

# EVALUATING A LATERAL MOVE IRRIGATION SYSTEM

Compiled and edited by Peter Smith, Industry & Investment NSW

Title: Evaluating a lateral move irrigation system

© State of New South Wales through Department of Industry and Investment (Industry & Investment NSW) 2010

You must obtain permission from Industry & Investment NSW to copy, distribute, display or store in electronic form any part of this publication, except as permitted under the Copyright Act 1968 (Commonwealth).

Produced by Industry & Investment NSW

First Published February 2010

Acknowledgements

#### Disclaimer

The information contained in this publication is based on knowledge and understanding at the time of writing (January 2010). However, because of advances in knowledge, users are reminded of the need to ensure that information on which they rely is up to date and to check the currency of the information with the appropriate officer of Industry & Investment NSW or the user's independent advisor.

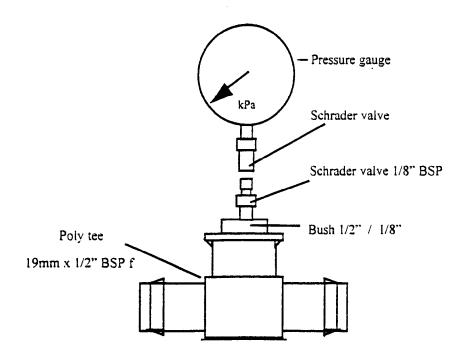
# Contents

| Equipment needed                                   | 2  |
|----------------------------------------------------|----|
| Evaluation method                                  | 3  |
| Lateral move data sheet                            | 5  |
| Checking system capacity                           | 7  |
| Converting mL to mm of irrigation                  | 10 |
| Calculating the average application depth and rate | 14 |
| Calculating distribution uniformity (DU)           | 15 |
| Calculating coefficient of uniformity (CU)         | 16 |
| Calculating flow variation                         | 20 |
| Pressure measurements                              | 21 |
| Calculating sprinkler pressure variation           | 22 |

## **Equipment needed**

#### To measure sprinkler coverage:

- Catchcans
- Weights to prevent catchcans blowing away
- A shovel to smooth catchcan area, and where necessary for partially burying the cans
- > A measuring cylinder or jug with graduations in millilitres
- > A 30-metre measuring tape; and possibly a short rule
- > Pegs or markers
- A calculator, a pen and evaluation sheets (you may need extra copies of the data sheets)
- > Manufacturer's sprinkler performance charts


#### To measure flow:

- > A container of known volume eg. 10 L bucket
- Stop watch

#### To measure pressure:

- An accurate pressure gauge with an appropriate scale so it works mid-range at your normal pressures (say 0 to 400 kPa) to 1000 kPa
- Tees and fittings to install above pressure regulators (eg. Figure 1), sufficient for several emitters

#### Figure 1: Fittings and Schrader Valve



## **Evaluation method**

To assess the performance of lateral or linear move irrigation system, it is necessary to measure the pressure at various points in the system, its operating speed and the output of the emitters using catchcans. To do this, work though the following procedure.

- 1. Record wind speed and direction (see Table 1). Field tests are ideally done in zero wind conditions and should not be done if the wind is stronger than a light breeze.
- 2. Fill out the first sections of the centre pivot data sheet with details about the crop, soils and the centre pivot. Measure the length of each span.

#### Water output measurement

- 3. Choose a suitable location for the test so that catchcans may be placed across the pathway of the boom or linear move. If possible, the location should be flat and level, and far enough ahead of the boom so that no water enters the catchcans before they are all set up.
- 4. Ideally, two rows of catch cans, with rows no more than 50m apart, should be used to check variation along the direction of travel.
  - Set out the catchcans no more than 5 metres apart. (For greater accuracy, use International Standard ISO 11545 maximum of 3m apart.)
- 5. Ensure that the cans are in a straight line parallel to the boom and that none will be displaced as the irrigator moves past.
  - Add at least two extra containers on each side to allow for changes in wind speed or direction.
  - If rain is likely, place another can away from the boom to record rain during the test. Any rain must be deducted from the amount caught in **each** catchcan.
- 6. When the system is operating, measure the length of the wetted width from the front to the rear of the boom. Placing a peg (or marker) at the limits of throw, then measuring the distance between the pegs after the machine has passed is the simplest way.
- 7. When the irrigator has completely passed over all of the catchcans, measure and record the volumes in **each** container. Each volume MUST be written in the correct space on the field record sheet. If there is no catch can or no reading at a position, leave it blank.
- 8. Spreadsheet calculators for converting catch can volume to depth, calculating average application, uniformity, etc. may be available from your irrigation advisor or agency.

#### Measuring pressure and flow

- 9. Record the make, model and nozzle size or colour of the emitters.
- 10.Attach tees and fittings (Figure 1) above the pressure regulator and emitter at selected emitters for measuring the pressure. Ideally you would select a known emitter from each span, for example the 3<sup>rd</sup> last emitter of each span. As a minimum you could select, at least one on the first span, one on the last span and one in between.
- 11. When the system is operating, record the pressure of the selected emitters using the pressure gauge. If a gauge is fitted, take a reading at the cart too.
- 12. When the system is operating, measure the flow rate by holding the large container of known volume under one emitter and timing how long it takes to fill. Record measurements from at least one emitter per span and note the span and emitter position numbers. If a flow meter is fitted, take a reading at the cart too.

#### Speed measurement

13. Measure the speed:

- Place a marker or peg next to one wheel and then, say, 20 minutes later, place another next to the same wheel. (A longer time will give a more accurate result.)
- 14. Record the distance covered and time.
- 15. Record the control panel settings/readings.
- 16. Measure and record the tyre sizes and pressures.

# Example data is provided to show methods of calculations. A blank data sheet is also provided.

## Table 1: Wind Speed

| Wind<br>description  | Speed<br>(knots)                                                                                                                                                                                                                                                |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calm.                | 00                                                                                                                                                                                                                                                              |
| Light air.           | 02                                                                                                                                                                                                                                                              |
| Light breeze.        | 05                                                                                                                                                                                                                                                              |
| Gentle breeze.       | 09                                                                                                                                                                                                                                                              |
| Moderate<br>breeze.  | 13                                                                                                                                                                                                                                                              |
| Fresh breeze.        | 18                                                                                                                                                                                                                                                              |
| Strong breeze.       | 24                                                                                                                                                                                                                                                              |
| Moderate gale.       | 30                                                                                                                                                                                                                                                              |
| Fresh gale.          | 37                                                                                                                                                                                                                                                              |
| Strong gale.         | 44                                                                                                                                                                                                                                                              |
| Whole gale.          | 52                                                                                                                                                                                                                                                              |
| Storm.<br>Hurricane. | 60<br>68                                                                                                                                                                                                                                                        |
|                      | description         Calm.         Light air.         Light breeze.         Gentle breeze.         Gentle breeze.         Fresh breeze.         Fresh breeze.         Strong breeze.         Fresh gale.         Strong gale.         Whole gale.         Storm. |

Source: Bureau of Meteorology

# Lateral Move Data Sheet – Example

| Property name: Flatland                                       | Date of field test: 3 <sup>rd</sup> March 2008   |
|---------------------------------------------------------------|--------------------------------------------------|
| Location/block                                                | Paddock 5 blocks 4,5,6                           |
| Сгор                                                          | Lucerne                                          |
| Soil texture of Block                                         | Self-mulching clay                               |
| Effective root depth                                          | <i>1,000</i> mm                                  |
| Rootzone RAW                                                  | 83 mm                                            |
| Max. infiltration rate                                        | 50 mm/h                                          |
| Designed Flow Rate                                            | 4500 USGPM 284 L/s                               |
| Designed pressure                                             | 30 psi 206 kPa                                   |
| Emitter make                                                  | Nelson                                           |
| Emitter model                                                 | D3000B                                           |
| Nozzle type/size                                              | #31 6.15 mm                                      |
| Pressure regulated?                                           | Yes – 10 psi                                     |
| Emitter spacing                                               | 3.3 ft 1.0 metres                                |
| Length of spans                                               | 161 ft 49.1 metres                               |
| No. of spans                                                  | 18                                               |
| Number of emitters per span                                   | 48                                               |
| Length of overhang                                            | cart side: 16.7 m other side: 8.4 m              |
| No. emitters on overhang                                      | 11                                               |
| Total length                                                  | 2910 ft 887 metres                               |
| End gun(s) present?                                           | YES NO                                           |
| End gun radius                                                | n/a                                              |
| Emitter wetted width                                          | 11.4 metres                                      |
| Irrigation run length                                         | 2,900 metres                                     |
| Irrigable area                                                | 887m x 2900m = 2,572,300 m <sup>2</sup> = 257 ha |
| Speed setting and depth applied – taken<br>from control panel | 25% (15.2mm application)                         |
| Time to travel test distance                                  | 9 minutes 10 seconds                             |
| Distance travelled                                            | 10 metres                                        |
| Catchcan diameter                                             | <i>113</i> mm                                    |
| Catchcan spacing                                              | 3.0 Metres                                       |
| Wind speed and direction                                      | Light Breeze from North west                     |

# Lateral Move Data Sheet

| Property name:                                                | Date of field test: |             |  |
|---------------------------------------------------------------|---------------------|-------------|--|
| Location/block                                                |                     |             |  |
| Сгор                                                          |                     |             |  |
| Soil texture of Block                                         |                     |             |  |
| Effective root depth                                          | mm                  | ו           |  |
| Rootzone RAW                                                  | mm                  | ו           |  |
| Max. infiltration rate                                        | mm                  | ו/h         |  |
| Designed Flow Rate                                            | USGPM               | L/s         |  |
| Designed pressure                                             | psi                 | kPa         |  |
| Emitter make                                                  |                     |             |  |
| Emitter model                                                 |                     |             |  |
| Nozzle type/size                                              |                     | mm          |  |
| Pressure regulated?                                           |                     |             |  |
| Emitter spacing                                               | Ft                  | metres      |  |
| Length of spans                                               | ft                  | metres      |  |
| No. of spans                                                  |                     |             |  |
| Number of emitters per span                                   |                     |             |  |
| Length of overhang                                            | cart side:          | other side: |  |
| No. emitters on overhang                                      |                     |             |  |
| Total length                                                  | ft                  | metres      |  |
| End gun(s) present?                                           | YES                 | NO          |  |
| End gun radius                                                |                     |             |  |
| Emitter wetted width                                          | m                   | etres       |  |
| Irrigation run length                                         | m                   | etres       |  |
| Irrigable area                                                |                     |             |  |
| Speed setting and depth applied – taken<br>from control panel |                     |             |  |
| Time to travel test distance                                  | minutes             | seconds     |  |
| Distance travelled                                            | m                   | etres       |  |
| Catchcan diameter                                             | m                   | m           |  |
| Catchcan spacing                                              | m                   | etres       |  |
| Wind speed and direction                                      |                     |             |  |

# Checking System Capacity – example

| Daily pump flow rate | = 284 L/s                                 |  |  |  |  |
|----------------------|-------------------------------------------|--|--|--|--|
|                      | = 284 x 3600 secs x 24 hrs L/day          |  |  |  |  |
|                      | = 24,537,600 L/day                        |  |  |  |  |
|                      | = 24.54 ML/day                            |  |  |  |  |
| System Capacity      | $= 24,537,600 \div 2,572,300 \text{ m}^2$ |  |  |  |  |
|                      | = 9.5 mm/day                              |  |  |  |  |

| Max daily crop water use = Max daily Point Potential ET x Crop Coefficient (Kc) |   |      |    |       |      |
|---------------------------------------------------------------------------------|---|------|----|-------|------|
| Max daily PPET                                                                  |   | 8.0  | mn | n/day |      |
|                                                                                 |   |      |    |       | PPET |
| Peak Kc (lucerne)                                                               | 1 | .15  |    |       | Kc   |
| Max daily crop water use (CWU)                                                  | = | PPET | x  | Kc    |      |
|                                                                                 | = | 8.0  | х  | 1.15  |      |
|                                                                                 | = | 9.2  | m  | m/day | CWU  |

Allowance must be made for:

- Pump Utilisation Ratio (P.U.R) the proportion of the total possible time that pumping is actually occurring. This may be reduced for spraying, cultivating, machine and pump maintenance, dry movement of lateral move, refuelling, etc.
- Application Efficiency (Ea) loss of water between the nozzle and root zone

This is the *Managed* System Capacity, and it should be at least equal to Max. daily CWU.

| Pump Utilisation ratio:                 | 0.80 (80%)                      | PUR |
|-----------------------------------------|---------------------------------|-----|
| Application Efficiency:                 | 0.90 (90%)                      | Ea  |
| Managed System Capacity                 | = System Capacity x P.U.R x Ea  |     |
|                                         | $= 9.5 \times 0.80 \times 0.90$ |     |
|                                         | = 6.8 mm/day                    |     |
| Is Managed System Capacity<br>adequate? | No                              |     |

## Check tyre pressures – example

| Tyre size:                   | 16.9 x 24        |  |
|------------------------------|------------------|--|
| Tyre pressures – recommended | 100 kPa (15 psi) |  |
| Tyre pressures – measured    | 205 kPa (30 psi) |  |

# **Checking System Capacity**

|                                |          | e (L/day) ÷ Field irrig<br>day) x 100 ÷ Field irr |               |          |
|--------------------------------|----------|---------------------------------------------------|---------------|----------|
| Daily pump flow rate           | =        | L/s                                               |               |          |
|                                | =        | x 3600 secs x                                     | 24 hrs L/day  |          |
|                                | =        | L/day                                             |               |          |
|                                | =        | ML/day                                            | /             |          |
| System Capacity                | =        | ÷                                                 | m²            |          |
|                                | =        | mm/day                                            | ,             |          |
| Max daily crop water use = Max | daily Po | pint Potential ET x                               | Crop Coeffici | ent (Kc) |
| Max daily PPET                 |          | mm/d                                              | ay            |          |
|                                |          |                                                   | -             | PPET     |
| Peak Kc                        |          |                                                   |               | Kc       |
| Max daily crop water use (CWU) | =        | PPET X Kc                                         |               |          |
|                                | =        | x                                                 |               |          |
|                                | =        | mm/d                                              | ay            | CWU      |

Allowance must be made for:

- Pump Utilisation Ratio (P.U.R) the proportion of the total possible time that pumping is actually occurring. This may be reduced for spraying, cultivating, machine and pump maintenance, dry movement of lateral move, refuelling, etc.
- Application Efficiency (Ea) loss of water between the nozzle and root zone

This is the *Managed* System Capacity, and it should be at least equal to max. daily CWU.

| Pump Utilisation ratio:                 |          |                 |          | PUR |
|-----------------------------------------|----------|-----------------|----------|-----|
| Application Efficiency:                 |          |                 |          | Ea  |
| Managed System Capacity                 | = System | n Capacity x P. | U.R x Ea |     |
|                                         | =        | x               | x        |     |
|                                         | =        |                 |          |     |
| Is Managed System Capacity<br>adequate? |          |                 |          |     |

## **Check tyre pressures**

| Tyre size:                   |     |     |  |
|------------------------------|-----|-----|--|
| Tyre pressures – recommended | kPa | psi |  |
| Tyre pressures – measured    | kPa | psi |  |

# Catchcan record sheet – example

| Span no. –<br>east side | Catchcan<br>position | Volume<br>collected (mL) | Divide volume<br>by conversion<br>factor (Table<br>2) | Depth (mm)   |
|-------------------------|----------------------|--------------------------|-------------------------------------------------------|--------------|
| 1                       | 1                    | 0                        | ÷ 10                                                  | 0            |
| 1                       | 2                    | 190                      | ÷ 10                                                  | 19           |
| 1                       | 3                    | 250                      | ÷ 10                                                  | 25           |
| 1                       | 4                    | 210                      | ÷ 10                                                  | 21           |
| 1                       | 5                    | 230                      | ÷ 10                                                  | 23           |
| 1                       | 6                    | 250                      | ÷ 10                                                  | 25           |
| 1                       | 7                    | 300                      | ÷ 10                                                  | 30           |
| 1                       | 8                    | 300                      | ÷ 10                                                  | 30           |
| 1                       | 9                    | 310                      | ÷ 10                                                  | 31           |
| 1                       | 10                   | 380                      | ÷ 10                                                  | 38           |
| 1                       | 11                   | 400                      | ÷ 10                                                  | 40           |
| 1                       | 12                   | 380                      | ÷ 10                                                  | 38           |
| 1                       | 13                   | 200                      | ÷ 10                                                  | 20           |
| 1                       | 14                   | 250                      | ÷ 10                                                  | 25           |
| 1                       | 15                   | 300                      | ÷ 10                                                  | 30           |
| 1                       | 16                   | 380                      | ÷ 10                                                  | 38           |
| 1                       | 17                   | 280                      | ÷ 10                                                  | 28           |
| 1                       | 18                   | 190                      | ÷ 10                                                  | 19           |
| 1                       | 19                   | 170                      | ÷ 10                                                  | 17           |
| 1                       | 20                   | 200                      | ÷ 10                                                  | 20           |
| 1                       | 21                   | 250                      | ÷ 10                                                  | 25           |
| 1                       | 22                   | 280                      | ÷ 10                                                  | 28           |
| 1                       | 23                   | 250                      | ÷ 10                                                  | 25           |
| 1                       | 24                   | 250                      | ÷ 10                                                  | 25           |
| 1                       | 25                   | 180                      | ÷ 10                                                  | 18           |
| 1                       | 26                   | 220                      | ÷ 10                                                  | 22           |
| 1                       | 27                   | 200 ÷ 10                 |                                                       | 20           |
| 1                       | 28                   | 0 ÷ 10                   |                                                       | 0            |
| 1                       | 29                   | - ÷ 10                   |                                                       | -            |
| 1                       | 30                   | -                        | ÷ 10                                                  | -            |
|                         | TOTAL                | 6800                     | ÷ 10                                                  | 680 <b>A</b> |
| Number of cans          | with water           |                          |                                                       | 26 <b>C</b>  |

## Converting mL to mm of irrigation

To convert volume into depth (millimetres) a conversion factor is needed – listed in Table 2. Select a conversion factor by measuring the diameter of the mouth of the catchcan

For instance, if the diameter of the catchcan is 110 mm then the conversion factor from Table 2 will be 9.5 (circled).

If the cans collected 674 mL, then the conversion is the volume divided by the conversion factor;

674 mL ÷ 9.5 = 71 mm

Therefore the depth of water applied during the example test was 71 mm.

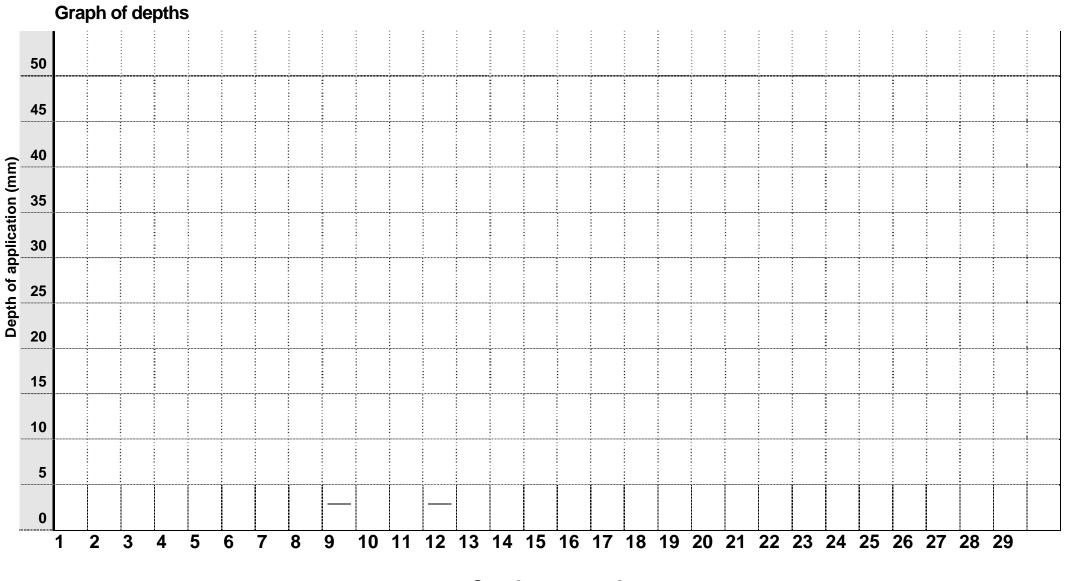
For catch-cans of 110 to 115 mm diameter across the top, dividing the collected amount by 10 to get mm of irrigation is likely to be accurate enough. For instance if you collected 674 mL, this approximates closely to a depth of 67.4 mm.

| Table                     | 2                                        |
|---------------------------|------------------------------------------|
| Diameter of catchcan (mm) | Figure to divide the collected amount by |
| 75                        | 4.4                                      |
| 80                        | 5.0                                      |
| 90                        | 6.4                                      |
| 100                       | 7.9                                      |
| 102                       | 8.2                                      |
| 104                       | 8.5                                      |
| 106                       | 8.8                                      |
| 108                       | 9.2                                      |
| 110                       | 9.5                                      |
| 112                       | 9.9                                      |
| 113                       | 10.0                                     |
| 114                       | 10.2                                     |
| 115                       | 10.4                                     |
| 120                       | 11.3                                     |
| 125                       | 12.25                                    |
| 145                       | 16.5                                     |
| 165                       | 21.3                                     |
| 200                       | 31.4                                     |
| 220                       | 38.0                                     |

If using 4 litre square plastic 'ice cream' containers, 1 litre collected in one of these is equivalent to 25 mm of irrigation.

On a calculator, use

"volume collected mL"  $\div$  40 = ..... mr


mm

# **Catchcan record sheet**

| Span no.     | Catchcan<br>position | Volume<br>collected<br>(mL) | Divide volume by<br>conversion factor<br>(Table 2) | Depth<br>(mm) |
|--------------|----------------------|-----------------------------|----------------------------------------------------|---------------|
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              |                      |                             |                                                    |               |
|              | TOTAL                |                             | ÷                                                  | Α             |
| Number of ca | ans with water       |                             | · ·                                                |               |

# Example of a spreadsheet calculator for converting catch can volume to depth

|        |           | Row    | 1     | Rov    | v 2   |
|--------|-----------|--------|-------|--------|-------|
|        | Catab Can | Volume | Depth | Volume | Depth |
|        | Catch Can | (mL)   | (mm)  | (mL)   | (mm)  |
| Span 1 | 1         | 125    | 13.15 | 155    | 16.31 |
|        | 2         | 170    | 17.89 | 250    | 26.31 |
|        | 3         | 170    | 17.89 | 210    | 22.10 |
|        | 4         | 175    | 18.41 | 245    | 25.78 |
|        | 5         | 225    | 23.68 | 150    | 15.78 |
|        | 6         | 205    | 21.57 | 170    | 17.89 |
|        | 7         | 235    | 24.73 | 160    | 16.84 |
|        | 8         | 200    | 21.05 | 250    | 26.31 |
|        | 9         | 210    | 22.10 | 190    | 19.99 |
|        | 10        | 210    | 22.10 | х      | х     |
|        | 11        | Х      | Х     | 230    | 24.20 |
|        | 12        | Х      | Х     | 290    | 30.52 |
|        | 13        | 165    | 17.36 | 200    | 21.05 |
|        | 14        | Х      | Х     | 230    | 24.20 |
|        | 15        | Х      | Х     | 160    | 16.84 |
|        | 16        | Х      | Х     | Х      | Х     |
| Span 2 | 17        | Х      | Х     | Х      | Х     |
| -      | 18        | Х      | Х     | 240    | 25.25 |
|        | 19        | Х      | Х     | Х      | Х     |
|        | 20        | Х      | Х     | Х      | Х     |
|        | 21        | 132    | 13.89 | Х      | Х     |
|        | 22        | Х      | Х     | Х      | Х     |
|        | 23        | Х      | Х     | 192    | 20.20 |
|        | 24        | Х      | Х     | 180    | 18.94 |
|        | 25        | Х      | Х     | 200    | 21.05 |
|        | 26        | 110    | 11.57 | Х      | Х     |
|        | 27        | Х      | Х     | 170    | 17.89 |
|        | 28        | 183    | 19.26 | 207    | 21.78 |
|        | 29        | 200    | 21.05 | 156    | 16.42 |
|        | 30        | 160    | 16.84 | 156    | 16.42 |
|        | 31        | 195    | 20.52 | 126    | 13.26 |
|        | 32        | 137    | 14.42 | 192    | 20.20 |
| Span 3 | 33        | 91     | 9.58  | 84     | 8.84  |
| -      | 34        | 197    | 20.73 | 190    | 19.99 |
|        | 35        | 202    | 21.26 | 167    | 17.57 |
|        | 36        | 166    | 17.47 | 200    | 21.05 |
|        | 37        | 147    | 15.47 | 144    | 15.15 |
|        | 38        | 197    | 20.73 | 220    | 23.15 |
|        | 39        | 112    | 11.79 | 168    | 17.68 |
|        | 40        | 150    | 15.78 | 200    | 21.05 |
|        | 41        | 131    | 13.78 | 180    | 18.94 |
|        | 42        | 185    | 19.47 | 208    | 21.89 |
|        | 43        | 140    | 14.73 | X      | X     |
|        | 44        | 178    | 18.73 | 256    | 26.94 |
|        | 45        | 156    | 16.42 | 232    | 24.41 |
|        | 46        | 172    | 18.10 | 234    | 24.62 |
|        | 47        | 190    | 19.99 | 268    | 28.20 |
|        | 48        | 87     | 9.15  | 218    | 22.94 |
|        | -         |        |       |        |       |



# Catchcan number

| catchcans Depth<br>with water                                                                            | otal application ÷ Number of<br>depth collected                               |       |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------|
| Average Application Depth<br>(AAD) – example                                                             | = A ÷ CC<br>= 680 ÷ 26<br>= 26.2 mm                                           |       |
| Average Application Depth<br>(AAD)                                                                       | = A ÷ CC<br>= ÷                                                               |       |
| AAD – specified                                                                                          | <pre>= mm At% speed (control panel) setting:</pre>                            | AAD   |
| Difference between measured<br>and specified AAD:<br>Travel speed = distance trave<br>test               | mm inches                                                                     | iring |
| Distance travelled during test                                                                           | metres                                                                        | Е     |
| Irrigator test time                                                                                      | minutes seconds                                                               | F     |
| Travel speed                                                                                             | = E ÷ F<br>= ÷<br>= m/sec<br>= m/min<br>= m/hour                              | S     |
| Difference between measured<br>and specified speed:<br>Average Application Rate (AAR<br>emitter spacing) | ) = emitter flow (L/h) ÷ (wetted wid                                          | th x  |
| Sprinkler wetted width                                                                                   | metres                                                                        | G     |
| Emitter spacing                                                                                          | metres                                                                        | ES    |
| AAR                                                                                                      | $= (EF \times 3600) \div (ES \times G)$<br>= ( x 3600) ÷ ( x )<br>= ( ) ÷ ( ) |       |
|                                                                                                          | = mm/h                                                                        | AAR   |

# Calculating the average application depth and rate

# **Calculating Distribution Uniformity (DU)**

Spreadsheet calculators for DU may be available from agencies, consultants, etc.

Distribution Uniformity compares the average of the lowest quarter of the catch can depths to the average of all the catch can depths.

### **Determining Lowest Quarter catch cans – example:**

| Number of Catchcans with water                                                   | 26 cans                                                  | CC   |
|----------------------------------------------------------------------------------|----------------------------------------------------------|------|
| One quarter of catchcans [LQ cans]                                               | $=$ CC $\div$ 4                                          |      |
| Divide number of catchcans by 4                                                  | = 26 ÷ 4                                                 |      |
|                                                                                  | = 6.5                                                    | LQ   |
|                                                                                  | = 7                                                      | cans |
| On your Catchcan record sheet highlight<br>These are you Lowest Quarter Catchcan | the lowest amounts for the number of LQ cans s (LQ Cans) | 5.   |
| Total depth of the selected LQ cans                                              | = 19 + 20 + 19 + 17 + 20 + 18 + 20                       | 5    |
|                                                                                  | = 133 mm                                                 | В    |

| Number of Catchcans with water                                        | cans                                   | СС         |
|-----------------------------------------------------------------------|----------------------------------------|------------|
| One quarter of catchcans [LQ cans]<br>Divide number of catchcans by 4 | = CC ÷ 4                               |            |
|                                                                       | = ÷ 4                                  | LQ<br>cans |
| Total depth of the selected LQ cans                                   |                                        |            |
|                                                                       | =                                      | в          |
|                                                                       | = mm                                   |            |
| Average depth Lowest Quarter (LQ) can                                 | s = Total depths LQ cans ÷ no. LQ cans | · · ·      |
| Average depth of LQ                                                   | = B ÷ LQ cans                          |            |
|                                                                       | = ÷                                    | С          |
|                                                                       | = mm                                   |            |
| Distribution Uniformity = Average                                     | e depth of LQ cans ÷ AAD               |            |
| DU                                                                    | = C ÷ AAD x 100                        |            |
|                                                                       | = ÷ x 100                              | DU         |
|                                                                       | = %                                    |            |

# Calculating Coefficient of Uniformity (CU)

Spreadsheet calculators for CU may be available from agencies, consultants, etc.

Coefficient of Uniformity is a measure of the deviation of each catch can depth from the average catch can depth.

| Span no. –<br>east side | Catchcan<br>position | Catchcan<br>depth (mm) | Average<br>Application<br>Depth (AAD) | Absolute<br>deviation<br>(mm-AAD)<br>(without + or -) |
|-------------------------|----------------------|------------------------|---------------------------------------|-------------------------------------------------------|
| 1                       | 1                    | 0                      | 26.2                                  | -                                                     |
| 1                       | 2                    | 19                     | 26.2                                  | 7.2                                                   |
| 1                       | 3                    | 25                     | 26.2                                  | 1.2                                                   |
| 1                       | 4                    | 21                     | 26.2                                  | 5.2                                                   |
| 1                       | 5                    | 23                     | 26.2                                  | 3.2                                                   |
| 1                       | 6                    | 25                     | 26.2                                  | 1.2                                                   |
| 1                       | 7                    | 30                     | 26.2                                  | 3.8                                                   |
| 1                       | 8                    | 30                     | 26.2                                  | 3.8                                                   |
| 1                       | 9                    | 31                     | 26.2                                  | 4.8                                                   |
| 1                       | 10                   | 38                     | 26.2                                  | 11.8                                                  |
| 1                       | 11                   | 40                     | 26.2                                  | 13.8                                                  |
| 1                       | 12                   | 38                     | 26.2                                  | 11.8                                                  |
| 1                       | 13                   | 20                     | 26.2                                  | 6.2                                                   |
| 1                       | 14                   | 25                     | 26.2                                  | 1.2                                                   |
| 1                       | 15                   | 30                     | 26.2                                  | 3.8                                                   |
| 2                       | 16                   | 38                     | 26.2                                  | 11.8                                                  |
| 2                       | 17                   | 28                     | 26.2                                  | 1.8                                                   |
| 2                       | 18                   | 19                     | 26.2                                  | 7.2                                                   |
| 2                       | 19                   | 17                     | 26.2                                  | 9.2                                                   |
| 2                       | 20                   | 20                     | 26.2                                  | 6.2                                                   |
| 2                       | 21                   | 25                     | 26.2                                  | 1.2                                                   |
| 2                       | 22                   | 28                     | 26.2                                  | 1.8                                                   |
| 2                       | 23                   | 25                     | 26.2                                  | 1.2                                                   |
| 2                       | 24                   | 25                     | 26.2                                  | 1.2                                                   |
| 2                       | 25                   | 18                     | 26.2                                  | 8.2                                                   |
| 2                       | 26                   | 22                     | 26.2                                  | 4.2                                                   |
| 2                       | 27                   | 20                     | 26.2                                  | 6.2                                                   |
| 2                       | 28                   | 0                      | 26.2                                  | -                                                     |
| 2                       | 29                   | -                      | 26.2                                  | -                                                     |
| 2                       | 30                   | -                      | 26.2                                  | -                                                     |
| Total Absolu            | te Deviation         |                        |                                       | 139.2 <b>V</b>                                        |

#### Calculation of Absolute Deviation – example:

| Span no. –<br>east side | Catchcan<br>position | Catchcan<br>depth (mm) | Average<br>Application<br>Depth (AAD) | Absolute<br>deviation<br>(mm-AAD)<br>(without + or -) |
|-------------------------|----------------------|------------------------|---------------------------------------|-------------------------------------------------------|
|                         | 1                    |                        |                                       |                                                       |
|                         | 2                    |                        |                                       |                                                       |
|                         | 3                    |                        |                                       |                                                       |
|                         | 4                    |                        |                                       |                                                       |
|                         | 5                    |                        |                                       |                                                       |
|                         | 6                    |                        |                                       |                                                       |
|                         | 7                    |                        |                                       |                                                       |
|                         | 8                    |                        |                                       |                                                       |
|                         | 9                    |                        |                                       |                                                       |
|                         | 10                   |                        |                                       |                                                       |
|                         | 11                   |                        |                                       |                                                       |
|                         | 12                   |                        |                                       |                                                       |
|                         | 13                   |                        |                                       |                                                       |
|                         | 14                   |                        |                                       |                                                       |
|                         | 15                   |                        |                                       |                                                       |
|                         | 16                   |                        |                                       |                                                       |
|                         | 17                   |                        |                                       |                                                       |
|                         | 18                   |                        |                                       |                                                       |
|                         | 19                   |                        |                                       |                                                       |
|                         | 20                   |                        |                                       |                                                       |
|                         | 21                   |                        |                                       |                                                       |
|                         | 22                   |                        |                                       |                                                       |
|                         | 23                   |                        |                                       |                                                       |
|                         | 24                   |                        |                                       |                                                       |
|                         | 25                   |                        |                                       |                                                       |
|                         | 26                   |                        |                                       |                                                       |
|                         | 27                   |                        |                                       |                                                       |
|                         | 28                   |                        |                                       |                                                       |
|                         | 29                   |                        |                                       |                                                       |
|                         | 30                   |                        |                                       |                                                       |
| Total Abso              | lute Deviation       |                        | -                                     | V                                                     |

| Mean absolute deviation          | <ul> <li>= Total Absolute Variation ÷ CC</li> <li>= V ÷ CC</li> <li>= 139.2 ÷ 26</li> </ul> |    |
|----------------------------------|---------------------------------------------------------------------------------------------|----|
|                                  | = 5.35                                                                                      | MV |
| Coefficient of Uniformity ~ Mean | Absolute Variation ÷ AAD                                                                    |    |
| CU                               | = 1 - (MV ÷ AAD) x 100                                                                      |    |
|                                  | = 1 - (5.35 ÷ 26.2) x 100                                                                   |    |
|                                  | = 1 - (0.20) x 100                                                                          |    |
|                                  | = 0.80 x 100                                                                                |    |
|                                  | = 80%                                                                                       | CU |

#### Calculating Mean Absolute Deviation and CU – example:

Calculating Mean Absolute Deviation and CU:

| Mean absolute deviation          | = Total Absolute Variation ÷ CC |    |
|----------------------------------|---------------------------------|----|
|                                  | = V ÷ CC                        |    |
|                                  | = ÷                             |    |
|                                  | =                               | ΜV |
| Coefficient of Uniformity ~ Mean | Absolute Variation ÷ AAD        |    |
| CU                               | = 1-( MV ÷ AAD) x 100           |    |
|                                  | = 1 - ( ÷ ) x 100               |    |
|                                  | = 1 - ( ) x 100                 |    |
|                                  | = x 100                         |    |
|                                  | = %                             | CU |

## DU and CU conventional benchmark, no-wind: 90%

If the DU or CU is **below** an acceptable benchmark, then changes to the irrigation system may be required in order to improve it.

**Relationship between DU and water depth variation:** ('Chemigation and Fertigation Basics for California' 2003, CalPoly)

| DU  | Ratio of max depth to min depth |
|-----|---------------------------------|
| 70% | 2.2                             |
| 75% | 1.9                             |
| 80% | 1.7                             |
| 85% | 1.5                             |
| 90% | 1.3                             |
| 95% | 1.1                             |
|     |                                 |

2.2 means the highest watered area receives 2.2 times or 120% more than the lowest

1.1 means the highest watered area receives 1.1 times or 10% more than the lowest

## Flow measurements

Volume of large container: \_\_\_\_\_ Lc

|                     | Nozzle | Time for  | Flow –   | Flow – as | Flow       | Flow        |
|---------------------|--------|-----------|----------|-----------|------------|-------------|
|                     | type   |           | measured | per       | difference | variation   |
|                     | 7 F -  | Lc        | Lc ÷ B   | system    | C – D      | E ÷ D x 100 |
|                     |        | (Seconds) |          | design    | C - D      |             |
|                     |        |           | (L/s)    | (L/s)     |            | (± %)       |
|                     | А      | В         | С        | D         | E          | F           |
| Span:<br>sprinkler: |        |           |          |           |            |             |
| Span:<br>sprinkler: |        |           |          |           |            |             |
| Span:<br>sprinkler: |        |           |          |           |            |             |
| Span:<br>sprinkler: |        |           |          |           |            |             |
| Span:<br>sprinkler: |        |           |          |           |            |             |
| Span:<br>sprinkler: |        |           |          |           |            |             |
| Span:<br>sprinkler: |        |           |          |           |            |             |
| Span:<br>sprinkler: |        |           |          |           |            |             |
| Span:<br>sprinkler: |        |           |          |           |            |             |
| Span:<br>sprinkler: |        |           |          |           |            |             |
| Span:<br>sprinkler: |        |           |          |           |            |             |
| Span:<br>sprinkler: |        |           |          |           |            |             |
| Span:<br>sprinkler: |        |           |          |           |            |             |
| Span:<br>sprinkler: |        |           |          |           |            |             |
| Span:<br>sprinkler: |        |           |          |           |            |             |
| Span:<br>sprinkler: |        |           |          |           |            |             |
| Average flow:       |        |           | EF       |           |            |             |

# Calculating flow variation

| Maximum Flow Rate                              | L/s                     | н |
|------------------------------------------------|-------------------------|---|
| Minimum Flow Rate                              | L/s                     | I |
| Add the maximum and minimum flow               | = MAXIMUM + MINIMUM     |   |
|                                                | = H + I                 |   |
|                                                | = +                     |   |
|                                                | =                       | J |
| Divide the result by two to give the midpoint. | = J ÷ 2                 |   |
| • • • • • • •                                  | = ÷ 2                   |   |
| Midpoint flow is                               | = L/sec                 | к |
| Take the midpoint from the maximum             | = Maximum –<br>midpoint |   |
|                                                | = Н – К                 |   |
|                                                | =                       |   |
|                                                | =                       | L |
| Divide the difference by the midpoint          | = L ÷ K                 |   |
|                                                | = ÷                     |   |
|                                                | =                       | м |
| Multiply by 100 to get a percentage            | = M x 100               |   |
|                                                | = x 100                 |   |
| Flow variation is written as a $\pm \%$        |                         |   |
|                                                | = ± %                   |   |

A variation of more than  $\pm$  5% may be unacceptable.

## **Pressure measurements**

|                                     | Pressure<br>measured<br>above<br>regulator<br>kPa | Pressure<br>specified<br>above<br>regulator<br>kPa | Pressure<br>difference<br>A – B | Pressure<br>Variation<br>C ÷ B x 100<br>(%) |
|-------------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------|---------------------------------------------|
|                                     | (psi)<br>A                                        | (psi)<br>B                                         | С                               | D                                           |
| Specified<br>regulator<br>pressure: |                                                   |                                                    |                                 |                                             |
| Cart:                               |                                                   |                                                    |                                 |                                             |
| Span:<br>sprinkler:                 |                                                   |                                                    |                                 |                                             |
| Average of sprinklers:              |                                                   |                                                    |                                 |                                             |

Note that for pressure regulators to work properly, the pressure above a regulator should be at least 35 kPa (5 psi) higher than the specified regulator pressure.

| Calculating | sprinkler | pressure | variation |
|-------------|-----------|----------|-----------|
|-------------|-----------|----------|-----------|

| Maximum Pressure                       | kPa                             | Ν |
|----------------------------------------|---------------------------------|---|
| Minimum Pressure                       | kPa                             | 0 |
| Add the maximum and minimum pressures. | = maximum + minimum             |   |
|                                        | = N + O                         |   |
|                                        | = +                             |   |
|                                        | = kPa                           | Р |
| Divide the result by two.              | = P ÷ 2                         |   |
|                                        | = ÷ 2                           |   |
| This gives the midpoint pressure       | = kPa                           | Q |
| Take the midpoint from the maximum.    | = maximum – midpoint<br>= N – Q |   |
|                                        | =                               |   |
|                                        | = kPa                           | R |
| Divide the difference by the midpoint. | = R ÷ Q<br>=                    |   |
|                                        |                                 |   |
|                                        | =                               | U |
| Multiply by 100 to get a percentage.   | = U x 100                       |   |
|                                        | = x 100                         |   |
|                                        | =%                              |   |
| Pressure variation is:                 |                                 |   |
|                                        | = ±%                            |   |

A variation of more than  $\pm$  10% is probably unacceptable and suggests poor system design.

# Rough cross check – pump flow rate from catch can test

| No. emitters x average emitter flow rate       |                    |
|------------------------------------------------|--------------------|
|                                                | = sprinklers x L/s |
| Overall flow rate                              | = L/s              |
| Pump flow rate – specified                     |                    |
|                                                | =L/s               |
| How does the specified compare to the overall? |                    |