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(1) Traditional Methods/Rationale for Extreme Value Analysis 

 
 

 

 Fit models/distributions to all data 
 

-- Even if primary focus is on extremes 
 

 

 Statistical theory for averages 
 

-- Ubiquitous role of normal distribution 
 

-- Central Limit Theorem for sums or averages 
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 Central Limit Theorem 
 

-- Given time series  X1, X2, . . ., Xn 

 
 Assume independent and identically distributed (iid) 

Assume common cumulative distribution function (cdf) F 

Assume finite mean μ and variance σ
2
 

 

-- Denote sum by  Sn = X1 + X2 + ∙ ∙ ∙ + Xn 

 
-- Then, no matter what shape of cdf F,  
 

   Pr{(Sn – nμ) / n
1/2 

σ ≤ x} → Φ(x) as n → ∞ 

 

 where Φ denotes standard normal N(0, 1) cdf 
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 Robustness  
 

-- Avoid sensitivity to extremes  

 (outliers / contamination) 
 
 

 Nonparametric Alternatives 
 
-- Kernel density estimation 

 Ok for center of distribution (but not for lower & upper tails) 
 
-- Resampling 

 Fails for maxima 

 Cannot extrapolate 
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 Conduct sampling experiment 

 
-- Exponential distribution with cdf 
   
  F(x) = 1 – exp[−(x/σ)],  x > 0, σ > 0 
 
 Here σ is scale parameter (also mean) 
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-- Draw random samples of size n = 10 from exponential distribution 

(with σ = 1) and calculate mean for each sample 

 
(i)  First pseudo random sample 

 1.678, 0.607, 0.732, 1.806, 1.388, 0.630, 0.382, 0.396, 1.324, 1.148 

  (Sample mean ≈ 1.009) 
  

(ii) Second pseudo random sample 

  Sample mean ≈ 0.571 

 
(iii) Third pseudo random sample  

 Sample mean ≈ 0.859 

 
Repeat many more times 
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 Limited information about extremes 
 

-- Exploit what theory is available 
 

 

 More robust/flexible approach 
 

-- Tail behavior of standard distributions is too restrictive 
 
 Statistical theory indicates possibility of “heavy” tails 

 Data suggest evidence of “heavy” tails 

 Conventional distributions have “light” tails 
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-- Example 
 
Let X have standard normal distribution [i. e., N(0, 1)] with 

probability density function (pdf) 

 
  φ(x) = (2π)

−1/2
 exp(−x

2
 / 2) 

 
 Then  Pr{X > x} ≡ 1 − Φ(x) ≈ φ(x) / x,  for large x 
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 Statistical behavior of extremes 
 

-- Effectively no role for normal distribution 
 
-- What form of distribution(s) instead? 
 
 

 Conduct another sampling experiment 
 
-- Calculate largest value of random sample 

 (instead of mean) 

 
 (i) Standard normal distribution N(0, 1) 
 
 (ii) Exponential distribution (σ = 1) 
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(2) Max Stability/Extremal Types Theorem 

 
 
 

 “Sum stability” 
 

-- Property of normal distribution 
 

X1, X2, . . ., Xn  iid with common cdf N(μ, σ
2
) 

 

 Then sum  Sn = X1 + X2 + ∙ ∙ ∙ + Xn   

 
 is exactly normally distributed  

 

 In particular,  (Sn – nμ) / n
1/2 

σ 

  
 has an exact N(0, 1) distribution 
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 “Max stability” 

 
-- Want to find distribution(s) for which maximum has same form as 

original sample 

 
 Note that  
   

  max{X1, X2, . . ., X2n} =  

   

  max{max{X1, X2, . . ., Xn}, max{Xn+1, Xn+2, . . ., X2n}} 

 
-- So cdf G, say, must satisfy 
 

  G
2
(x) = G(ax + b) 

 
 Here a > 0 and b are constants 
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 Extremal Types Theorem 
 

Time series X1, X2, . . ., Xn  assumed iid (for now) 

 

Set Mn = max{X1, X2, . . ., Xn}  

 

Suppose that there exist constants an > 0 and bn such that 

 

Pr{(Mn – bn) / an ≤ x} → G(x)  as n → ∞ 

 
where G is a non-degenerate cdf 
 
Then G must a generalized extreme value (GEV) cdf; that is, 
 

G(x; μ, σ, ξ) = exp {−[1 + ξ (x − μ)/σ]
−1/ξ 

}, 1 + ξ (x − μ)/σ > 0 

 

μ location parameter, σ > 0 scale parameter, ξ shape parameter
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(i) ξ = 0  (Gumbel type, limit as ξ → 0) 

 
“Light” upper tail  

 
“Domain of attraction” for many common distributions (e. g., 

normal, exponential, gamma) 
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(ii) ξ > 0  (Fréchet type) 
 
   “Heavy” upper tail with infinite rth-order moment if r ≥ 1/ξ   

  (e. g., infinite variance if ξ ≥ 1/2) 
 
  Fits precipitation, streamflow, economic damage 
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(iii)  ξ < 0  (Weibull type)  
 
 Bounded upper tail  [ x < μ + σ / (−ξ) ] 

 Fits temperature, wind speed, sea level 
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Location parameter of GEV is not equivalent to mean 
 
Scale parameter of GEV is not equivalent to standard deviation 
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(3) Block Maxima Approach under Stationarity

 
  

 GEV distribution 
 

-- Fit directly to maxima (say with block size n) 
 
e. g., annual maximum of daily precipitation amount or highest 

temperature over given year or annual peak stream flow 

 

-- Advantages 
 

Do not necessarily need to explicitly model annual and diurnal 

cycles 

 
 Do not necessarily need to explicitly model temporal dependence 
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 Maximum likelihood estimation (mle) 
 

-- Given observed block maxima X1 = x1, X2 = x2, . . ., XT = xT 

 
-- Assume exact GEV dist. with pdf 

   g(x; μ, σ, ξ) = G'(x; μ, σ, ξ) 

 
-- Likelihood function 

 

L(x1, x2, . . ., xT; μ, σ, ξ) = g(x1; μ, σ, ξ) g(x2; μ, σ, ξ) ∙ ∙ ∙ g(xT; μ, σ, ξ) 

 
Minimize 
 

−ln L(x1, x2, . . ., xT; μ, σ, ξ) 

 
with respect to μ, σ, ξ 
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-- Likelihood ratio test (LRT) 
 
 For example, to test whether ξ = 0 fit two models:  
 

(i) −ln L(x1, x2, . . ., xT; μ, σ, ξ) minimized with respect to μ, σ, ξ 

  

 (ii) −ln L(x1, x2, . . ., xT; μ, σ, ξ = 0) minimized with respect to μ, σ 

 

 If ξ = 0, then 2 [(ii) – (i)] has approximate chi square distribution 

with 1 degree of freedom (df) for large T 

 
-- Confidence interval (e. g., for ξ) based on “profile likelihood” 
 

Minimize −ln L(x1, x2, . . ., xT; μ, σ, ξ) with respect to μ, σ as 

function of ξ 

 
Use chi square dist. with 1 df 
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 Fort Collins daily precipitation amount 
 
-- Fort Collins, CO, USA 
  
 Time series of daily precipitation amount (in), 1900-1999 
 
 Semi-arid region 
 

Marked annual cycle in precipitation 

(peak in late spring/early summer, driest in winter) 

 
Consider annual maxima (block size n ≈ 365)  
 
No obvious long-term trend in annual maxima (T = 100) 
 

 Flood on 28 July 1997 

 (Damaged campus of Colorado State Univ.) 
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 Parameter estimates and standard errors  
 

Parameter   Estimate  (Std. Error) 
 

Location μ    1.347   (0.062) 
 

Scale σ    0.533   (0.049) 
 

Shape ξ   0.174   (0.092) 
 
 
-- LRT for ξ = 0  (P-value ≈ 0.038) 
 
-- 95% confidence interval for shape parameter ξ 

 (based on profile likelihood) 
 

0.009 < ξ < 0.369 
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(4) Return Levels 

 
 
 

 Assume stationarity 
 
-- i. e., unchanging climate 
 
 

 Return period / Return level 
 
-- “Return level” with (1/p)-yr “return period” 

 

x(p) = G
 −1

(1 – p; μ, σ, ξ),  0 < p < 1 

 

Quantile of GEV cdf G 

(e. g., p = 0.01 corresponds to 100-yr return period) 



 31 
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 GEV distribution 
 

  x(p) = μ − (σ/ξ) {1 − [−ln(1 − p)]}
−ξ

 

 
 Confidence interval:  Re-parameterize replacing location 

parameter μ with x(p) & use profile likelihood method 

 

-- Fort Collins precipitation example (annual maxima) 
 
 Estimated 100-yr return level: 5.10 in 
 

95% confidence interval (based on profile likelihood): 
   

3.93 in < x(0.01) < 8.00 in 
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(5) Block Maxima Approach under Nonstationarity 

 
 

 Sources 
 

-- Trends 
 
 Associated with global climate change (e. g.) 

 
-- Cycles 
 
 Annual & diurnal cycles (e. g.) 

 
-- Physically-based 
 
 Use in statistical downscaling (e. g.) 
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 Theory 
 
-- No general extreme value theory under nonstationarity 

 Only limited results under restrictive conditions 

 

 Methods 
 

-- Introduction of covariates resembles “generalized linear models” 
 
-- Straightforward to extend maximum likelihood estimation 
 

 Issues 
 

-- Nature of relationship between extremes & covariates 

Resembles that for overall / center of data? 
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(6) Trends in Extremes 

 
  

 

 Trends 
 

-- Example (Urban heat island) 
 
Trend in summer minimum temperature at Phoenix, AZ (i. e., 

block minima) 

 

min{X1, X2, . . ., Xn} = −max{−X1, −X2, . . ., −Xn} 

 
Assume negated summer minimum temperature in year t has GEV 

distribution with location and scale parameters: 

 

μ(t) = μ0 + μ1 t,  ln σ(t) = σ0 + σ1 t,  ξ(t) = ξ,  t = 1, 2, . . . 
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 Parameter estimates and standard errors 
 

Parameter   Estimate  (Std. Error)  

Location: μ0   66.17*   

    μ1     0.196*   (0.041)    

Scale:  σ0      1.338 

    σ1   −0.009   (0.010)  

Shape:  ξ   −0.211 
 

 *Sign of location parameters reversed to convert back to minima 

-- LRT for μ1 = 0  (P-value < 10
−5

) 

-- LRT for σ1 = 0  (P-value ≈ 0.366) 
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 Q-Q plots under non-stationarity 
 
-- Transform to common distribution 
 
 Non-stationary GEV [μ(t), σ(t), ξ(t)] 
 
 Not invariant to choice of transformation 
 
 (i) Non-stationary GEV to standard exponential 
 
 

εt = {1 + ξ(t) [Xt − μ(t)] / σ(t)}
−1/ξ(t)

 

 
 
 (ii) Non-stationary GEV to standard Gumbel (used by extRemes) 
 
 

εt = [1/ξ(t)] log {1 + ξ(t) [Xt − μ(t)] / σ(t)} 
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(7) Other Forms of Covariates 

 
 
 

 Physically-based covariates 
 

-- Example  [Arctic Oscillation (AO)] 
 

 Winter maximum temperature at Port Jervis, NY, USA 

 (i. e., block maxima) 

 
 Z denotes winter index of AO 

 
Given Z = z, assume conditional distribution of winter maximum 

temperature is GEV distribution with parameters: 

 

μ(z) = μ0 + μ1 z, ln σ(z) = σ0 + σ1 z,  ξ(z) = ξ 
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 Parameter estimates and standard errors 
 

Parameter   Estimate  (Std. Error)  
 

Location: μ0   15.26   

    μ1     1.175   (0.319)    

 

Scale:  σ0      0.984 

    σ1   −0.044   (0.092)  

 
Shape:  ξ   −0.186 

 
 

-- LRT for μ1 = 0  (P-value < 0.001) 

 

-- LRT for σ1 = 0  (P-value ≈ 0.635) 
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Homework 

 
 
A random variable X has a lognormal distribution if the log-

transformed variable 

 
   Y = ln X 
 

has a normal distribution. Then Y is in the domain of attraction of 

the Gumbel type. 

 
What is the domain of attraction of X? 

(i. e., Gumbel, Fréchet, or Weibull type?) 

 

Answer:  X is in the domain of attraction of the Gumbel type. 


