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Abstract 

NASA missions require solving a wide variety of planning 
and scheduling problems with temporal constraints; simple 
resources such as robotic arms, communications antennae 
and cameras; complex replenishable resources such as mem- 
ory, power and fuel; and complex constraints on geometry, 
heat and lighting angles. Planners and schedulers that solve 
these problems are used in ground tools as well as onboard 
systems. The diversity of planning problems and applications 
of planners and schedulers precludes a ”one-size fits all’’ so- 
lution. However, many of the underlying technologies are 
common across planning domains and applications. We de- 
scribe CAPR, a formalism for planning that is general enough 
to cover a wide variety of planning and scheduling domains 
of interest to NASA. We then describe EUROPAz , a soft- 
ware framework implementing CAPR. ELROPAz provides 
efficient, customizable Plan Database Services that enable 
the integration of CAPR into a wide variety of applications. 
We describe the design of EUROP.42 from the perspective of 
both modeling, customization and application integration to 
different classes of NASA missions. 

Introduction 
Inspired by NASA’s missions that require solving a wide va- 
riety of planning and scheduling problems, each of which 
must be integrated into different operating environments, we 
set out to formalize and implement a planning framework on 
which many of these mission scenarios can be built. Our 
intuition is that many other real-world problems are sim- 
ilar and that such a framework will be widely applicable. 
The Remote Agent Experiment (RAX) on the Deep Space 1 
Spacecraft (Muscettola et al. 1998), (Jbnsson et al. 2000) 
featured a planner on board a spacecraft that required rea- 
soning about accumulated thrust, spacecraft attitude relative 
to navigation aids, and the state of hardware resources like 
cameras. The EO-1 Sciencecraft experiment (Tran et al. 
2004) is another onboard planner that must reason about on- 
board memory and CPU resources, comnunications oppor- 
tunities to replenish memory, and options for satisfying sci- 
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ence goals. Controllers onboard terrestrial Unmanned Au- 
tonomous Vehicles (UAVs) such as Rotorcraft (Whalley et 
al. 2003) must reason about the state of communication sys- 
tems, onboard payloads such as imagers, and how image ac- 
quisition constrains intended maneuvers such as banks and 
ciimbs, in the face of complex fiight dynamics. Autonomy 
systems (Dias, Lemai, & Musceiioia 2003), (Despoiiys & 
Ingrand 1999) as well as ground tools (Bresina et al. 2003) 
for robots like the Mars Exploration Rovers (MER) require 
reasoning about thermal models, available power and re- 
maining memory, as well as the location of the rover rel- 
ative to intended science targets and how to choose from 
among available science operations. h a g e  Processing plan- 
ning (Golden et al. 2003) requires reasoning about feasible 
image manipulation operations, available web services, as 
well as the state of underlying computer file systems, in- 
cluding the location of inputs and outputs of processing op- 
erations. 

The diversity of planning problems and applications of 
planners and schedulers precludes a “one-size fits all” solu- 
tion. Different planning paradigms apply more naturally to 
different planning problems, and different applications re- 
quire different planning services. For example, planetary 
rover domains require one form of path planning, U.4Vs re- 
quire quite different forms of path planning, while satellite 
domains such as EO-1 do not require path planning at all. 
Path planning generally requires reasoning about concepts 
that are immutable with respect to time, and so does im- 
age processing. Although domains such as EO- 1, MER, and 
RAX require reasoning with resources, EO- 1 and MER fea- 
ture onboard memory resources, while the RAX does not. 
In either of these caces, reasoning about time is important. 
Furthermore, in onboard systems such as spacecraft, UAVs 
and rovers, planner response time may preclude expensive 
algorithms that guarantee optimality. Additionally, some 
applications require that the planner provide incomplete so- 
lutions, such as those where the planner interfaces with an 
kiLzlligcnt execiifii;e t h t  is able :o “fill in :he blznks”. Hu- 
man operators or other autonomous sub-systems may look at 
plans, and request changes or explanations, ultimately lead- 
ing to new planning problems. 

Despite the considerable diversity of planning problem 
classes, planners and applications, there is considerable 
commonality among planning and scheduling problems, 
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Figure 1: Sample Plan Database Applications 

solvers and applications. This commonality can be ag- 
gregated into a set of plan services that we call the Plan 
Database that are provided to build such applications. Con- 
sider the scenarios illustrated in Figure 1. The first is an 
application of automated planning where the input planning 
problem is solved by a Planner to produce an acceptable 
partial plan. The role of the Planner is to perform the search 
steps for resolving flaws. Thus it interacts with a partial plan 
by imposing and retracting restrictions. All operations are 
made on the Plan Database which stores the partial plan. 
The second is an application of automated plannin, 0 in . con- 
cert with a User. The User may introduce goals into a plan, 
and change or undo decisions previously made by a Plan- 
ner. Additionally, a User may employ a Planner to work on 
the current partial plan. In this case changes are also made 
in response to queries and operations on the Plan Database. 
In the last figure, planning technology is deployed for plan 
execution. A partia! plan may be used by ZCQ Executive for 
execution. In such a scenario, the partial plan is updated 
throughout execution. The Executive may employ incom- 
plete search to refine the partial plan as it goes. A Planner 
may be employed to repair a plan or develop a refinement of 
the plan as the mission progresses. In each of the cases de- 
scribed, clients (i.e. Planner, User, Executive) leverage the 
services of a common server, the Plan Database. 

We have created a robust formal framework called Con- 
straint Planning with Resources (CAPR) that supports many 
commonly used representational primitives and reasoning 
engines. We describe this formalism in the next section of 
the paper. This formal framework provides the underpin- 
nings for the Plan Database, called the Extensible Universal 
Remote Operations Architecture (EUROPA2 ). This idea is 
similar to the approach taken by the CLARATy robotics con- 
trol architecture (Nesnas et al. 2003) or MDS (Dvorak et al. 
2000), as well as constraint reasoning systems such as ILOG 
(ILOG 1996). 

Appliczttions wi!! reqnire customization of the Plm 
Database to support only those primitives needed by the do- 
main (e.g. time, resources), and to implement an appropriate 
planner (e.g. an optimizing planner versus one with real- 
time guarantees). We describe how to build domain models 
for EUROPAz as well as how to build custom planners. In 
the final sections of the paper, we discuss related work, and 
conclude with a discussion of our future plans. 

Constraint-Based Planning with Resources 
In this section we describe Constraint Based Planning with 
Resources (CAPR). CAPR is a modification of Constraint- 
Based Attribute and Interval Planning (CAIP) (Frank & 
J6nsson 2003), a formalism that employs variables and con- 
straints as First-class objects to desciibe coqjlex planniiig 
dsmains. CAPR relaxes scme cf the mcre :estr;cd~ve 2s- 
sumptions made in CAIP, resulting in a more generally ap- 
plicable formalism. In particular, we include general re- 
sources as first-class citizens in the planning formalism, and 
separate subgoaling and causal models from the resource 
model. We will show later that we lose none of the repre- 
sentational power of C A P  by having made these changes. 

We first describe the formalism in grounded terms, in 
which all primitives are predicates. We then provide a more 
easily managed formalism using constraints and variables as 
primitives. 

Grounded case 
A token is a logical statement of the form 
holds(s,e,p(al: ..., ak))where t ,  < t ,  are start and 
end times, p is a predicate symbol and a l ,  ..., ak are 
parameter values. Tokens generalize actions and state, and 
merely assert that some property of interest is true for a 
period of time. 

A resource R is defined by a tuple (ZR: I R ,  LR)  where i is 
the initial level, 1 is the minimum level, L is the maximum. 

A transaction is a numerical change in a resource over a 
specified interval. It is defined as a tuple (R: s, e, 6) where 
R is a resource, s 5 e are times, and 6 is a function mapping 
timepoints t ,  t E [ts, te], to numerical values. 

An instantaneous transaction is a transaction where t ,  = 
t, and is referred to as (R, t ,  6) . 

A conjguration rule is an implication of the form T + 
Cl V C2 V . . . V C,, where T is a token and each Ci is a 
conjunction of the form Si,l A . . . A where each si,j is 
either a token or a transaction. 

Definition 1 A planning domain D is a tuple (T,  R: C ) ,  
where I is a set of toobiis, R is a set of resources, and C 
is a set of configuration rules. 

Definition 2 A resource profile for a given plan P and re- 
source ( i ~ ,  l ~ ,  LR)from the domain for that plan is afunc- 
tion XR (t)  defined as follows: 



We first define a cumulative impact finction A, for each 
transaction T, in P as follows: 
- I f  T, is a non-instantaneous transaction , define A, as 

the integral of 6, defined as A,(t)  = 0 for t < t,, 
A,(t)  = J,=t, 6 ( ~ )  for  t E [ t s , t e]  and &(t) = 

J::,, 6(T) for  t > t,. 

; f t  < t,, andA,jt j  = 6 j t )  g t  2 ts. 

t 

- I f  T, is a instantaneous transaction, define A, ( t )  = 0 

Then, for each time point t, XR(t) = E, b,(t). 
A resource profile XR( t )  for a resource ( i ~ ,  l ~ ,  LR) and plan 
P is valid if 1-9 5 XR(t )  5 LR for all timepoints t .  

A partiai plan is a set of tokens aiong with the appiicabie 
transactions defined by the domain rules. 

A partial plan Q is an exrension of a partial plan P if each 
token in P can be mapped to a matching token in Q. 
Definition 3 A partial plan P is valid ij? 

for each token T in P, and for each conjguration nile 
T =+ C1 '4 . . . LI C,, t h e z  exists a j' E [l, z]  such that 
where C -  3 = Si,: A . . .A. Si ,k , ,  ench cf the tokens and 
transactions $1,. . . , S+ are in P. 
the resource profile for every resource is valid 

Aplanning problem is a pair, (V, P) where D is a planning 
domain and P is a partial plan. A solution to the planning 
problem is a plan Q that is a valid extension of P. 

Lifted case 
The grounded formalism is inconvenient since it may require 
large numbers of token descriptions and rules. It is more ef- 
fective to compress these definitions by using variables and 
constraints as the primitive elements of the planning domain 
descriptions. 

A domain is a list of primitive values. A predicate de$- 
nition is a tuple ( p ,  &> ..., Dk) consists of a predicatep and 
a (possibly empty) set of domains, which define the number 
of arguments and the argument domains for the predicate. 

A resource definition, like before, is a tuple 
(ZR? 1 ~ ,  LR) where i is the initial level, 1 is the mini- 
mum level and L is the maximum. 

A token specifies a predicate instantiation holding 
over a period of time. Formally, a token is a tuple 
(s? e, p ,  a l ,  ..., ak) where s and e are temporal variables, and 
each ai is a variable whose domain is restricted to Di. (Note 
that a duration variable d can be defined for convenience, but 
is not necessary.) We distinguish the domain of a variable ai 
in a token as domain(ai), as opposed to a domain used in 
a predicate definition. 

A transaction is a defined by (R: s, e, 6) as before, except 
that R: s and e are variables. Instantaneous transact' Lions en- 
force the constraint s = e. 

A compatibility is a way to represent iarge coiiections of 
configuration rules compactly. It is an implication of the 

( p ,  El, ..., E k ) ,  where p appears in a planning domain pred- 
icate definition (p, D1, . . . , Dn) such that Ei C Di. Each 
Bi is a conjunction of the form S ~ J  A . . ' A Si,k, where each 
5'i.j is of the form: Gi,j; Ci,j where Gi,j is a predicate or a 

form H =+ B1 V B2 V V = B,. The head H is a tuple 

transaction, and C,,j is a set of constraints relating variables 
in the head predicate and Gi,y. A token ( 5 ;  e p ,  c ; ,  ..., c;) 
matches a compatibility head (q, E l , .  .., Ek) if p = g and 
Vi, domain(ai) Ei. 

A planning domain is a tuple (P; 72; C) where P is a set 
of predicate definitions, 72. is a set of resource definitions, 
and C is a set of compatibilities. 

A resource envelope for a given plan P and resource 
li = ( i ~ ,  1R, L R )  is a pzii of :iiiiztions L m a z , ~ ( t )  and 
Lmin,R(t) which are defined as follows: Let Q1, Qa: .  . . be 
the set of all grounded extensions of P.  Let X&(t) be the re- 
source profile for Qi. Then L m a z , ~ ( t )  = maxi Xk(t) and 
LTnin,~q(t) = mini A k ( t ) .  A resource envelope is vaiid 
if LR I Lrnin,R(t) I LR and 1~ I L a z , R ( t )  5 LR for 
all times t. A resource envelope is , violated if either 
Lrnaz,R(t) < ZR or Lmin,R(t) > LR for some t. A resource 
envelope is undetennined if it is neither valid nor violated. 

A constraint c is a relation among the values of a set 
of variables ai ... a k ;  that is, .c C d o m a i n ( a 1 )  x ... x 
domain(ak). A constraint c is satisfied if all possible in- 
stantiations of its variables yield assignments in the relation 
13. A constraint c is violated if no instantiation of its vari- 
ables yields an assignment within the relation L. Finally, a 
constraint is undetermined if it is neither satisfied nor vio- 
lated. 

A partial plan is a set of tokens and a set of constraints. 
Each token in a partial plan is either supported or unsup- 
ported. A token T is supported if for every compatibility 
where the head matches with T, the compatibility has at least 
one disjunct Bi such that for each conjunct Gi-j; Ci,j in Bi, 
the plan contains a token that matches Gi,j and has all corre- 
sponding constraints in Any token that is not supported 
is unsupported. Finally, a given partial plan P, defines a set 
of resource transactions, and associated resource envelopes. 

A partial plan P is complete if all tokens are supported. A 
partial plan P is valid if the resulting resource envelopes are 
valid, and all constraints in P are satisfied. 

A planning problem is a planning domain and a partial 
plan r" from that domain. A solurion to the planning prob- 
lem is a complete and valid plan Q that is an extension of 
P. 

Decision Model and Completeness results 
We next describe the flaw mechanisms and the associated 
search path options. In backwards chaining, unsatisfied pre- 
conditions are flaws that must be resolved before achieving 
an complete plan. In POCL planning, the flaws are open 
conditions and unresolved threats. In CAPR, flaws are ei- 
ther undetermined constraints, undetermined resources, or 
unsupported tokens. As we will see below, flaw resolution 
for all three of these cases is accomplished by constraining 
the domain values of variables. 

Undetermined constraints: Suppose we have a partial 
plan P with a variable v in a constraint c that is undeter- 
mined. Nomd_!!y, uxssigned vwkbles are sixply assigned 
single values until constraints are known to be satisfied. 
However, it is possible to proceed by imposing constraints 
that restrict variables' values. 



Undetermined resources: Suppose we have a partial plan 
P with a resource that is undetermined. In most cases it 
is too expensive to calculate Lmas,R(t) and L m i n , ~ ( t ) ,  be- 
cause it would require calculating all of the grounded ex- 
tensions Qi. Thus we must bound above L m a z , ~ ( t )  and 
bound below Lmin,R(t) to determine validity. When all 
transactions are grounded we can determine Lmaz,R(t)  and 
L Y i n , ~ ( t )  ; for this reason, flaws on resources are usually 

pose the problem is such that no incomplete token decisions 
will ever arise as flaws are resolved. In this case, we are 
left with a scheduling problem. If we further restrict our- 
selves to the case of schedcbg instantasecus transactions, 
we can use techniques such as those described in (Frank 
2004; Muscettola 2002) to tightly bound L m a s , ~ ( t )  and 
L m i n , ~ ( t )  . In some circumstances, partial orders of trans- 
actions are sufficient to guarantee that the resource is prov- 
ably valid. For these cases, flaw resolution can be accom- 
plished by only ordering transaction timepoints. 

Uxszpperted tokens: Finz!!y, suppose we have a partial 
plm- P with a tokeg T =(s, e,  p ?  al, ..., ak) that is unsup- 
ported. There is at least one rule whose head unifies with 
(matches) T. For each such rule, one of the disjuncts Bi 
must be chosen in order to satisfy the rule. This can be 
thought of as a value choice for a variable. Each disjunct 
consists of a conjunct Gi,?; C,,j where Gi,j is apredicate de- 
scription or transaction. If Gi,j is a transaction, a resource 
must be chosen for the transaction; this too is a variable 
choice. If Gi,? is a token, then let V be the set of tokens 
that can be unified with G+, along with one extra element, 
T, representing the use of a new token. Then, the decision 
to be made is which e!emei;t of V to select. Once again, 
this can be viewed as a variable choice. Note that only if T 
is chosen, resulting in a new token, will any new compati- 
bilities apply to tokens in the plan P. However, if Gi,j is 
unified with V E V ,  all the constraints in Ci,j are added to 
constrain the variables in V and T. These constraints gener- 
alize causal links in the same manner as CAP. 

Completeness results: We are now ready to show that this 
decision model is sufficient for solving planning problems 
in CAPR. As was true in the CAIP framework (Frank & 
JBnsson 2003, there may be solutions to a planning problem 
that are not reachable given the domain description and the 
decision model. However, we can still prove that there is a 
plan that is a complete and valid extension of the domain de- 
scription and decision model such that the unreachable plan 
is an extension of this plan. This situation arises because 
there is nothing in the formalism to prevent adding arbitrary 
tokens that don't have compatibilities associated with them. 

Theorem 1 Given a finite planning domain (P:  R, C )  and 
a finite length partial plan P. Assume that Q is a complete 
and valid finite length extension of P. Then, there exists a 
plan R, that is a complete and valid extension of P such that 
a sequence o f j a w  resolutions transforms P into R, and Q 
is ax zxtensiw of R. 
Proof 1 As in (Frank & Jdnsson ZOOS), we will use Q as a 
"heuristic" to describe how to transform P into Q. While 

saiijfreij by asjigring $anjaciioii iiiqjoiiji vzi&,leej, S q j -  

applicable. 

I f a  token T of P is unsupported, there is a supported 
token V in Q that matches T ;  use this token to satisfi 
T ,  either by choosing a disjunct B,, by satisbing a con- 
junct s?,?; with an existing matching token in P, or by 
adding a new token to P. 
I f  a variable u is unassigned, there is a matching vari- 
&le 3 i!z &; gse rhis ygrigble lo gsston 0 . -  . thp .- I I & ~  ofti. 
Note that this covers the case of deciding which available 
resource a transaction is assigned to. 
I f a  constraint among variables in P has not been im- 
posed, use Q to impose that coiistriiint. Nste tha: this 
covers the case of ordering tirnepoints. 

Since Q isjnite and P, at each stage, is a subset of Q, the 
process halts with a complete plan R. And, since the set of 
constraints in P, at each stage, are a subse: of those in Q, 
constraint validity is obvious. The only remaining part is to 
show that all resources are valid in P. First, it is easy to see 
that a resource in P cannot be violatzd, as Q is an exten- 
:inn ef ? end the *pro@? ts dejked b ~ s e d  OE LZ!! ex?en.sion.s. 
Second, the resource cannot be neither violated nor valid, 
as that will give rise to jaws  and the process does not halt 
until there are no otherjaws. So, the resource envelopes 
must also be valid. Thus, R is a complete valid extension 
of P,  and is a subset of Q; thus any tokens, constraints or 
transactions in Q can be added to R with impuni9. 

EUROPAa 
In order to successfully deploy CAF'R in many different con- 
texts, we Zdopt h e  strategy of providing a Plan Database 
motivated by the CAPR formalism. The Plan Database pro- 
vides services that support description of planning domains, 
allow implementation of a wide variety of planners and 
schedulers, as well as provide information about the plans 
as well as the planning process to applications. These ser- 
vices include: 

0 Domain modeling: for describing planning domains 

Partial plan representation: for maintaining partial plans 

0 Flaw generation: for generating flaws from a partial plan 

Flaw resolution: for resolving flaws in a partial plan 

0 Plan assessment: for determining plan completeness or 
violations 

Constraint propagation: for propagating the consequences 
of constraints 

To meet the needs of missions and research projects, the 
design of the Plan Database must meet the following critical 
design goals: 

Efficiency - ensure low latency for operations and queries. 

0 Flexibility - ensure services can be selected and flexibly 

Extensibility - ensure services can be enhanced to meet 

integrzted. 

the needs of research or mission applications. 



j We have implemented EUROP.42, a Plan Database that 
meets these requirements. To illustrate EUROPA2 we 
present a planning domain loosely based on the MER mis- 
sion. We assume the application in question is one of pro- 
ducing daily activity plans for operation of a planetary sur- 
face robot named Rover. Rover is a mobile robot equiped 
with a range of instruments to sample and study a geolog- 
ical site. A Rover processes plans. for taking rock samples 

board a battery, and can replenish its energy levels using so- 
lar power. 

in various icjcauons within a given survey area. it has 011 

Planning Domain Cescriptioiis with NOZL 
Planning domain descriptions for EUROPA2 are written in 
New Domain Description Language (NDDL). In this section 
we will describe NDDL and show how the syntax translates 
to the CAPR formalism. 

Rooted in the formal framework of C U R ,  NDDL pro- 
vides an object-oriented syntax and semantics that makes it 
convenient to express sophisticated relatiomhips hqong el- 
erxzts cf a wrtial g!an. There r nuzher of ..ldidon.l 
capabilities h NDDL which offer greater convenience and 
or efficiency for the modeler. 
Predicates A predicate in CAPR defined as 
(p :  D1, ...: Dk) is directly described in NDDL. For ex- 
ample, a Rover might be at a Locarion, or it might be 
moving from one location to another. The predicate Ar can 
be introduced with: 
predicate Xt{Rover r ;  Location 1;) 

where r and 1 refer to the set of all rovers and the set of 
$1 locations respectively. Similarly we can introduce the 
predicate Going: 

predicace Goinq(3over r;  
Location from; 
Location to;} 

Rover and Location are user-defined types which may be 
expressed using enumeration: 
enum Rover {spirit, opporzuni:y} 

or through the more expressive use of an abstract data 
type, or class: 

class Xover {}  
class Location { 

int x; 
int y; 
;ocation(int 2, int . y ) {  

x = 2; 

y = .y; 

} 

Thus, class describes an unchanging object. Iiistznces of 
} 

classes, Le. objects, may be introduced thus: 
Rover spirit = new Rover(); 
Rover opportunity = new Rover(); 
r,?,..tinn ?^^b - P̂._. T - - : * : - - ! 7  7 > -  

Locailion hiil = new Location(2, 3;; 
Location lander = new Location ( 5 ,  8 )  ; 
Location martian-cicy = new Location(8, 6 ) ;  

---,. I_____ i ..,-, L;, 

For convenience, predicates may be defined directly on 
a class. Predicates introduce time-varying properties of a 
class. The set of instances of that class are implicitly a pa- 
rameter of the predicate, and are accessed through the built- 
in variable object. Thus we may concisely restate our predi- 
cate definitions by augmenting the Rover class: 
class Rover { 

predicate AttLocation 1;) 
predicate GoLnq(Location from; 

Locztion to;} 

1 
Compatibilities Suppose that Rover is not permitted to go 
to the same location it is leaving. Furthermore, suppose 
that every Going must be followed by an kt and vice versa. 
To express these domain rules, we introduce a compatibility 
for each predicate. Recall that a token is defined in CAPR 
as (s, e ,p ,  a l :  ..., Q) . The compatibility for At given be- 
low shows the two Going subgoals with constraints imposed 
on their predicate parameters (including the previously de- 
scribed implicit object variable) and its srurr and end vari- 
ables. 
Rover::At{ 

/ /  Reqoire a Going token on same 
/ /  object which succeeds this token 
subgoal (Going go) ; 
eqlgC.start, end); / /  Equate tinepoints 
eq(gO.from, 1); / /  Equate parameters 
eq (go.  object, object) ; 
/ /  Require a Going token on same 
i /  object which precedes this token 
snbgoal (Going 91) ; 
eq(gl.end, scart); / /  New constraint 
eq(gl.to, 1); / /  New constraint 
eq!gl.object, object); 

} 

NDDL directly supports specifying temporal constraints 
with Allen relations auGgnented with metric time. We use 
the Allen relations directly as shorthand for creating a sub- 
goal token with the associated temporal constraints. Fur- 
thermore, we can use the object variable to specify the 
constraint that the A t  token must be on the same object as 
the Go ing  token. We thus express the compatibilities for 
Going more concisely as follows: 
Rover::Going( 

.neq(to, from); / /  to I =  from 
meets(object.At aO); 
eq (aO. 1, to) ; 
methy(object.At all; 
eq(al.1, f r o m ) ;  

} 

Suppose the Rover could either go to another location or 
stay at the current location and take a panoramic image. In 
NDDL we model this by using a disjunctive rule where we 
explicitly create a boolean variable to represent the disjunc- 
tion. 
Rover::At{ 

/ /  dis;unctive rille for successor 
/ /  token: false implies Going, true 
i i  impiies lakelmg 
5001 next; 
if (next==false) { 

meets(object.Going g o ) ;  



ecIg0.:ron, 1); 

} 
if (next==true) { 
meets (object . lakerail 10) ; 

1 

Resources and Transactions To illustrate the use of re- 
scGrces i:: NDDL, -e intredxe 2 b ~ e r y  which s t e r ~ ~  en- 
ergy produced from solar panels and allows energy to be 
consumed by rover activities. 
class Rover { 

. . .  
Aesource battery; 
Rover ( )  { 

. . .  
battery = new Eattery(l0, 3, 30); 

1 

Now declare a predicate for power generation: 
predicate generatePower{Resource r; 

: h a t  zate;} 

and define a rule linking it to transactions on a resource. 
Note that the current EUROPA2 implementation is limited 
to handling instantaneous transactions. Consequently, trans- 
actions are typically defined as occumng at the start or end 
of tokens. Instantaneous transactions in CAPR are defined 
by (R: t !  6) and are identical in NDDL: 
qenerate?ower( 

/ /  produce transaction at the end 
ends(r.iransaction tx); 
/ /  relation to derive instantaneuos 
/ /  chance from rate and duration 
calc?roduction(tx.quanticy, 

rate, start, end); 

1 
Finally, the compatibility for Going can be augmented 

with a consumption transaction on the battery where the 
quantity is based on the distance travelled: 

subgoal(oDject.battery.transaction tx); 
calcCons.m.pEion (tx . quant it y, from, to) ; 
/ /  Consune at the beginning 
eq(tx.start, start); 

A common special case of resources is the unary resource 
specd!ying a mutual exclusion between states and actions 
that cannot occur simultaneously. In the Rover example, At 
and Going tokens are temporally mutually exclusive for any 
given Rover instance. To accomplish this, we embed a Re- 
source iato the Rover class in accordance with the definition 
(iR, 1R, LR) : 
class Rover { 

... 
Resource mutex; 
Rover ( ) { 
mutex = new Resource(l, 0, 0); 

1 

Now, we append an appropriate transaction requirements 
} 

to our existing compatibilities. 

c 
. . .  
/ /  Cor.sume at the begir.nning 
subgoa l (Resource . t r ansac - ion  txO); 
eq (txO .object, objecc .ip~ueex) ; 
eq(txO.time, star:); 
eq(txO.quancity, -1); 
/ /  Produce at the er.c 
subgoal(Resource.transactLon txl); 
eq(txl.object, object.nutex); 
eq(txl.time, end); 
ea: (tx2. quantity, 1) ; 
. . .  

Timelines In CAIP, Timelines were constructs used to en- 
sure that a set of predicates were mumaliy exclusive, as well 
as ensuring that one of these predicates held at any time in 
valid plans. In CAPR, and subsequently, EUROPA2 , time- 
lines are no longer first class members of the paradigm. 
However, the nohon of ensuring mutual exclusion among 
predicates is very common. Therefore, it’s useful to have 
a convenient short-hand for defining classes, where all their 
tokens are mutually exclusive. This is done by declaring a 
class as m extex im cf a special cszstrxt  called a Tixe- 
line. Using this construct is exactly the same as defining 
mutual exclusion unary resources and appropriate resource 
transactions, but is more concise and can be implemented 
efficiently. In our example, the use of Emeline gives a more 
concise model: 
class Rover excends Timeline { 

predicate At{Socation 1;) 
predicate Going{Location from; 

Resource battery; 
Rover ( 1  { 

Location to;} 

battery = new 3arcery(i0, 3 ,  30); 

1 
} 

Static Objects Other useful features offered by NDDL 
are local compatibility variables, and the use of classes to 
capture information that is static over time. These features 
prove useful in the Rover planning domain where a further 
restriction is imposed such that only some paths in the sur- 
vey area are traversable. The abstract data type for the set of 
paths can be specified as: 
class Path { 

Location locl; 
Location loc2; 
Path (Location -11. 

l0Cl = -11; 
loc2 = 2 2 ;  

Locarion -12) { 

} 

and the set can be populated with instances using object 
} 

allocation e.g.: 
Path p l  = new Path (rock, hill) ; 
path p 2  = new Path (hill, lander) ; 
Path p3 = new Pathhartian-city, lander); 

An additional rule can be introduced for the Going predi- 
cate to enforce the path existence requirement: 
Rover: :Going{ 

Path p : { 
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t + 
A c t i v e  I n a c t i v e  Merged 

c a n c e l  c a n c e l  

eq(p.10~1, f r o m ) ;  
eq (p .  l oc2 ,  t o )  ; 

J 
1 

The variable p is comparable to a predicate parameter 
variable, though it is only introduced locally in a rule, and 
need not be grounded in a complete partial plan. The ini- 
tial values for p wiII be p l ,  p2, and p3. These values will 
be filtered through constraint propagation. Should there be 
no path, the domain of p will be empty and a violation will 
occur. 

Partial Plans in EUROPA2 
In this section we discuss the representation and manipula- 
tion of partial plans in EUROPAz . 

Tokens and Open Conditions A partial plan for the rover 
planning domain is created with the following statement: 
goa l  (Rover .Going G )  ; 

This introduces a token G for the predicate Going de- 
fined on the class Rover. The results is the partial plan 
p = {{G},{}} .  All tokens in a partial plan are repre- 
sented as Active Tokens in a EUROPAz plan database. All 
Open Conditions can be inferred from the partial plan 
and the model. Open Conditions are represented in a 
EUROPAzplan database as Inacrive Tokens. Figure 2 il- 
lustrates the states and transitions of tokens in EUROPAz . 
As is the case with G, a token is Active immediately when 
introduced by an actor external to the plan database. Alter- 
natively, a token is initially Inactive when introduced by a 
compatibility. As described in the previous section on the 
decision model, an Inactive Token must be resolved by ei- 
ther merging it with an existing Active Token (i.e. choosing 
a resolver from the set of tokens in the plan V )  or by in- 
serting it into the partial plan via activation (i.e. using the 
resolver T). 

With G the following variables are introduced to the Plan 
Database. The default variables of G are introduced with all 
tokens: 

start - the start time for the token. In this example the 
domain is [ - i d  +infj. 

0 end - the end time for the token. In this example, the 
domain is [-inf +infl. 
duration - the duration of the token. This does not add any 
new information to the definition of a token since it can 
be derived from the start and end variables but it proves 
convenient. In this example, the domain is [I +infl. 

Figure 3: Plan database elements for partial plan { { G I { } }  

0 objecr - the implied variable arising from the definition of 
the predicate on a class or a transaction on a resource. In 
this example, the domain is populated with all instances 
of the Rover class Le. {spirit, opportunity}. 
state - annotation for the state of a token. An Inactive To- 
ken has a domain of {Active, Merged}. A Merged %ken 
has the singleton domain Merged. The domain for G is a 
singleton {Active}. The operations to activate or merge a 
token constrains this variable. 

The parameter variables introduced depend on the predicate 
description of the token. In this case, since G is an instance 
of the Going predicate, we introduce the following: 

from - the location the rover is leaving from. In this ex- 
ample the domain is populated with all instances of the 
Location class i.e. {rock,hill,lander.martian-city}. 
to - the location the rover is going to. In this example the 
domains are identical. 

Constraints Further requircments can be imposed in the 
initial partial plan. For example, spirit must be at location 
rock at time 0: 
/ /  In t roduce  token A 

coal (Rover.At A )  ; 

/ /  Coxs t r a in  l o c a t i o n  v a r i a b l e  
eq(3.1, rock); / /  c0 
/ /  Cons t r a in  objec: v a r i a b l e  
eq (A.ob jecz ,  spirit); / /  c i  
/ /  Cons t r a in  s t a r t  <= 0 <= end 
l e q ( A . s t a r t ,  0); / /  c2 
l e q ( 0 ,  A .end) ;  / /  c 3  

Taken together, this partial plan, p ,  is given by the tuple 

Inference with Corr?patibi!ities Compatibilities are only 
matched with active tokens. A simplified version of a pre- 
viouosly described compatibility for Rover::Going is listed 

({GA}, {cO, c l ,  c2, ~ 3 ) ) .  



below: 
0. Aover::Goinc{ 
i .  n e q ( t o ,  f r o n i ;  / /  TO ! =  from 
2 .  neeLs(o5jecr.At h i ;  

3. ec(A.1, io); 
4. subaoa:(ob;ec~.5ar_ery.:ransictlon 1); 
5. eq(T.start, scar:); 

6 .  1 

ately upon introduction of G to the partial plan. Execution of 
the body yields an open condition A, a set of constraints and 
a single transaction T. These elements, and the relations be- 
tween them, are illustrated in Figure 3. The relations are an- 
notated with line numbers indicating where they arise from 
explicit declarations in the compatibility. Line 1 produces 
a constraint among the parameter variables of G. Line 2 in- 
troduces the open condition A. It also imposes an equality 
constraint between the object variables of G and A. Line 3 
equates the parameter variables A.1 and G.to. Line 4 requires 
a new transaction Tin the database. EUROPAz does not cur- 
rently support interval transactions, so we also generate an 
implicit constrdni eij-tafing T:si~?i? and r e i d .  Finalky, Line 
5 equates the start times of G and T. Note that disjunctive 
compatibilities are modeled by variables, so these variables 
would be introduced as flaws when matching a compatibil- 
ity to an Active token, and only when these variables are 
decided do we introduce the corresponding tokens and con- 
straints. 

The head of the ahove c m p t i h i m y  is matched immedi- 

Flaw Generation and Resolution 
CAPR identifies flaws as undetermined resources, un- 
supported tokens, and undetermined constraints. In 
EUROPAz these translate to resource, token, and variable 
flaws respectively. Queries and events are provided so that 
clients can readily access flaws from the Plan Database. 
Events provide immediate access to changes within the Plan 
Database, but require clients to subscribe in order to receive 
the updates. For exampIe, when 2n Inactive token is in- 
serted into the plan database through execution of a com- 
patibility, a message to that effect is posted to any registered 
clients. Similarly, as variables are introduced, restricted or 
relaxed, clients may observe these events and synchronize 
their flaw state accordingly. Furthermore, events are raised 
as resource profiles become valid or undetermined. Alterna- 
tively, clients may simply query the database for the current 
set of all unbound variables, open conditions and undeter- 
mined resources. 

The following methods of resolution are provided in 
EUROPAz for each category of flaw: 

Resource Flaw - a transaction may be constrained to a 
resource by assigning or constraining its object variable. 
Alternatively, transactions may be ordered with respect to 
Otkkei transactions on the rescurce by posting constraints 
on timepoints. 
Token Flaw - inactive tokens required by each unsup- 
ported token must be activated or merged. The former 
is simply a restriction to the state variable of the inac- 
tive token to the value Active. The latter can be accom- 
plished with a restriction to the state variable domain to 

Y 

Merged and the posting of equality constraints between 
the matched variables of the inactive token and the target 
active token with which it is to be unified. However, a 
more efficient operation is provided which eliminates the 
need for equality constraints. This provides significant 
performance advantages as it reduces the growth rate of 
the resulting constraint network. 
Variable Flaw - unbound variables are resolved by assign- 
ing values directly or restricting values with constraints. 

Plan Assessment 
Some applications may have different models of interaction 
with ETu.CIPA2 and wiii want io impose relaxations on thc 
set of flaws that should be resolved by the planner. For ex- 
ample, imagine a multi-agent system where each planning 
agent shares a single model, yet each is specialized to re- 
solve flaws only in a sub-domain of expertise. Each plan- 
ning agent would inspect the shared database and work on 
those flaws it knows how to resolve. Each planning agent 
would be done planning when it finished resolving all the 
fiaws i: needs to resdve. EUZOPA2 prcvides a Eexibk de- 
cision management framework to filter the set of flaws that 
need to be resolved for a partial plan to be complete. Se- 
mantically, these operations amount to a relaxarion of the 
strict interpretation of the set of flaws in a plan. The filtering 
criteria allow clients to indicate: 

temporal restrictions - all flaws outside a given planning 

predicate restrictions - all flaws derived from a given set 

0 variable restrictions - variable flaws on a given set of dy- 

custom restrictions - specialized filter conditions may be 

horizon are excluded. 

of predicates are excluded. 

namic and/or infinte variables are excluded. 

developed and integrated as needed by the client. 

Constraint Propagation 
EUROPA2 is built upon the constraint propagation infras- 
tructure illustrated in Figure 4. The model statement: 
calcconsumprion ( t x  . q u a n t i t y ,  from, to) ; 

introduces a Constraint with the ConstrainedVariables 
Tquantity, ?om, and to. Each constrained variable has a 
domain which is propagated. A change in a domain triggers 
a message in the variable, which is passed on to the Con- 
straintEngine. Each constraint is registered with a Propaga- 
tor allowing customized propagation strategies for different 
constraints. This framework allows for sepcialized domains, 
constraints, variables and propagators to be integrated in an 
open and flexible manner. The framework borrows heav- 
ily from the design of the CHOCO kernel (Laburthe & the 
OCRE iiesearch Group 2OOij. EUXOPA2provides a li- 
brary of useful constraints together with a default propaga- 
tor which delegates constraint enforcement to each individ- 
ual  constraint. It also includes a resource propagator which 
propagates transaction loads on resources, and a temporal 
propagator which propagates temporal constraints using a 
simple temporal network. 
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Figure 5: System Diagram - preliminary 

EUROPAz Architecture 
We now describe the overall EUROPA2 System Architecture 
and discuss how it accomplishes design goals described ear- 
lier. 

Figure 5 describes the internals of the EUROPA2Plan 
Database operating as a server to one or more clients. 
The server is an assembly of EUROPAz components inte- 
grated for the needs of the particular application. The PZun 
Database provides a facade for interacting with the server at 
the abstraction level of primitives in CAPR i.e. tokens, trans- 
actions, constraints, resources, variables. The Constrainr 
Engine and related components are utilized to propagate re- 
lations among variables and detect violations. Standard and 
customized constraints and propagators can be freely inte- 
grated or omitted. The Rules Engine is triggered by changes 
in the partial plan i.e. token activation and variable binding. 
The Schema is the in-memory store for the domain model. 
It is used by the plan database to enforce type restrictions 
and by the rules engine to match and execute compatibilities. 
EUROPA2 includes a chronological backtracking planner as 
a standard client component, though many applications de- 
velop their own clients. The Decision Manager uses a flaw 
filter specification to manage the set of flaws for a client. 

Customizability EUROPA2 is highly customizable. If a 
problem does not require resources, support for resources 
may be ommitted. If a problem does not require compat- 
ibilities (e.g. a scheduling problem), the rules engine can 
be omitted. If temporal constraints are not important in a 
problem, the temporal propagator may be removed andor 

replaced with the default propagator. Only required con- 
straints need to be registered. This form of customization 
is useful as it allows systems to avoid incurring costs for 
components that are not required. EUROPA2 also provides 
a language to customize the system for new domain mod- 
els. Furthermore, heuristic and flaw specifications are also 
provided. Finally, an open API ensures flexbility in how 
EUROPA2 is integrated. 

Extensibility EUROPA2 is highly extensible. As new 
problems are encountered, or new algorithms are developed, 
there are many ways to integrate new capabilities as special- 
ized components e.g. constraints, propagators, resources. 
This is essentia! for sgccess in research and mission deploy- 
meflts. 

Speed EUROPAz has produced significant gains in speed 
over EUROPA. The primary contributors to the improve- 
ment arise from: 

fast interfaces & specialized implementations. The ability 
to tune implementations using inheritance provides speed 
improvemnts in key areas such as operations on domains. 
efficient merging. Resolving open conditions by merg- 
ing is an important operation governing the efficiency of 
the system. EUROPA2 accomplishes this with an algo- 
rithm that avoids redundant constraints arising in the plan 
database. 
incremental relaxation. When relaxing a variable (e.g. 
retracting a decision), EUROPAz uses localized propaga- 
tion to relax reachable variables in the constraint graph. 
direct support for static facts. EUROPAz uses objects to 
capture static facts. We provide a means to naturally ref- 
erence or require objects through variables and the pat- 
tern for existential quanitification. EUROPA used single 
predicate timelines to capture this information, incurring 
a high overhead and compounding the problems of ineffi- 
cient merging. 

Future Work 
We have presented a formalization of constraint-based plan- 
ning with resources and described EUROPA2 a framework 
that implements the formulation. The current implernenta- 
tion of EUROPA2 is being used by the Intelligent Systems 
Program to demonstrate advanced robotic capabilities in the 
field. We have plans to make this software available for 
use in research and mission deployments. We are currently 
working on many extensions. On the theoretical side, we 
plan to develop domain independent heuristics for resource- 
cognizant planners. The main challenge is the identification 
of useful heuristics and the translation of static CSP heuris- 
tics into a dynamic CSP setting. We also plan to work on 
obtaining soundness and completeness results foi diEerent 
subgoaling configurations. We know that there is a rela- 
tionship between the theory behind the languages of PDDL, 
TAL, NDDL, and SAS+, and we plan to identify and de- 
scribe the relationship so that we can better understand how 
EUROPA2 compares to these systems. 

We plan to extend our modeling language in two ways: 1. 



provide better modeling support for time-invariant relation- 
ships; 2. provide means to describe optimization criteria. 
Some of the domains, such as the image processing domain 
require the specification and reasoning about relationships 
that are immutable with respect to time. We currently pro- 
vide the means only to specify data but relationships among 
the data are assumed to change with respect to time. Further- 
more, many planning applications require not only finding a 
piali but finding a -1-- .-.:..L ---- _^. plul W l L l l  1cspcC.1 io LGI L a 1 1  U p L I I I l l L ~ L l u l l  

criteria. We plan to extend NDDL to allow describing op- 
timization criteria such as minimize makespan or minimize 
resource consumption. 

Finally, we have numerous p l x s  for extezding sur i m  
plementation. We plan to extend the set of planning ser- 
vices provided to include domain analysis techniques such 
as reachability. We are already working on a PDDL front- 
end for EUROPA2. Furthermore, we plan to extend the set 
of services provided by adding direct support for lifted local 
search planning; more specialized constraint reasoners; and 
hybrid solvers. The current EUROPAz implementation has 
been designed to deal with consistent as well as inconsistent 
states but only a backtracking planner has been implernented 
to date. We need to extend the notion of flaws to include vi- 
olations to be able to handle local search methods, and test 
whether the implementation holds. 

. .  . 
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Related Work 
EUROPAzis certainly not the only planner that can plan 
with resources and express resources as first class citi- 
zens. IxTeT already plans with resources, however, IxTeT 
requires modeling state changing properties as attributes. 
EUROPA2 allows the expression and reasoning of arbitrary 
objects, not just objects that behave like attributes. IxTeT, 
however, provides more reasoning support for resources 
than CAPR in that they define how to prune "dominated" 
transaction ordering decisions: 1) they use some graph the- 
ory to infer that only certain decisions are necessary, then 
2) eliminate "dominated" decision (e.g. if a < b + c < b 
then a < b is not considered.) However, we were unable 
to find soundness and completeness proofs of planning with 
resources in IxTeT. 

ZENO (Pemberthy & Weld 1994) is a sound and com- 
plete planner that handles actions with temporal quantified 
preconditions and effects. ZENO can reason about deadline 
goals, piecewise-linear continuous change, external events 
and, to a limited extent, simultaneous actions. In particular, 
actions are allowed to overlap in time only when their effects 
do not interfere. From what we can tell, there is no special 
purpose reasoning on constraints, and instead, variable as- 
signments ensure that non-linear equations reduce to linear 
equations. In contrast, EUROPAz provides 1. a language for 
expressing declarative resources, 2. ability to express richer 
types of resources, and 3. ability to handle any type of con- 
straint. 

Given the success of PDDL (Fox & Long 2003) in the 
academic community, PDDL has been extended to cope 
with problems of increasing size and complexity. However, 
the extensions have been driven by the capability of plan- 
ners that have participated in the competitions. PDDL thus, 

is able to describe plan metrics, a capability that we plan 
to include in EUROPAz . PDDL, however, has a process- 
driven time semantics and is unable to deal with precondi- 
tions that hold over specific intervals of time and effects that 
can happen at arbitrary points during action execution. In 
EUROPA2 resources are first-class citizens and can be fully 
described declaratively, and relationships between other en- 
tities in the plan and resources can be expressed as con- 

fluents, which provide advantages and disadvantages. The 
ability to represent numeric fluents means that planners can 
then subgoal based on internal numeric states. However, it is 
difficclt and 2wkwz.d to express a unified view of resources 
and their properties, which means that planners cannot take 
advantage of dedicated reasoning algorithms to solve prob- 
lems with resources. PDDL is a stronger language for speci- 
fying goals, e.g. it is possible in PDDL to express goals with 
disjunctions. In EUROPA2 it is only possible to describe 
goals in terms of whether they are required or optional, but 
arbitrary formulae are not allowed. 

The Coupled Layered Architecture for Robotic Auton- 
omy CLAXATy, is an architecture with goals to: 1. Cap- 
ture and integrate a wide range of technologies; 2. Lever- 
age existing tools; 3. Leverage experience and tools of the 
larger software development community; 4. Apply appropri- 
ate design patterns to the domain; 5. Provide an infrastruc- 
ture that enables rapid robotic development; and 6. Capture 
experience of technologists implementations. The goals of 
EUROPA2 are very similar. Having deployed the previous 
generation of EUROPA2 in field tests and missions we have 
learned that different missions require different functional- 
ity, yet they require high performance. EUROPA2 is being 
developed in order to support the development of generic 
algorithms, reduce the need for recumng problems for ev- 
ery deployment, simplify the integration of new technolo- 
gies, use the same framework across deployments, increase 
functionality by leveraging a more mature base. These are 
the same motivations that drive CLARATy. CLARATY is a 
two-layered architecture the first layer is the decision layer 
that includes the planner, models, and heuristics. The sec- 
ond layer provides the abstraction of the specific robot com- 
ponents. The first layer is based on ASPENICASPER sys- 
tem architecture which is similar to EUROPA2 's architec- 
ture in that the search engine performs operations on an 
activity database which in turn performs constraint propa- 
gation over parameters and temporal constraints. ASPEN, 
however, allows you to solve problems using local repair al- 
gorithms only. We provide a framework where you should 
able to implement a local repair planner and a chronological 
backtracking planner using some the same components. 
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