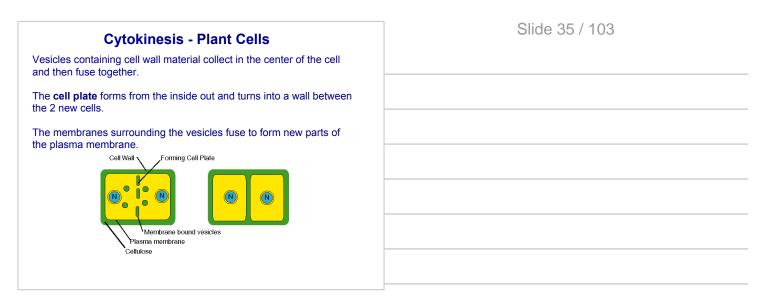

	Slide 26 / 103
7 Which of the following pairs is correct?	
OA kinetochore:makes spindle; centromere:holds chromatids together	
O B kinetochore:attaches to spindle; centrosome:holds chromatids together	
<pre>O C centrosome:makes spindle; centromere:holds chromatids together</pre>	
\bigcirc D centrosome:holds chromatids together; kinetochore:attaches to spindle	

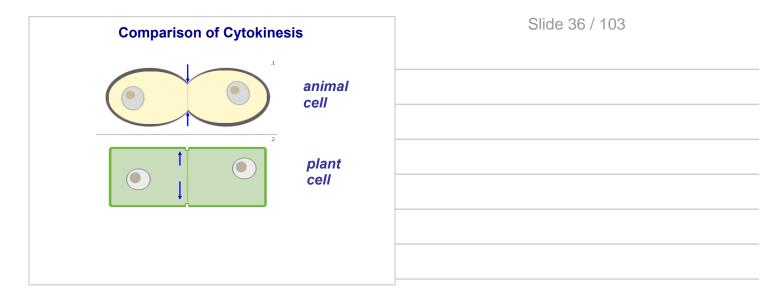

8During which phase do chromosomes line up on a plane located along the equator of the cell?	Slide 27 / 103
⊖ A interphase	
○ B prophase	
⊖ C metaphase	
○ D anaphase	
	2

Slide 28 / 103

Slide 29 / 103

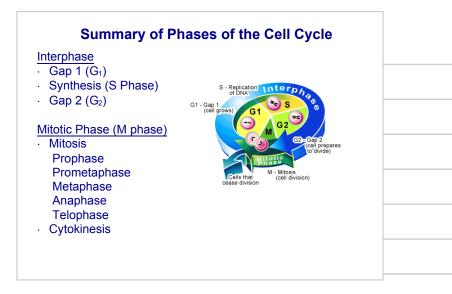





Slide 30 / 103

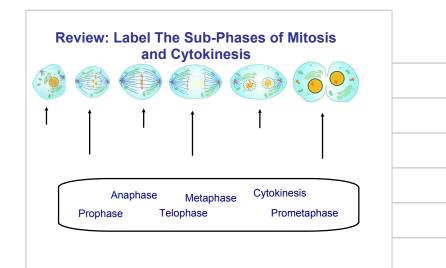
10The process by which the cytoplasm of a eukaryotic cell divides is called	Slide 32 / 103
⊖A mitosis	
◯ B cytokinesis	
○ C teloplase	
○ D spindle formation	

11 Which of these is not like the others?	Slide 33 / 103
○ A Cytokinesis	
○ B Telophase○ C Anaphase	
 D Metaphase E Prometaphase 	
○ F Prophase	



12Cytokinesis in a plant cell is a result of the cell:

- A spontaneously dividing
- $\bigcirc\,\mathsf{B}\,$ forming a cleavage furrow in the middle
- \bigcirc C splitting from the outside in
- $\bigcirc D$ a cell wall being created


Biotech: Nuclear Transfer Cloning Cloning is the process by which the nucleus of a gamete is replaced with the nucleus of a somatic (body) cell, and the embryo develops through normal mitotic divisions. In sexually or cell is taken from Donor Nucleus reproducing species, this process allows for These two cells are fused using an electric shock. the production of offspring which are Egg Cel genetically identical to of the moved the parent. An egg cell is take Embryo Cloned Lamb bryo is placed terus of a foste Click here to watch a video showing somatic cell nuclear transfer.

\cap		39	/		$\cap \cap$
~ 11		- XU	/	1	$(1 \prec$
	uc.	00	/		$\mathbf{U}\mathbf{U}$

Slide 38 / 103

Slide 40 / 103

Cell Cycle Control System	Slide 42 / 103
Three major checkpoints exist to regulate the cycle: at Gap1, Gap 2, and before Mitosis.	
At each point, a signal that says "ok, you can proceed" is released.	
If no signal is released, the whole cycle stops - this prevents problems in reproduction of the cell	

Slide 43 / 103

13Matu	re human nerve cells	
ОA	remain undifferentiated unless injury occurs	
ОВ	divide more easily than other cells	
OC	are permanently in a state of nondivision	
ΟD	cease dividing after a number of cell generations	

14 Cells can reproduce only if they receive the appropriate chemical signal at:	
 ○ A Gap 1 ○ B Gap 2 ○ B Dafe Minute 	
 ○ C Before Mitosis ○ D All of the above 	

<u> </u>				,		~ ~
≤ 1	id		45	/	1	$\Omega \mathcal{X}$
U	IU	0	TU.	/		00

Slide 44 / 103

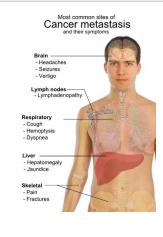
Cancer	
Cancer is a general term for many diseases in multi-cellular organisms which is caused by uncontrolled cell division. Cancer cells and normal cells are identical, with the exception that cancer	
cells divide uncontrollably.	
Cancer cells are non-responsive to the cell cycle control system.	
Cancer cells divide unchecked and can metastasize (spread) to other sites in the body.	

	Slide 47 / 103
Contact Inhibition	
Cells typically will only grow and reproduce until they touch each other and then the cell cycle control system will stop signaling the cell to proceed. This is called contact inhibition.	
Cancer cells do not exhibit contact inhibition, instead they grow into masses called tumors . Some cancer cells continually synthesize factors which keep them dividing.	
Video on contact inhibition	

Cancerous Tumors

Tumors that cause damage to surrounding tissues are called **malignant** tumors. They are also said to **metastasize**, systemically spread the cancer to other areas of the body.

Tumors that are not life threatening or otherwise damaging are called **benign** tumors.


oral carcinoma cells

Slide 48 / 103

Slide 49 / 103

Slide 50 / 103

Typically when someone dies from cancer, it is not the result of the primary tumor, but instead the metastases kill them.

15A benign tumor differs from a malignant tumor in	that it
--	---------

- A is cancerous
- B does not metastasize
- $\bigcirc\, C$ $\,$ spreads from its original place
- $\bigcirc \mathsf{D} \quad \text{never causes health problems}$

16	Which of the following cell types most likely spends less than 90% of its time in interphase?
6	

- A nerve cell
- ⊖ B muscle cell
- OC cancer cell
- D blood cell

17 Lack of contact inhibition can lead to tumors.	Slide 52 / 103
○ True○ False	

General Types of Cancers

Carcinomas: epithelial tissue cancers

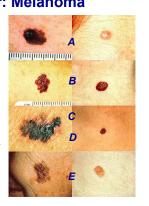
Sarcomas: connective tissue cancers

Leukemias, Lymphomas, Multiple Myeloma: cancers of blood-forming tissues

Slide 53 / 103

One Specific Cancer: Melanoma

ABCDE method for recognizing a potential melanoma (the most dangerous skin cancer)


Asymmetrical skin lesion.

Border of the lesion is irregular.

Color: melanomas usually have multiple colors.

Diameter: moles greater than a pencil eraser

Enlarging

Slide 54 / 103

Treatment of Cancers

Chemotherapy and Radiation are the two most prescribed treatments for cancers.

Slide 55 / 103

Slide 56 / 103

Chemotherapy and Radiation

Chemotherapy disrupts the cell cycle, typically targeting the mitotic spindle formation. Chemotherapy is typically systemic, affecting the whole body.

Radiation is location specific - directed at the area affected by the tumor. It d isrupts the cell cycle by damaging the DNA in the area, and the cancer cells cannot repair themselves and continue dividing when that happens.

Side Effects of Cancer Treatment

The typical side effects from chemotherapy are from the damage also occurring to the normal cells which are affected by the chemicals.

This is seen easily in the fast-reproducing cells, like hair follicles, causing hair to fall out and of the digestive tract, causing nausea.

Slide	57	/	1	03	

18 Which of the following is true about radiation treatment for cancer?	Slide 58 / 103
 A It is systemic, affecting the whole body It damages the cells' DNA, disrupting its ability to divide C It disrupts the cell cycle by targeting the formation of mitotic spindles D It involves a surgical procedure 	

19	When receiving chemotherapy treatment, the patient's hair typically
	falls out because:

- $\bigcirc\,\mathsf{A}\,$ the hair follicles are producing cancerous cells
- OB the chemicals injected during treatment attack the disulfide bonds common in hair cells
- $\bigcirc\,{\rm C}\,$ the chemicals injected during treatment affect the fastest growing cells
- $\bigcirc\,\mathsf{D}$ the chemicals are injected near the hairline, reaching these cells before others

Bone Marrow Transplants

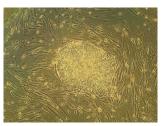
Most blood cancers are also treated with bone marrowaransplants. This involves a surgical procedure where bone marrow is removed usually from the pelvic bone and transplanted into the cancer patient. A patient may serve as his/her own donor in some cases.

This treatment is used for blood cancers because bone marrow produces **stem cells**, unspecialized cells that can divide through mitosis and differentiate into diverse specialized cell types. These cells can produce new, non-cancerous blood cells.

Slide 60 / 103

Slide 59 / 103

Stem Cells


In mammals, there are two types of stem cells.

Type of Stem Cell	Definition	Potency	
Embryonic		Pluripotent – Can differentiate into any cell type present in the organism	
Adult	Adult stem cells act a a repair system by maintaining the turnover of regenerative organs such as blood, skin o intestinal tissue.	Multipotent – Can differentiate into some, but not all, ce , types present in the	

Stem Cell Technology Image: Stem Cell Technology <

Embryonic Stem Cell Technology

Presently, embryonic stem cells have been used primarily for research. Potential for technologies exist, but currently no product has been produced.

Promising research using embryonic stem cells:

- \cdot $\,$ Tissue engineering for organ transplants
- In vitro models to test drug response and predict toxicity
- · Creation of neurons for the treatment of Parkinson's disease
- · Alternative treatment for diabetes

Slide 63 / 103

Slide 62 / 103


20 Which of the following is pluripotent?	Slide 64 / 103
$^{\bigcirc}$ A embryonic stem cells	
$^{\bigcirc}$ B adult stem cells	

21 Which of the following is found in a blastocyst?	Slide 65 / 103
◯A embryonic stem cells	
$^{\bigcirc}$ B adult stem cells	

	Slide 66 / 103
Meiosis	
Return to Table of Contents	

Gametes

The sex cells of organisms are called **gametes.** Eggs in females, sperm in males. In many eukaryotic organisms, the **somatic cells** (those that are not sex cells) have two sets of chromosomes (**diploid**).

Gametes have one set of chromosomes (haploid) and they are produced by meiosis.

Sexual life cycles alternate between haploid and diploid phases.

Fusion of haploid gametes during fertilization results in a diploid offspring.

Homologous Chromosomes

The pairs of matching chromosomes in the somatic cells of diploid organisms are called **homologous chromosomes**. In humans, each somatic cell contains 46 chromosomes, which make up 23 homologous pairs.

Homologous chromosomes share shape and genetic loci, each pair controlling the same inherited characteristics. Each pair is inherited from the parents, one from mother,

one from father (the sets are combined in the first cell following fertilization and then passed down by mitosis)

Karyotype

A **Karyotype** is a photographic inventory of chromosomes - the chromosomes are

chromosomes are digitally separated and ordered.

	$\rangle\rangle$	and an	(Local			() and ()	alpanet.	
1	2		3			4	5	
Code of the second	locan .	Spends Steereds	2-3H		Series Series	나는 아이		
6	7	8	9		10	11	12	
Number of States	8 ft	HA.			240	22	88	
13	14	15			16	17	18	
38		ě	8	86		11		
19	20	Z	1	22		×	Y	

A karyotype of a human female, showing 23 sets of homologous chromosomes

Slide 67 / 103

Slide 69 / 103

Slide 70 / 103

Alleles

Homologous chromosomes can carry different versions of the same gene. These "versions" are called ${\mbox{alleles}}$

2 examples: coat color and eye color in mice

<u>Coat Color</u>: Brown and White are different versions of the same gene for coat color.

Eye Color: Black eyes and Pink eyes are different alleles of the gene coding for eye color.

22 Two chromosomes in a nucleus that carry loci for the same traits in the same positions on the chromosome but can specify different versions of the same traits constitute a pair of:

 $\bigcirc A$ homologous chromosomes

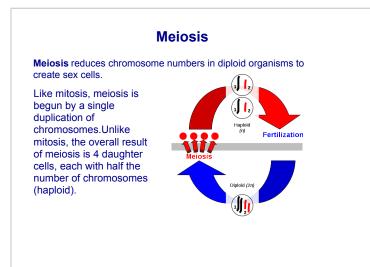
○ B complimentary chromosomes

○ C heterozygous chromosomes

 \bigcirc D none of these are correct

23 A karyotype is analogous to which of the following examples?

◯ A a map of hidden treasure

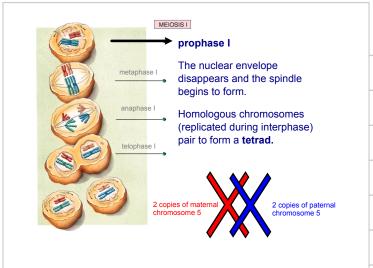

 $\bigcirc\,\mathsf{B}\,$ a movie showing the reproductive cycle of a beetle

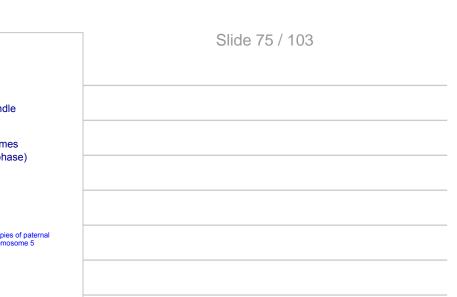
 $\bigcirc\,C$ a photograph of every couple at the prom

○ D the answer key for a test

Slide 72 / 103

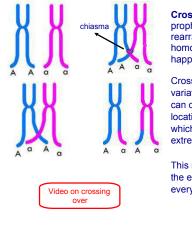
Slide 71 / 103


Slide 73 / 103

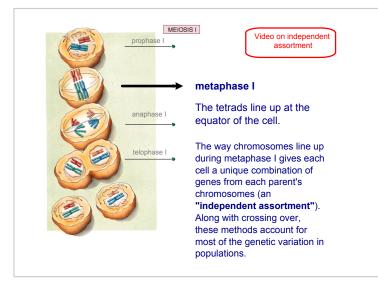

Slide 74 / 103

The Two Divisions of Meiosis

The process involves 2 consecutive divisions, simply called $Meiosis\ I$ and $Meiosis\ II.$


Halving the actual chromosome number occurs in Meiosis I. Then, the sister chromatids separate in Meiosis II, resulting in 4 cells.

Slide 76 / 103


Crossing Over

Crossing over occurs during prophase I. This is a genetic rearrangement between 2 homologous chromosomes that happens at a site called a **chiasma**.

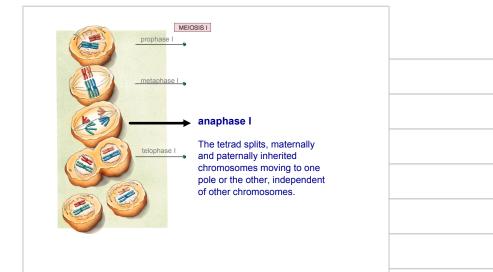
Crossing over increase the genetic variation of the offspring. Since this can occur several times at variable location in each tetrad, the variation which can occur between 2 parents is extremely large.

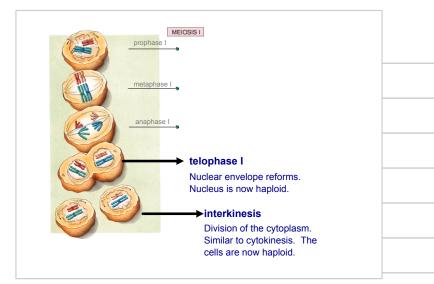
This is one of the reasons that, with the exception of identical twins, everyone is a unique genetic entity.

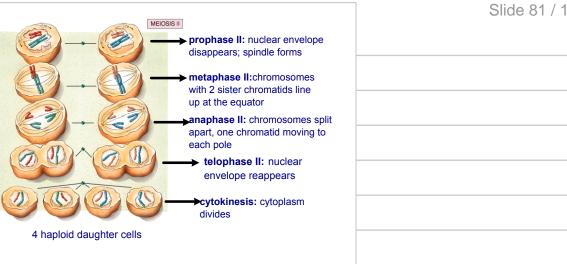
Slide 78 / 103

Slide 77 / 103

Independent Assortment


Given *n* pairs of chromosomes, there are 2^n ways in which chromosomes can line up during metaphase I.


In humans there are 2^{23} (8 million) ways of combining homologues.


This means combining human gametes can produce 64 trillion combinations in the zygote!

Slide 79 / 103

Slide 80 / 103

Slide 81 / 103

24 A genetic rearrangement between 2 homologous chromosomes is called:	Slide 82 / 103
◯ A chiasma	
○ B homologous rearrangement	
○ C crossing over	
○ D haploid reduction	
○ E meiotic division	

25	Crossing ove	er can	occur	manv	times	on	each	homologous	pair
20	Crossing Ove	Ji Gan	occui	many	unico	011	caci	nomologous	pan.

⊖ True

○ False

 Slide 83 / 103

26 Inde	ependent assortment states that	Slide 84 / 103
QA	each pair of gametes separate independently of each other during meiosis	
ОВ	genes sort independently in animals but not in plants	
OC	independent sorting produces polyploid individuals	
OD	individual chromosomes from each parent sort independently of each other during meiosis	

27 Wh	ich of the following statements is <i>false</i> ?	Slide 85 / 103
○ A ○ B	meiosis occurs in the ovaries and the testes of animals sexual life cycles involve an alternation of diploid and haploid stages	
OC	mitosis produces daughter cells with half the number of chromosomes as the parent cell	
OD	a normal human has 46 chromosomes	
ОE	a haploid cell has half the chromosomes that a diploid cell does	

28 W	Vhich of these is NOT a component of meiosis?	
O A	A crossing over	

- ◯ B pairing of homologous chromosomes
- C random fertilization
- \bigcirc D production of gametes

29	With the exception of identical twins, siblings with the same parents will likely look similar but not identical to each other because	

- $\bigcirc\,\mathsf{A}$ $\,$ they have identical chromosomes
- $\bigcirc\,\mathsf{B}~$ they have identical genes but not chromosomes
- $\bigcirc\, C$ $\,$ they have a similar but not identical combination of genes
- $\bigcirc\, D$ $\,$ they have a small chance of having identical genes

Slide 87 / 103

Slide 86 / 103

Accidents in Meiosis

Nondisjunction is the failure of chromosome pairs to separate either during meiosis I or meiosis II.

Fertilization of an egg resulting from nondisjunction with a normal sperm results in a zygote with an abnormal chromosome number.

Alterations in Chromosome Number

In most cases, human offspring which develop from zygotes with incorrect numbers of chromosomes abort spontaneously. This is one reason for the large number of miscarriages which happen during the first trimester of pregnancy.

There are two main types of alterations: aneuploidy and polyploidy.

Aneuploidy

Aneuploidy occurs when a gamete which has undergone a faulty meiosis and has an abnormal number of chromosomes unites with a normal egg or sperm. The zygote formed will have an abnormal number of chromosomes.

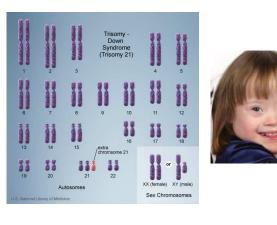
In a **trisomy**, the zygote has an extra copy of a chromosome.

If the zygote is missing a chromosome, it is called a monosomy.

Slide 90 / 103

Slide 89 / 103

Trisomy 21 - Down Syndrome


Trisomy 21 is the most common chromosome-number abnormality with 3 copies of chromosome 21. It occurs in 1 out of 700 births.

Incidence of Down Syndrome increases with age of the mother.

Down Syndrome (common name for Trisomy 21) includes a wide variety of physical, mental, and disease-susceptibility features.

> (little known fact: the incidence rate also increases with the age of the father)

Slide 92 / 103

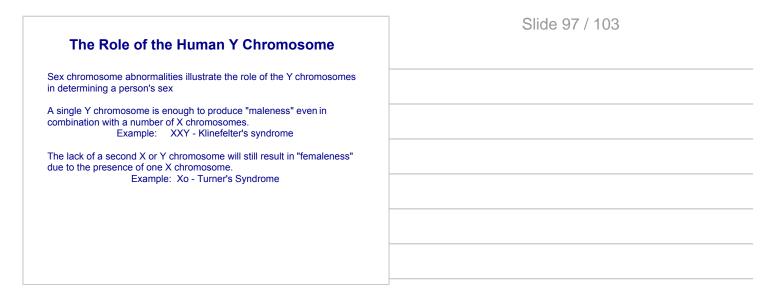
Slide 93 / 103

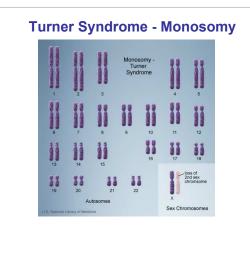
30 Nondisjunction occurs when

- ◯ A a portion of a chromosome breaks off
- B chromosomes replicate too many times
- C two chromosomes fuse into one
- O D members of a chromosome pair fail to separate
- O E entire chromosomes are lost in Meiosis I

-

32 An individual with a trisomy has extra copy/copies of a chromosome	Slide 95 / 103
◯ A one	
◯ B two	
◯ C three	
◯ D four	

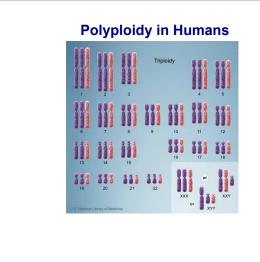

Aneuploid	/ in Sex	Chromosomes


Unusual numbers of **sex chromosomes** (those that determine sex, such as X,Y) do not upset the genetic balance as much as unusual numbers of **autosomes** (all other chromosomes) - perhaps due to the fact the Y chromosome carries fewer genes.

Abnormalities in sex chromosomes result in individuals with a variety of characteristics, the most seriously affecting fertility and intelligence.

The greater the number of X chromosomes, the greater likelihood of developmental and/or intellectual disabilities.

Slide 96 / 103



Slide 98 / 103

33 Aneuploidy in sex chromosomes has no major consequences for the individual.	Slide 99 / 103
◯ True◯ False	

Slide 101 / 103

34 Having a full extra set of chromosomes is known as		
	ОA	aneuploidy
	QВ	Turner's Syndrome
	OC	polyploidy
	ΟD	Crossing Over

Slide 102 / 103

35 A human with polyploidy can still reproduce normally.	Slide 103 / 103
○ True○ False	