

Frans de Wind Eurovent WG6C

European Standards Eurovent Certification AHU

April 2013

Abstract training course

Part 1

- European Standard EN 1886
- European Standard EN 13053

Break

Part 2

- Eurovent certification procedure for AHUs
- Eurovent Energy Labelling System for AHUs
- Advantages of Eurovent Certification

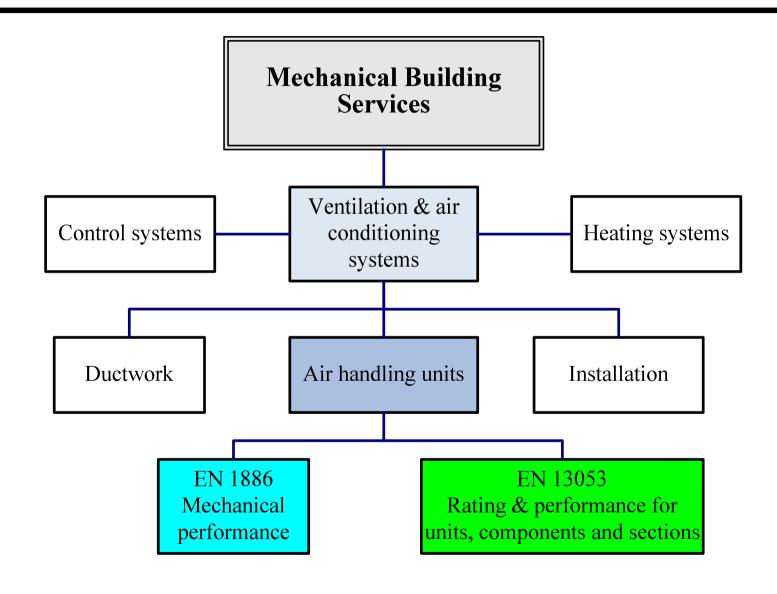
CEN

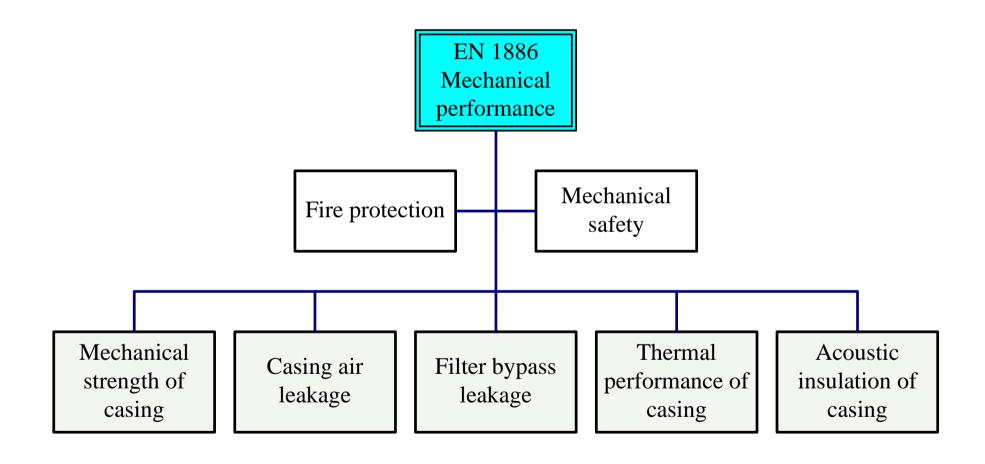
THE WORLD OF EUROPEAN STANDARDS

One European Standard = 30 National Standards

- National Standard Bodies adopt European Standard
- All national Standards identical

Heating, cooling, ventilation


- CEN Technical Committee 156
- CEN Working Group 5


Ventilation for buildings – Air handling units – Mechanical performance December 2007

Standard is a part of a series of standards for air handling units used for ventilation and air conditioning of buildings.

Scope

Test methods, test requirements and classifications for AHUs, Supplying and/or extracting air via ductwork and ventilating/conditioning a part or the whole of a building.

Not applicable for:

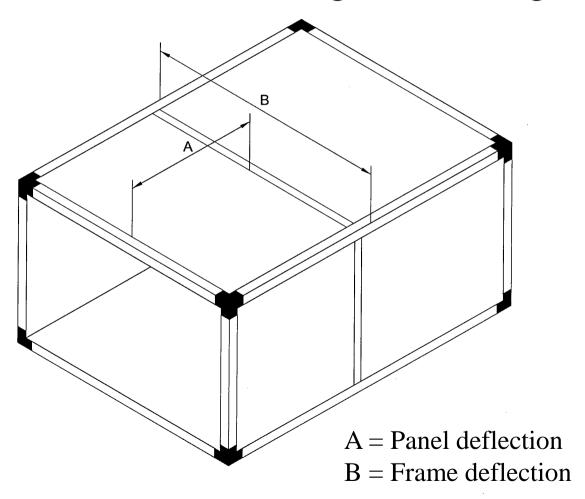
- units serving a limited area in the building (fan coil units)
- units for residential buildings
- units producing ventilation air for manufacturing process

TEST CRITERIA CASING	MODEL BOX*	REAL UNIT**
Mechanical strength	X	X
Air leakage	X	X
Filter bypass leakage	X	X
Thermal transmittance	X	_
Thermal bridging	X	_
Acoustic insulation	X	_

^{*} General classification; marked (M)

^{**} Particular classification; marked (R)

Model box


- empty enclosure with standard casing construction features
- internal height and width between 0,9 and 1,4 m
- total external surface between 10 and 30 m²
- assembly of at least 2 sections
- each section shall have (at least) one access door
- filter frame installed without filter medium
- assembly in accordance with normal production procedures

Real unit

• factory made assembly comprising air handling functions

1. Mechanical strength of casing

1. Mechanical strength of casing

Casing class	Maximum relative deflection [mm×m ⁻¹]		
D1	4		
D2	10		
D3	>10		

Test criterion	Model box	Real unit
Deflection	± 1.000 Pa	Operating pressure at design
Withstand maximum pressure	± 2.500 Pa	Maximum fan pressure at design fan speed

2. Casing air leakage

Leakage classes based on leakage classification for ductwork

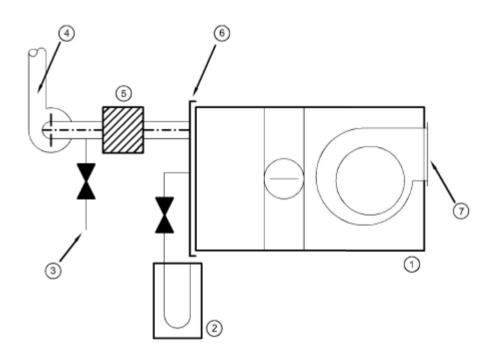
Leakage classification	Maximum leakage rate
for ductwork	$[1\times s^{-1}\times m^{-2}]$
A	$0.027 \times p^{0.65}$
В	$0,009 \times p^{0,65}$
С	$0,003 \times p^{0,65}$

2. Casing air leakage

Maximum leakage rate at 400 Pa negative pressure

Leakage class of		Maximum leakage	Filter class	
casing		rate [l×s ⁻¹ ×m ⁻²]	(EN 779)	
L1	(C)	0,15	Superior to F9	
L2	(B)	0,44	F8 and F9	
L3	(A)	1,32	G1 to F7	

2. Casing air leakage


Maximum leakage rate at 700 Pa positive pressure

Leakage clas	s of	Maximum leakage	Filter class
casing		rate [l×s ⁻¹ ×m ⁻²]	(EN 779)
L1	(C)	0,22	Superior to F9
L2	(B)	0,63	F8 and F9
L3	(A)	1,90	G1 to F7

2. Casing air leakage

Basic test setup and test requirements

- highest filter class decisive
- positive pressure test required if operating pressure > 250 Pa
- positive test pressure 700 Pa, or actual operating pressure if >700 Pa

3. Filter bypass leakage

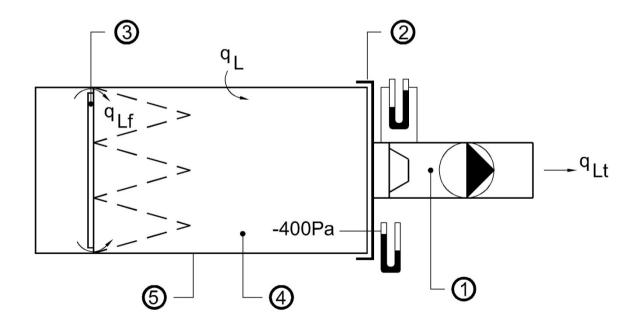
- Filter bypass leakage is related to filter class
- Test pressure differential 400 Pa
- Leakage rate is a percentage of nominal air flow rate
- For model box nominal flow is 0,93 m³/s for full filter (=2,5 m/s face velocity on 610 x 610 mm square)
- Bypass leakage is the total amount of unfiltered air supplied to the building; hence:
 - for upstream filters, bypass around filter cells + casing leakage between filter and fan
 - for downstream filters, only bypass around filter cells

3. Filter bypass leakage

Acceptable filter bypass leakage rates

Filter class	G1-F5	F6	F7	F8	F9
Maximum filter bypass leakage rate as % of nominal flow rate*	6	4	2	1	0,5

^{*} leakage is the total amount of unfiltered air



3. Filter bypass leakage

Test setup for upstream bypass leakage test

$$q_{Ltot} = q_L + q_{Lf}$$

Bypass lekkage: q_{Lto}

4. Thermal transmittance

Mean heat loss coefficient (thermal transmittance "U") is only measured on model box and is calculated as:

$$U = \frac{P_{el}}{A \times \Delta t_{air}}$$

U = thermal transmittance $[W \times m^{-2} \times K^{-1}]$

Pel = electrical power input for heater(s) and circulating fans [W]

A = external surface area $[m^2]$

 Δt_{air} = air to air differential temperature (ti-ta) [K]

ti = mean internal air temperature [°C]

ta = mean external air temperature [$^{\circ}$ C]

4. Thermal transmittance

Classification of thermal transmittance U

Thermal class	Thermal transmittance U
	$[\mathbf{W} \times \mathbf{m}^{-2} \times \mathbf{K}^{-1}]$
T1	U ≤ 0,5
T2	$0.5 < U \le 1.0$
T3	$1,0 < U \le 1,4$
T4	$1,4 < U \le 2,0$
T5	No requirements

5. Thermal bridging

Thermal bridging (bridging factor "k_b") is only measured on model box and is calculated as:

$$k_{b} = \frac{\Delta t_{min}}{\Delta t_{air}} = \frac{t_{i} - t_{s-max}}{t_{i} - t_{a}}$$

k_b = bridging factor [-]

 Δt_{min} = least differential temperature (internal air – casing) [K]

 Δt_{air} = air to air differential temperature [K]

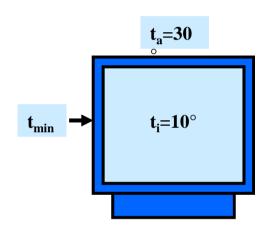
 t_i = mean internal air temperature [°C]

 t_{s-max} = measured maximum external surface temperature [°C]

 t_a = mean external air temperature [${}^{\circ}$ C]

5. Thermal bridging

Classification of thermal bridging factor k_b


Thermal class	Thermal bridging factor k _b
TB1	$0.75 \le k_b < 1.00$
TB2	$0,60 \le k_b < 0,75$
TB3	$0,45 \le k_b < 0,60$
TB4	$0,30 \le k_b < 0,45$
TB5	No requirements

In class TB3 and TB4, 1% of the external surface may have lower bridging class

5. Thermal bridging

Practical application of bridging factor k_b

Risk of external condensation if internal temperature is lower than external temperature!

After conversion of formula the minimum external surface temperature is calculated with equation below

$$\mathbf{k}_{b} = \frac{\mathbf{t}_{\min} - \mathbf{t}_{i}}{\mathbf{t}_{a} - \mathbf{t}_{i}} \implies \mathbf{k}_{b} \times (\mathbf{t}_{a} - \mathbf{t}_{i}) = \mathbf{t}_{\min} - \mathbf{t}_{i} \implies \mathbf{t}_{\min} = \mathbf{t}_{i} + \mathbf{k}_{b} \times (\mathbf{t}_{a} - \mathbf{t}_{i})$$

Example:

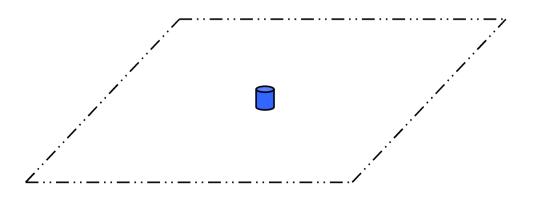
Bridging factor = 0,6 Internal air temperature 10°C External air temperature 30°C

Result:

 $t_{min} = 10^{\circ} + 0.6 \times (30^{\circ} - 10^{\circ}) = 22^{\circ}C$ no condensation if dewpoint $t_a < 22^{\circ}$ maximum relative humidity 62%

6. Acoustic insulation of casing

Measurement of sound insertion loss value D_p


 D_p is the difference of the measured sound pressure level in a sound source-enveloping surface without and with model box around the source.

Values measured in octave bands 125 – 8000 Hz.

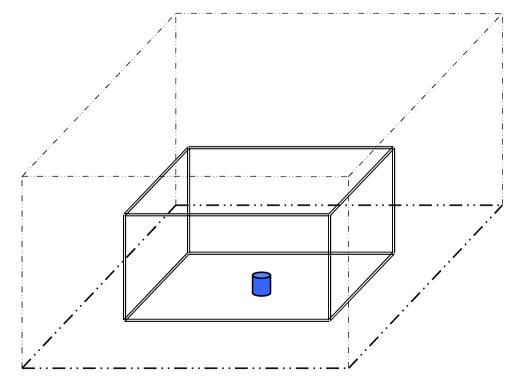
6. Acoustic insulation of casing

Sound source on reflecting floor

6. Acoustic insulation of casing

Enveloping surface around sound source

Measurement of $L_{P\text{-}SOURCE}$ in enveloping surface, averaged per octave band



6. Acoustic insulation of casing

Enveloping surface around model box; sound source in model box

Measurement of $L_{\text{P-ENCLOSURE}}$ in enveloping surface, averaged per octave band

$$D_{p} = L_{P-SOURCE} - L_{P-ENCLOSURE}$$

7. Fire protection

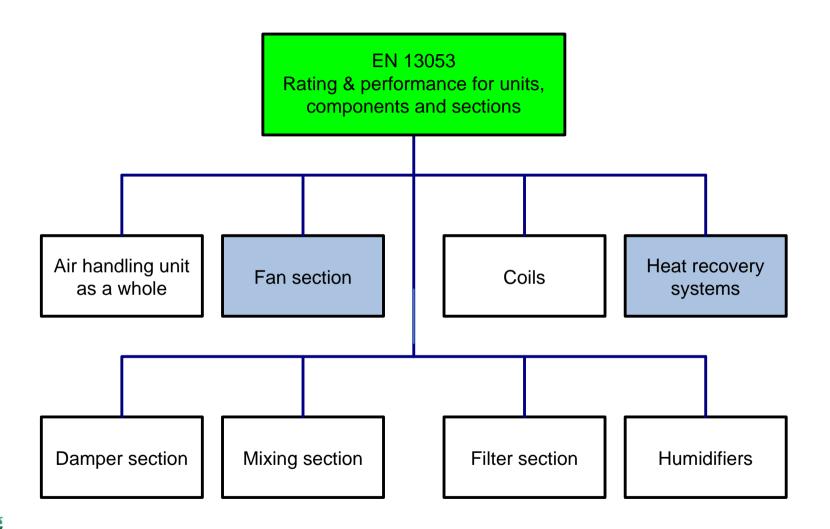
Design and construction requirements; not relevant for Eurovent Certification

8. Mechanical safety

Design and construction requirements; not relevant for Eurovent Certification

Ventilation for buildings – Air handling units –

Rating and performance for units, components and


sections

August 2006

Revision prEN 13053rev – 2009®

Standard is a part of a series of standards for air handling units used for ventilation and air conditioning of buildings.

Scope

Test methods and requirements for ratings and performance of AHUs as a whole. Requirements, recommendations, classification and testing of specific components and sections of AHUs.

Applicable to standardised designs in a range of sizes and to custom-designed units.

Not applicable for:

- units serving a limited area in the building (fan coil units)
- units for residential buildings
- units producing ventilation air for manufacturing process

Ratings and performance of the entire AHU

1. Testing of aerodynamic performance Air volume flow rate versus external total pressure

- $P_{total} = P_{total-outlet} P_{total-inlet}$
- average filter pressure drop is simulated by increasing the external total pressure with a value (design initial)
- if final filter pressure drop is design pressure drop the correction value on external pressure shall be (final initial)
- testing is performed with dry cooling coils
- air volume flow rate measured in accordance with ISO 5801
- testing of a unit with heat recovery shall be performed taking the leakage into consideration
- characteristics shall be converted to standard air density 1,2 kg/m³

Ratings and performance of the entire AHU

1. Testing of aerodynamic performance

Air volume flow rate versus absorbed motor power

- if fan speed control (e.g. frequency inverter) is required, the absorbed power shall include the losses in the speed control device
- characteristics shall be converted to standard air density 1,2 kg/m³
- multiple measurements shall be presented for a stated nominal fan speed, but without corrections for inherent speed deviations caused by variable motor loads

Ratings and performance of the entire AHU

2. Testing of acoustic performance

<u>Duct borne noise tests</u> (sound levels in inlet and outlet duct)

- measurement in accordance with one of the EN ISO standards
- reverberation room (3741), free field (3744), in-duct (25136)
- measurements at specified duty point
- results shall not be affected by noise generation in throttling device (artificial external pressure)
- apply duct end correction where applicable (3741 & 3744)

Ratings and performance of the entire AHU

2. Testing of acoustic performance

Casing radiated noise tests (emitted sound levels through casing)

- measurement in accordance with one of the EN ISO standards
- reverberation room (3741), free field (3744 or 3746)
- measurements at specified duty point
- results shall not be affected by duct break out noise
- results shall not be affected by noise generation in throttling device (artificial external pressure)

Ratings and performance of the entire AHU

3. Tolerances and deviations

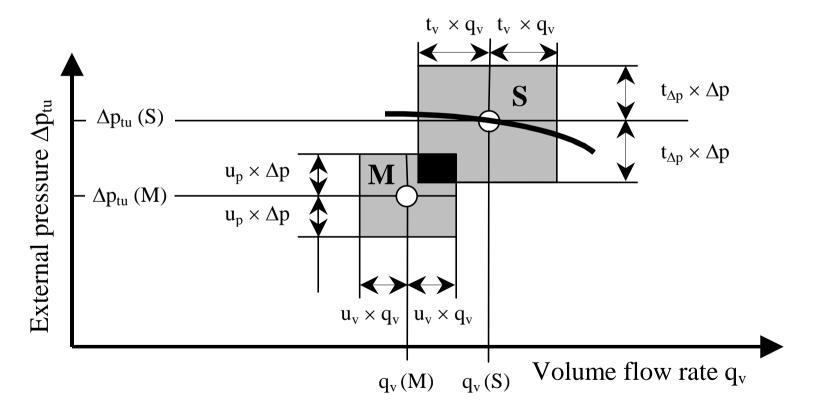
Aerodynamic and acoustic performances

- tolerance range of duty point (t)
- uncertainty range of measured data (u)
- admissible deviation (Δ)
- measured value e.g. (Vm)
- specified (design) value (V_s)

Allowable: $\triangle V \le t \times V_s + u \times V_m$

Ratings and performance of the entire AHU

3. Admissible tolerances


Characteristic	Tolerance [t]	Comments
Air volume flow [m3/s]	± 5%	Measuring uncertainty not included
External total pressure [Pa]	± 5%	Measuring uncertainty not included
Absorbed motor power [kW]	+ 8% *	Measuring uncertainty not included
Total sound power levels in duct and radiated casing [dB(A)]	4 dB	Measuring uncertainty not included

Simultaneous tolerance of 5% on air flow rate and external pressure is allowed. For absorbed motor power 8% tolerance at rated performance is permitted*

Ratings and performance of the entire AHU

3. Admissible tolerances

Requirements & performance rating for components

1. Casing air handling unit

Design, construction and maintenance requirements; not relevant for Eurovent Certification

2. Fan section

Design, construction and maintenance requirements; not relevant for Eurovent Certification.

Fan selection shall be based on <u>average</u> of initial and final <u>filter</u> <u>pressure drop</u> unless otherwise agreed (e.g. final pressure drop). For cooling <u>coil pressure drop</u>, the dry value shall be used unless specified otherwise.

Requirements & performance rating for components

2. Fan section: classes of average velocity® Velocities based on internal filter -or fan cross section!

Class	Air velocity [m/s]
V1	≤ 1,6
V2	$1.6 < v \le 1.8$
V3	$1.8 < v \le 2.0$
V4	$2,0 < v \le 2,2$
V5	$2,2 < v \le 2,5$
V6	$2,5 < v \le 2,8$
V7	$2.8 < v \le 3.2$
V8	$3,2 < v \le 3,6$
V9	v > 3,6
Proportional steps	ISO 3: R20 series

Requirements & performance rating for components

2. Fan section: absorbed motor power®

Reference value for absorbed motor power fan + drive

$$Pm_{ref} = \left(\frac{\Delta p_{stat}}{450}\right)^{0.925} \times (q_v + 0.08)^{0.95}$$

```
\begin{array}{ll} Pm_{ref} & = reference \ value \ absorbed \ power & [kW] \\ \triangle p_{stat} & = available \ static \ pressure \ (p_{internal} + p_{external}) \ [Pa] \\ q_v & = air \ flow \ rate \ of \ the \ fan & [m^3/s] \end{array}
```


Requirements & performance rating for components

2. Fan section: classification of power consumption fan®

Class	P _m max [kW]
P1	\leq Pm _{ref} x 0,85
P2	$\leq Pm_{ref} \times 0.90$
Р3	\leq Pm _{ref} x 0,95
P4	\leq Pm _{ref} x 1,00
P5	\leq Pm _{ref} x 1,06
P6	$\leq Pm_{ref} \times 1,12$
P7	$> Pm_{ref} \times 1,12$
Proportional steps	ISO 3: R40 series

Requirements & performance rating for components

3. Heating and cooling coils

Design, construction and maintenance requirements; not relevant for Eurovent Certification.

Coils shall be rated in accordance with EN 1216 (maximum 5% deviation between measured performance on air- and waterside). Hygienic requirements adapted from VDI 6022/3803; however not relevant for Eurovent Certification.

Requirements & performance rating for components

4. Heat recovery sections

Categories as defined in EN 308.

Performances always based on balanced mass flows (mass

flow ratio 1:1) and no condensation in exhaust air

• Category I : Recuperators

• Category II : With intermediate heat transfer medium

IIa – without phase change

IIb – with phase change

• Category III : Regenerators (accumulating mass)

nowadays 3 sub categories (Eurovent certification)

Requirements & performance rating for components

4. Heat recovery sections

Fundamental table for energy efficiency of heat recovery ®

Class	η_t	Δp _{HRS} [Pa]	3	$\eta_{ m e}$
H1	0,75	2 x 280	19,5	0,71
H2	0,67	2 x 230	21,2	0,64
Н3	0,57	2 x 170	24,2	0,55
H4	0,47	2 x 125	27,3	0,45
H5	0,37	2 x 100	26,9	0,36

Requirements & performance rating for components

4. Heat recovery sections

Defined characteristic values in the revised standard ®

• Temperature efficiency

$$: \eta_t = \frac{t_{SUP} - t_{ODA}}{t_{ETA} - t_{ODA}}$$

Pressure drop HRS

$$\Delta p_{HRS} = \Delta p_{supply} + \Delta p_{exhaust}$$

• Electric power consumption

$$P_{\rm el} = \frac{q_{\rm v} \times \Delta p_{\rm HRS}}{\eta_{\rm el}} + P_{\rm extra}$$

Standard value for $\eta_{el} = 0.6$. $\triangle p_{HRS} = according to table.$

Requirements & performance rating for components

- 4. Heat recovery sections

 Defined characteristic values in the revised standard

 R
- Performance HRS : $Q_{HRS} = q_v \times \rho \times c_p \times \eta_t (t_{ETA} t_{ODA})$ standard value for t_{ETA} and t_{ODA} according EN 308 (25°C and 5°C)
- Coefficient of performance : $\varepsilon = \frac{Q_{HRS}}{P_{el}}$
- Energy efficiency : $\eta_e = \eta_t \times \left(1 \frac{1}{\epsilon}\right)$

Requirements & performance rating for components

4. Heat recovery sections

<u>Classes of heat recovery obtained with defined characteristics</u>

®

Class	η e [min %]
H1	≥ 71
H2	≥ 64
Н3	≥ 55
H4	≥ 45
H5	≥ 36
Н6	No requirement
Proportional steps in heat exchange surface	

Requirements & performance rating for components

5. Mixing sections

Dampers, mixing efficiency and mixing temperature

- dampers shall be tested according to EN 1751
- mixing efficiency shall be measured with recirculation damper 90%, 50% and 20% open

$$\eta_{\text{mix}} = \left(1 - \frac{t_{\text{max}} - t_{\text{min}}}{t_{\text{H}} - t_{\text{L}}}\right) \times 100\%$$

• mixing temperature can be calculated with

$$t_{M} = \frac{t_{H} \times \rho_{H} \times q_{vH} + t_{L} \times \rho_{L} \times q_{vL}}{\rho_{tot} \times q_{vtot}}$$

Requirements & performance rating for components

5. Mixing sections

Classification mixing temperature efficiency

Class	Mixing efficiency [%]
M1	≥ 95
M2	$85 \leq \eta_{mix} < 95$
M3	$70 \le \eta_{mix} < 85$
M4	$50 \le \eta_{mix} < 70$
M5	< 50

Requirements & performance rating for components

6. Humidifiers

Design, construction and maintenance requirements; not relevant for Eurovent Certification.

Hygienic requirements adapted from VDI 6022/3803; however not relevant for Eurovent Certification.

7. Filter sections

Design, construction and maintenance requirements; not relevant for Eurovent Certification.

Hygienic requirements adapted from VDI 6022/3803; however not relevant for Eurovent Certification.

Requirements & performance rating for components

7. Filter sections <u>Maximum final pressure drop for filters</u>

Filter class	Final pressure drop
G1 – G4	150 Pa
F5 – F7	200 Pa
F8 – F9	300 Pa

European Standards

End of presentation part 1

THANK YOU FOR YOUR ATTENTION

