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EXECUTIVE SUMMARY 
 
This study investigates the impact of dynamic speed display signs (DSDSs) on drivers’ speed-
related behavior. A survey questionnaire regarding attitudes and reactions to a DSDS on different 
road classes was distributed to Maryland drivers of different ages and socioeconomic 
backgrounds. In addition, the research team collected vehicle speed data upstream and 
downstream of the DSDS location on different corridors. The data was collected with a portable 
Trax Flex High Speed Counter, which records vehicles’ length, speed, and number of axels as 
they pass over the device’s tubes on the road. The speed data was collected on three road 
segments with different speed limits: 25 mph, 35, mph, and 45 mph. Conventional statistical 
analysis, Bayesian network, and planned behavior theory were applied to assess the DSDS’s 
effectiveness with reducing speed. To investigate the short-term and long-term effects of the 
DSDS, the research team collected the data in different periods (few days to few months) after 
the installation. Furthermore, the effective distance for the DSDS was investigated. Two 
different sizes of the DSDS were used to find the impact of size on drivers’ compliance. 
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INTRODUCTION 
 
Different studies have described the effect of vehicle speed reduction on accident rates. Finch et 
al. (1994) and O’Cinneide and Murphy (1994) demonstrated that lower speeds and decreased 
speed variance resulted in less traffic accidents.  
 
Variable message signs (VMSs), also called dynamic message signs (DMSs) or changeable 
message signs (CMSs), have been used successfully for informational and advisory purposes. 
The signs show different messages to inform and advise drivers about traffic conditions, road 
works, speed, hazards, and etc. Radar attachment improved the dynamic feature of VMSs, as the 
radar allowed the signs to detect the speed of each passing vehicle (Garber and Patel, 1995). 
Radar-controlled VMSs are referred to as dynamic speed display sign (DSDSs). When a vehicle 
passes a DSDS, the device displays and compares the vehicle’s speed to the road’s speed limit as 
a reminder to the driver. On the other hand, variable speed sign (VSS) refers to a device that 
shows different speed limits at different times or locations (e.g., severe weather conditions or a 
work zone). VSSs are sometimes called variable speed limits (VSLs). The terms VSS, VSL, 
DSDS, and VMS are sometimes used interchangeably, but the devices are not the same. Figures 
1-3 present each. 
 
The few studies about the effectiveness of DSDSs on speed reduction and traffic safety reached 
varying conclusions. In addition, the signs’ effectiveness, in terms of maintaining a speed 
reduction for a period and distance away from the sign has not been fully investigated. The 
Transportation Research Board’s committee on transportation safety management (ANB10) has 
requested that researchers evaluate the effect of DSDSs on speed reduction before further 
implementation of the technology (TRB research needs statements, 2010).   
 
In this research, the authors utilized conventional statistical analysis and a Bayesian network to 
assess DSDS effectiveness with reducing speed. In order to calibrate the model and study the 
effectiveness of the device, the authors used a survey questionnaire to collect data about drivers’ 
attitudes and reactions to the DSDS, and collected upstream and downstream vehicle speed data 
before and after installation of the DSDS on different corridors. The short-term and long-term 
effects of the DSDS were investigated by collecting the data in different periods (few days to few 
months) after the installation.  
 
 
 



3 
 

 
Figure 1: VSS (VSL) Unit 
 
 

 
Figure 2: DSDS Unit 
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Figure 3: VMS Unit 
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LITERATURE REVIEW 
 
As stated earlier, few studies have assessed the effectiveness of DSDSs. While some researchers 
used DSDSs to warn speed violators to reduce their speed via messages such as “EXCESSIVE 
SPEED” and “SLOW DOWN” (Garber and Srinivasan, 1998; McAvoy, 2011), others utilized 
DSDSs as passive informational devices (Rose and Ullman, 2003; Bloch, 1998). In the latter 
case, the DSDS simply showed the speed limit and the speed of the passing vehicle.  
 
DSDSs have been applied mostly in work zones, and several researchers (Garber and Patel, 
1994; McCoy et al., 1995; and McAvoy, 2011) have investigated their effectiveness. DSDSs 
have also been used in school zones, residential areas, sharp horizontal curves, and high-speed 
signalized intersections (Rose and Ullman, 2003; Bloch, 1998; Walter and Broughton, 2011). 
The signs’ effectiveness has been investigated for the short-term (McAvoy, 2011) and the long-
term (Rose and Ullman, 2003; Bloch, 1998). Studies of long-term effects repeated the data 
collection a few months after the DSDS installation.  
 
Some researchers used hand-held lidar guns (Rose and Ullman, 2003), while others used tubes 
and automatic traffic counters (Garber and Patel, 1994) or radar (Bloch, 1998) to collect and 
compare pre- and post-DSDS speed data. The speed data was recorded either for all vehicles or 
for selected vehicles. The collection period was a few hours per day or 24 hours, a few days to a 
few weeks, weekdays only (Warner and Broughton, 2011), or the whole week. Some researchers 
utilized non-real traffic data, such as a driving simulator (McAvoy, 2011) or survey 
questionnaires, to investigate drivers’ compliance with the speed limit (Elliot and Armitage, 
2006).  
 
Many researchers employed conventional statistical models, such as linear regression, F-test, t-
test, and analysis of variance (ANOVA), to analyze post-DSDS speed changes (Rose and 
Ullman, 2003; Garber and Srinivasan, 1998; Bloch, 1998; McAvoy, 2011; Walter and 
Broughton, 2011).  
 
Rose and Ullman (2003) found that a DSDS significantly reduced vehicle speeds in a school 
zone. The pre-DSDS average speed in the school zone was about 10 mph higher than the posted 
speed limit. The average speed decreased more than 9 mph after the DSDS installation. The 
speed reduction continued four months after the DSDS installation. However, the DSDS effect 
was much lower for sharp horizontal curves and high-speed signalized intersection approaches. 
In those areas, average speeds returned to pre-DSDS levels after four months.  
 
Bloch (1998) compared the effectiveness of DSDS and photo radar. The study focused on three 
roads in Riverside, California. The study concluded that both devices effectively reduced speed 
by 4-5 mph and reduced the number of vehicles travelling 10 mph or more over the speed limit. 
Supplementing the DSDS with police enforcement significantly increased the sign’s 
effectiveness, but only for the short term. The unenforced DSDS was the most cost-effective 
method.  
 
McAvoy (2011) employed a driving simulator and an eye-tracking device to assess the 
effectiveness of DSDS and VSL in reducing work-zone speed. Thirty-nine students, who were 
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between 16 and 25 years old, participated in the study. The study stated that a “SLOW DOWN 
45” message lowered work-zone speed by about 18 mph more than a VSL with a speed limit of 
45 mph did. However, the message “SLOW DOWN” lowered speed by only 2 mph more than 
the VSL did.  
 
Garber and Patel (1995) studied DSDS effectiveness in a 55 mph work zone. The signs displayed 
messages to vehicles traveling over 59 mph. The study concluded that DSDSs reduced speeds by 
10 mph or more. Of the four messages tested, the most effective was “YOU ARE SPEEDING 
SLOW DOWN.” 
 
Buddemeyer et al. (2010) utilized a speed sensor on a corridor and found that for every one mph 
reduction in the speed limit on a VSL, drivers reduced their speeds 0.47 to 0.75 mph. Rama and 
Schirokoff (1999) utilized loop detectors to record vehicles speed. The study used a VSL to vary 
the speed limit for specific traffic and environmental conditions. The study showed that a 
weather-related decrease in the speed limit reduced the mean speed and speed variation of free-
flow traffic. 
 
Table 1 shows the results of a before-and-after study of DSDSs. Poulter and McKenna (2005) 
focused on five 30 mph roads in London. Speed data was collected for four weeks: one week 
before the devices were installed, two weeks while they were in operation, and one week after 
they were removed. The effectiveness of the DSDS decreased over time and its effect decreased 
dramatically after removal.  
 
Walter and Knowles (2008) used a similar approach on 10 sites in London. The study found that 
speed decreased 1.4 mph for the first two weeks the DSDS was in operation; however, the study 
reported no explicit conclusion for the third week of operation. The speed reduction continued 
650 feet downstream of the DSDS, but not beyond that. The speed changes during the fifth week 
were not statistically significant at the 5 percent level of significance. Because speeds returned to 
initial levels after the DSDS removal, the researchers proposed a DSDS rotation program to 
maintain and improve safety gains.  

 
 

Table 1: Effectiveness of a DSDS on Average Speed over Time in Two Studies 

Chronological 
week 

Poulter & McKenna (2005) Walter and Knowles (2008) 

DSDS in 
operation 

Change in speed 
compared to the 

1st week 

DSDS in 
operation 

Change in speed 
compared to the 

1st week 
1 No ̶ No ̶ 
2 Yes -1.3 Yes -1.5 
3 Yes -1.2 Yes -1.5 
4 No  -0.2 Yes ̶ 
5 ̶ ̶ No 0.0 
6 ̶ ̶ No 0.1 
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Walter and Broughton (2011) investigated DSDS effectiveness in free-flow traffic conditions 
across 10 sites in London. All of the sites were 30 mph segments on a two-way, single 
carriageway with no restrictions on vehicles’ free-flow speed. The researchers used headway 
criterion to remove the speed data for the congested periods (i.e., the morning and evening 
peaks) to ensure that other vehicles did not affect drivers’ speed choice. Headways under two 
seconds and speeds less than 20 mph were eliminated from analysis. The researchers expanded 
the evaluation to determine DSDS effectiveness on vehicles’ speed in three different scenarios: 
while the DSDS was in operation, after the DSDS was removed, and downstream of the 
operational DSDS.  
 
Walter and Broughton (2011) applied an ANOVA contrast over the mean speeds to test DSDS 
effectiveness. Table 2 shows the number of sites for different time-distance configurations. The 
study’s baseline was the average speed of vehicles passing 0.12 miles upstream of the possible 
DSDS location. For the whole period the DSDS was in operation, the study reported an average 
reduction of 1.4 mph; however, the average speed 0.12 miles (200 m) downstream of the DSDS 
decreased by 0.2 mph and increased by 0.6 mph at 0.25 miles (400m) downstream. Observing 
that the mean speed remained unchanged in the first week and increased 0.1 mph the second 
week after the DSDS removal, the study concluded that a DSDS had no continuing effect. 
Although a DSDS was viewed as a temporary strategy, collision reduction was estimated based 
on the average speed reduction in the study. 
 
 

Table 2: Configuration of Time-Distance Invariants in the Walter and Broughton (2011) Study 

Week 
Time period 

regarding DSDS 
installation 

Number of study sites in each time-distance combination 
200m 

upstream of 
DSDS 

At DSDS 
200m 

downstream 
of DSDS 

400m 
downstream 

of DSDS 
1 Before 10 (baseline) 10 10 6 
2 During1 10 10 10 6 
3 During2 7 7 7 6 
4 During3 3 3 3 3 
5 After1 10 10 10 6 
6 After2 10 10 10 6 

 
 
Ullman and Rose (2005) suggested that DSDSs could be permanent and effective tools for speed 
reduction if “appropriate site conditions apply,” although the study did not collect speed data 
after DSDSs were removed. Speed data from two periods—the week immediately after 
installation and four months after installation—were collected and compared to the pre-DSDS 
installation speeds at an upstream control point. Results showed that a DSDS reduced speed in 
school zones more than it did in other areas. To evaluate the effective distance of a DSDS, the 
study used linear regression with regard to individual speed. Speed at the DSDS location was 
modeled by the speed at a control point approximately 2,000 to 3,000 feet upstream. The authors 
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found that a DSDS had a more substantial effect on drivers at higher speeds (e.g., more than 65 
mph).  
Cruzado and Donnell (2009) found that DSDSs were effective self-enforcement tools while in 
place; however, the effect disappeared when DSDSs were removed. The experiment involved 12 
transitional zones in Pennsylvania. Speed data was collected during weekdays and non-peak 
daytime periods in two locations: adjacent to the DSDS and 0.5 miles upstream. The data was 
collected before DSDS installation, during the DSDS’s first week of operation, and one week 
after DSDS removal. Comparison of the mean and 85th percentile speeds indicated that drivers 
understood the role of DSDS. Drivers reduced their speeds as they approached the signs, but 
increased their speeds after they passed. The authors conducted two linear regression models: 
one used pre-installation speeds to predict the speed reduction during DSDS operation, and the 
other used DSDS-operation speeds to predict speed reduction after DSDS removal. Modeling 
was based on the aggregated speed data for the 12 sites.  
  
Drivers’ Behavior   
 
Driver behavior is of primary importance in traffic safety. Human characteristics influence driver 
behavior and choice. Most studies of driver behavior use age, gender, education, and driving 
background as variables due to their availability. Speed choice is used as an indicator of the 
driver’s attitudes and characteristics. Although regression analysis of drivers’ demographic 
information allows researchers to make conclusions, regression models are not capable of 
explaining the reasons for a driver’s speed choice (Elliot et al., 2003). Therefore, there has been a 
gap in the literature to explain the reasons for drivers’ speed choice.  
 
Psychological behavioral theories, on the other hand, attempt to identify invariants to address 
this gap. One of the best-developed approaches is the theory of planned behavior (TPB), which 
was first introduced by Ajzen (1985). Many researchers have used this theory to scrutinize 
drivers’ attitude towards speed choice and to enhance traffic safety models. TPB postulates that 
intention determines human behavior. An individual’s attitude, subjective norms, and perceived 
behavioral control are independent components of intention. Elliot et al. (2003) used a TPB 
questionnaire to evaluate how demographics affect drivers’ speed. Five hundred ninety-eight 
drivers were interviewed twice over three months. The study found a strong synthesis between 
TPB variables and drivers’ demographics (particularly, age and gender).  
 
To investigate drivers’ speed choice, Warner and Aberg (2008) gave a TPB questionnaire to 162 
drivers. The drivers’ responses allowed the study to develop a predictive model for speed limit 
violations. Drivers with a higher intention to exceed the speed limit paid less attention to speed 
signs or more easily disregarded them than those with no intention to exceed the speed limit. 
Drivers’ intention to comply with the speed limit was shown to vary by cultural qualifications. 
Drivers from a region with lower accident rates had a more positive attitude and greater intention 
towards speed compliance than drivers from a region with higher accident rates (Warner et al., 
2009). 
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METHODOLOGY 
 
The research team distributed a survey questionnaire among Baltimore residents in order to 
understand drivers’ compliance with and attitudes toward DSDSs. The research team also 
collected vehicles’ speed data on three different road segments before and after (one day to three 
months after) installation a DSDS. The research team also collected speed data upstream and 
downstream of the DSDS location.  
 
Conventional statistical analysis, Categorical Regression (CATREG), and Bayesian network 
(BN) were utilized to assess a DSDS’s effectiveness with reducing speed. Besides the effective 
time (short term and long term), the effective distance for the DSDS was investigated. Two 
different sizes of the DSDS were used to find the impact of DSDS size on drivers’ compliance.  
 
Categorical Regression Analysis  
 
Categorical regression (CATREG) extends conventional multiple regression to accommodate 
categorical (nominal and ordinal) variables. CATREG transforms categorical variables into 
interval variables and then applies multiple regression analysis. Since many of the variables in 
this study were categorical variables, the research team applied CATREG to the aggregated data 
to find the important factors affecting speed compliance pre- and post-DSDS installation. The 
CATREG results were also used to form the Bayesian Network. 
 
Bayesian Network 
 
The Bayesian network (BN) has been recently applied in various studies that involve with 
uncertainty and complexity. BN has been used in classification, clustering, forecasting, and 
decision-making purposes. Xie et al. (2007) used a Bayesian neural network (BNN) to predict 
motor vehicle crashes. The study compared BNN to two powerful models of back-propagation, 
neural network and negative binomial regression modeling. In most cases, BNN produced more 
realistic predictions and generalization than the other two models did. Jin et al. (2010) presented 
a BN model to estimate speed from single-loop detector data. The study validated the estimated 
speeds with observed data and tested the results of conventional methods. De Ona et al. (2011) 
classified traffic accidents by injury severity and then identified significant factors associated 
with fatalities and injuries. De Ona et al. concluded that BN was a useful tool for injury severity 
analysis.  
 
A BN is a powerful, directed graphical model. A BN is comprised of nodes and links that 
illustrate random variables, relationships between variables, and conditional probability 
distributions for the states of each variable. BN software packages provide an intuitive 
visualization of interactions among different variables. They also show the result of changes to a 
variable on other variables, especially on a target variable. The current study used Netica (2011) 
software package to develop the BN model.   
 
BNs are derived from the Bayes rule on posterior simulation. The Bayes rule is defined by the 
conditional probability of a specific event given another event. It can be used to predict a future 
event given a past event (Koski and Noble, 2009). The BN’s learning algorithm employs a 
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training dataset, called a case file, which is derived from the observed data. Each case file’s 
record is associated with an actual event. The final learned BN can be used for policy scenario 
analysis and case file tests. 
 
In most applications of pattern classification, machine learning incorporates a sample dataset to 
learn the model’s spatial structure and conditional probability tables. Statistical parameters are 
necessary tools to predict a future outcome based on past information and posterior distribution. 
The BN structure in this study was performed using the research team’s prior knowledge and 
literature. The linkage between variables was established using the statistical models’ results. 
Network topology is very important in BN construction, since the network arrangement should 
imply a realistic cause-and-effect relationship between variables. Parameter learning, which 
determines each node’s conditional probability tables given the data and the structure of the 
network, is usually based on the application of minimax criterion to minimum error-rate 
classification (Duda et al., 2001).  
 
BN is usually initiated based on the cause-and-effect relationship of effective variables (Ulengin 
et al., 2007). A cause-and-effect map is a visual representation of the system. Because this map 
illustrates results, it can provide a better understanding of the problem than conventional analysis 
tools do. A graph, which includes causal relationships among variables, forms the BN structure. 
In the graph, nodes represent the variables and links represent relationship between variables.  
 
Causal relations among the nodes in this study were identified using traditional econometric 
techniques and expert judgment. According to past studies, combining BN with traditional 
statistical models produces a pure BN with a precise estimate. For instance, Xu et al. (2005) 
performed a study to estimate delay propagation in aviation systems and demonstrated that the 
integration of expert judgment with statistical methods improved BN prediction accuracy. The 
artificial neural network (ANN) has been shown to capture properly the causal relationships 
between non-linear and multi-collinear variables (Ulengin et al., 2007). The research team 
utilized CATREG in order to construct the initial BN. Correlations among explanatory variables 
and the effect of each variable on the final node (dependent variable) are important factors in 
constructing a BN. This initial topology was then complemented by the authors’ judgment. In 
BN, two nodes can be connected either directly or indirectly via one or more mediator nodes. 
The correlation coefficients of categorical regression analysis determine the directness or 
indirectness of the relationships between any two BN nodes.  
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RESULTS 
 
Survey Questionnaire 
 
The research team distributed the questionnaire among students in Morgan State University’s 
Department of Transportation and Urban Infrastructure Studies. In order to have an unbiased 
sample, each student was given three questionnaires: one to be answered by themselves and the 
other two to be answered by a friend or family member outside the school. Eighty-eight 
questionnaires were returned to the research team: 34 respondents were female and 54 were 
male. The socioeconomic information of the sample is summarized in Figures 4-7. Ninety-five 
percent of the respondents were familiar with DSDSs. Most drove near the signs regularly: 43 
percent encountered a DSDS 3-5 times a week, and 30 percent encountered a DSDS a few times 
a month.   
 
 

 
 

Figure 4: Respondents’ Education Level 
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Figure 5: Respondents’ Income 
 
 
 

 
 

Figure 6: Number of People in Respondents’ Households 
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Figure 7: Number of Cars in the Respondents’ Households 
 
 

The respondents were asked how much they reduced their speed when they saw a DSDS on 25, 
35, and 45 mph roads. As presented in Figure 8, most of the respondents stated that they reduced 
their speed to the speed limit (SL) for each road class. However, the highest percentage did not 
change speed on the 45 mph road class (15.3 percent), and the highest percentage of reduction to 
the speed limit belonged to the 25 mph road class (70.1 percent).  
 
When asked why they sped, 59 percent of respondents stated that they did not realize they were 
speeding and the DSDS informed them of their speeding, 14 percent stated that the speed limit 
was too low, 14 percent forgot the speed limit, and 13 percent stated that they liked to drive at a 
high speed whenever possible. Sixty-three percent of the respondents reduced their speed after 
passing a DSDS because they were afraid of receiving a speeding ticket, while 37 percent did not 
intend to exceed the speed limit and the DSDS was a good reminder. Forty-eight percent stated 
that they would increase their speed if a DSDS showed that they were driving below the speed 
limit. 
 
Figure 9 shows that 55 percent of the respondents believed that DSDSs increase safety, and 25 
percent believed that the devices improve safety and traffic flow. Eighteen percent believed that 
DSDSs improve neither.  
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Figure 8: Respondents’ Reactions to a DSDS by Road Class 
 

 

 
 

Figure 9: Respondents’ Attitudes about DSDS Effectiveness 
 
 
Fifty-two percent of the respondents categorized themselves as non-aggressive drivers, 6 percent 
as aggressive, and 42 percent sometimes aggressive (Figure 10).  
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Figure 10: Respondents’ Aggressiveness 
 
 
Speed Data Collection  
 
The research team collected data using a digital traffic recorder. The device—JTF-HS-16M-
4RT-S, Trax Flex High Speed Counter with locks and chain—tallies vehicles in both high- and 
low-speed situations. The counter includes a digital box and tubes. The device’s tubes calculate 
the speed, number of axels, and length of each vehicle. The tubes are taped to the road surface. 
When a car passes the tubes, the counter senses the tire pressure and the speed is calculated 
based on the time that it takes the front and rear tires to pass the tubes. A digital box records the 
information. The results of each situation were validated with manual counts. 
 
The research team chose three corridors with different speed limits: 45 mph, 35 mph, and 25 
mph. The research team installed a DSDS and two counters on each corridor. One counter was 
upstream of the DSDS and the other was downstream. There were no merge or diverge points 
between the two counters in order to have the same flow. The selected corridors are as follows. 
 
Perring Parkway Corridor 
 
The first corridor was northbound Perring Parkway between Echodale Avenue and McClean 
Boulevard (Figure 11). The three-lane corridor is 1.4 miles long, with an unposted speed limit of 
45 mph.  
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Figure 11: Perring Parkway Study Area 
 
 
Fenwick Avenue Corridor 
 
The second study area was southbound Fenwick Avenue between Hartsdale and Winford roads. 
The one-lane road is 0.2 miles long and is located within a 25 mph school zone. The speed limit 
was not posted. 
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Figure 12: Fenwick Avenue Study Area 
 
 

Hillen Road Corridor 
 
The third study area was Hillen Road between Roundhill Road and E. 33rd Street. The corridor is 
0.6 miles long and its speed limit is 35 mph (Figure 13). It includes three lanes, with one lane 
used for parking after the morning peak period. The City of Baltimore had received complaints 
from residents about speeding on the corridor.   
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Figure 13: Hillen Road Study Area 
 
 
The research team installed counters on Perring Parkway on October 18, 2010, and on Fenwick 
Road on October 22, 2010. The researchers collected the traffic data for one week. Then, 
Baltimore City installed a speed limit sign on both roads. Starting on November 9, the research 
team collected traffic data upstream and downstream of the speed limit signs for a week. On 
December 4, a DSDS device was installed next to each corridor’s speed limit sign, and the traffic 
data was collected for one week.  
 
Unlike the other sites, Hillen Road already had a speed limit sign. The City of Baltimore 
installed the DSDS before the research team had a chance to install the counters. Consequently, 
the Hillen Road data collection began on October 29, after the DSDS installation. The data was 
collected for a week and only on Hillen Road’s left lane because its right lane is used as street 
parking.  
 
Two sizes of the DSDS were utilized. A large (1.5 feet by 3 feet) DSDS was installed on Perring 
Parkway’s median, next to the left lane that carries higher speed vehicles. The large sign ensured 
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that speeding drivers could see it. A small (15 inches by 8 inches) DSDS was installed on 
Fenwick Avenue and Hillen Road. 
   
The Perring Parkway site was selected to test the duration and effective distance of the DSDS. 
The site is a relatively long stretch without any entrances or exits. After the DSDS had been 
operating for three months, two counters were reinstalled upstream and downstream of the DSDS 
to see if the device was still effective. In addition, on December 4, six counters were installed on 
the segment to find the effective distance for the DSDS. If the DSDS is effective and drivers 
reduce their speed, they most probably will increase their speed at a certain distance. The 
distance at which the reduced speed is held, is called the effective distance.  
 
Data Cleaning 
 
The research team cleaned the data for a reliable analysis. To ensure that ambient conditions did 
not influence the vehicles’ speed, the team eliminated low speeds from the dataset. The research 
team determined low speeds to be less than 10 mph for the 25 mph road, less than 15 mph for the 
35 mph road, and less than 20 mph for the 45 mph road. Gaps were also eliminated for the same 
reason. Very high speeds (e.g., higher than 75 mph) were removed to exclude authorized high-
speed vehicles such as police cars. Furthermore, records with a headway less than or equal to one 
second were removed to increase the data’s accuracy. 
 
Weather conditions, high car volume, and unknown people damaged or disconnected some 
tubes. As a result, the research team eliminated data for some days from the study due to 
unreliability, and repeated the data collection up to three times. Although the traffic counter’s 
vendor recommended that a device with more than 10 percent of its data missing should be 
declined from analysis, the research team eliminated data with more than five percent of its 
values missing. Sites with more than five percent missing values were subject to recounting. 
 
Descriptive Analysis 
 
Figures 14-16 show the diurnal distribution of traffic for seven consecutive days at the three 
sites. Figures 17-19 present the daily volume distribution for several consecutive days. Peak 
periods for each day were found by looking at the individual daily trend. Although all three sites 
had the same traffic pattern, peak periods were different at each site. There was no apparent peak 
period for weekends, which is quite plausible. 
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Figure 14: Diurnal Distribution of Fenwick Avenue over Seven Consecutive Days (veh/ln/15min) 
 
 

 
 

Figure 15: Diurnal Distribution of Hillen Road over Seven Consecutive Days (veh/ln/15min) 
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Figure 16: Diurnal Distribution of Perring Parkway over Seven Consecutive Days (veh/ln/15min) 
 
 
Fenwick Avenue 
Figure 17 shows that the weekday morning peak period was 7:15 a.m. to 8:30 a.m. The evening 
peak usually happened from 2:00 p.m. to 3:00 p.m. The evening peak’s volume was slightly less 
than the morning peak’s. Weekends did not show any significant peak period because the study 
area was a school zone and the road was not of much attraction during the weekend. There was 
no specific distinction between Saturday and Sunday.  
 
Hillen Road 
Figure 18 shows that the traffic volumes were higher in the morning peak than in the evening 
peak. The morning peak period was 7:00 a.m. to 9:15 a.m. The weekend volume was substantial, 
but there was no distinct peak period. Saturday had a higher cumulative volume than Sunday.  
 
Perring Parkway 
The graphs show that the highest volume happened during the weekdays’ evening peak, which 
ranged from 3:00 p.m. to 8:00 p.m. This is probably due to commuters. The morning peak 
period, 7:00 a.m. to 9:15 a.m., was not as solid as the evening peak, neither in value nor in 
interval. For the weekends, the graphs did not show a sharp peak, which could be due to non-
work activities. There were slightly more generated trips on Saturday than on Sunday.     
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Figure 17:  Daily Traffic Distribution of Fenwick Avenue for Six Consecutive Days (veh/ln/15min) 
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Figure 18: Daily Traffic Distribution of Hillen Road for Seven Consecutive Days (veh/ln/15min) 
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Figure 19: Daily Traffic Distribution of Perring Parkway for Seven Consecutive Days 
(veh/ln/15min) 
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Table 3 presents the average speeds before and after installation of a regular speed limit sign 
(SLS) and DSDS on Perring Parkway. The results indicate that the average speed and 85th 
percentile upstream speed reduced after the SLS was installed. The speed downstream of the 
SLS was slightly lower than the speed upstream of the SLS. The research team installed one 
counter 200 feet upstream of the DSDS and another, which is named Downstream 1, 10 feet 
downstream of the DSDS. Since Downstream 1 was very close to the DSDS, it was considered 
adjacent to the DSDS location. In order to find the effective distance of the DSDS, four 
additional counters were installed 900, 1130, 2390, and 4060 feet downstream of the DSDS. As 
presented in Table 3, the average speed was higher on Downstream 2, which was 900 feet from 
the DSDS. This shows that the DSDS affects speed reduction only for a very short distance.  
 
Figure 20 presents the daily speed variation before SLS installation on Perring Parkway. The 
figures indicate that speeds between 45 mph and 55 mph had the highest frequency.  
 
 
Table 3: Speed Statistics before and after SLS and DSDS Installation on Perring Parkway (45 mph) 
 

 Upstream Downstream 1 
(Adjacent to the DSDS) 

Downstream 2 
900 ft 

Downstream 3 
1130 ft 

Downstream 4 
2390 ft 

Downstream 5 
4060ft 

 Avg. 
Speed 

85% Avg. 
Speed 

85% Avg. 
Speed 

85% Avg. 
Speed 

85% Avg. 
Speed 

85% Avg. 
Speed 

85% 

Before SLS 48.8 56           
After SLS 
Before 
DSDS 

 
48.6 

 
54.5 

 
48.4 

 
54 

        

After DSDS 47.6 56 47.1 54 48.4 53 49.6 55 48.2 55 46.7 52 
 
 

 
 

Figure 20: Daily Speed Variation on Perring Parkway 
 
 

The speed data for the other two sites is summarized in Table 4. The pre-SLS and pre-DSDS data 
for Fenwick Avenue was excluded because it was not reliable. Speeds on Fenwick Avenue were 
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slightly lower after the DSDS installation. However, of the three corridors, Hillen Road had the 
highest speed reduction.  
 
 

Table 4: Speed Statistics after DSDS Installation on Fenwick Avenue and Hillen Road 
 
 Upstream Downstream  (Adjacent) 
 Average Speed 85th Percentile Average Speed 85th Percentile 
Fenwick (25 mph) 21.7 27 21.5 27 

Hillen (35 mph) 38.3 43 35.4 38 
 
 
As stated earlier, after the counters were removed, Perring Parkway’s DSDS stayed up and 
operational for three months. The counters were reinstalled three months after the first 
installation on Perring Parkway. The counter reinstallation was done to determine the effective 
time range of the DSDS. Figure 11 presents the speed data upstream and downstream of the 
DSDS three after months its installation.  
 
 

 
 
Figure 21: Speed Data Upstream and Downstream of the DSDS on Perring Parkway Three Months 

after Installation 
 
 
Conventional Statistical Analysis 
 
The research team performed a conventional statistical analysis of the collected data. Mean speed 
and variance were calculated for each of the three sites’ peak and off-peak periods. Table 5 
summarizes the average speeds and sample sizes for each study area. Since roadway geometry 
affected speed reduction at some downstream locations, the fourth counter downstream of the 
DSDS was selected as the downstream location because it had a minimal speed variance. Short-
term data refers to data collected during the first two weeks of DSDS operation, and long-term 
data refers to data collected after three months of continuous DSDS operation. 
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Table 5: Average Mean Speed (mph) and Sample Size of the Three Study Areas 
 

Study 
Area 

Before 
installation  

Short term after installation  Long term after installation 
Upstream Adjacent Downstream Upstream Adjacent 

Fenwick 
Ave 

_ 
21.72 
4,643 

21.50 
5,032 

 
_ 

 

Hillen 
Rd 

_ 
38.31 

36,688 
35.42 
35,306 

 
_ 

 

Perring 
Pkwy 

48.83 
111,616* 

47.57 
22,101 

47.10 
20,822 

48.2 
42,631 

46.15 
28,020 

48.4 
27,629 

*All three lanes  
 
 
The research team tested whether there was a significant difference in mean speed upstream of 
and adjacent to the DSDS. Equation 1 shows a typical formulation. The tested hypothesis is △1 
is less than zero. 
 

△1 = Sshort-term(adjacent) – Sshort-term (upstream)          (1) 

Since sample sizes were large (Table 5) and normal population distribution was assumed, two 
groups of test data with sample sizes of n1 and n2 were drawn from the populations. The 
distributions were N (μ1, σ1) and N (μ2, σ2). Consequently, the differences between the two speed 
distributions were as follows.  
 

�̅2 –�̅1 ~ N (μ1 – μ2 , ��
�

��
+ ��

�

��
 )                     (2) 

�̅ is the mean speed, and σ2 is the population’s variance. The t-test was the most fitted statistical 
test to address the current hypotheses. There are two models to perform the t-test:  
 

(1) The two populations have equal variance (σ1
2

 = σ2
2), .i.e., the two datasets are 

homoscedastic. In this case, the t value can be computed as Equation 3 with regard to a 
pooled estimation of the population’s variance. The population’s variance is derived from 
sample variances. In this equation, s2, the sample’s variance, is used to estimate 
population’s variance. The t value is calculated as follows: 
 

�

= 	
�̅� − �̅�

� ����
� + ����

�

�� + �� − 2 ��� + ��
����

 

 
                           (3) 

  
 
(2) The two populations have unequal variance (σ1 ≠ σ2), i.e., the two datasets are 

heteroscedastic. t value is calculated as follows: 
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�= 	
�̅� − �̅�

� ��
�

�� − 1 + ��
�

�� − 1

 
 
                       (4) 

 
To determine the equality of variances, an F-test was performed. The F-test compares the value 
of f, which is the ratio of variances (s1

2/s2
2), to the critical f for the desired significance level 

considering degrees of freedom. Thus, the null and alternative hypotheses for equality of 
variances can be stated as Equation 5. 
 

H0: σ12 =  σ22                                        (5) 
                                             Ha: σ12 �	σ22 

The research questions of this study, which investigate whether there are significant differences 
between the mean speeds (�̅), are summarized in the six propositions in Table 6. Each test was 
conducted on the appropriate site with the available and relevant speed data. The results of 
Hypotheses I and V will evaluate the temporary effect of the DSDS on drivers’ speed choice. 
Hypothesis III’s results will determine whether a DSDS is effective as a permanent strategy for 
speed control. The results of Hypotheses II and IV will measure time and distance’s effect on 
DSDS performance.  
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Table 6:  Hypothesis Tests 
 

Hypothesis Hypothesis Test Hypothesis of Interest 

I 

HI0: �̅short-term (adjacent) ≥  �̅short-term 

(upstream) 
HIa: �̅short-term (adjacent) <  �̅short-term 

(upstream) 

A short term after installation, the 
average speed of vehicles adjacent to 
the DSDS is less than those upstream.  

II 
HII0: �̅long-term (adjacent) ≥  �̅long-term (upstream) 
HIIa: �̅long-term (adjacent) <  �̅long-term (upstream) 

A long term after installation, the 
average speed of vehicles adjacent to 
the DSDS is less than those upstream. 

III 

HIII0: �̅long-term (upstream) ≥  �̅short-term 

(upstream) 
HIIIa: �̅long-term (upstream) <  �̅short-term 

(upstream) 

The mean speed upstream of the DSDS 
increased after three months of 
continuous DSDS operation. 

IV 

HIV0: �̅long-term (adjacent) ≥  �̅short-term 

(adjacent) 
HIVa: �̅long-term (adjacent) <  �̅short-term 

(adjacent) 

The mean speed of vehicles adjacent to 
the DSDS decreased after three months 

of DSDS operation. 

V 
    HV0: �̅short-term (adjacent) ≥  �̅before (adjacent) 
    HVa: �̅short-term (adjacent) <  �̅before (adjacent) 

The mean speed of vehicles adjacent to 
the DSDS decreased a short term after 

DSDS installation. 

VI 

   HVI0: �̅short-term (downstream) ≥  �̅short-

term(upstream) 
  HVIa: �̅short-term (downstream) <  �̅short-term 

(upstream) 

A short term after DSDS installation, 
the average speed of vehicles 

downstream of the DSDS is less than 
those upstream.  

 

Hypothesis Results 
 
Fenwick Road 
 
The researchers tested Hypothesis I to determine whether the mean vehicle speed decreased a 
short term after DSDS installation. As described earlier in this report, the research team used an 
F-test to determine inequalities and similarities in the two samples’ variances. Table 7 shows the 
result. Since the f value (1.27) was greater than the critical f value at a 5 percent significance 
level (1.27>1.05), the research team rejected H0 and concluded that the variances were unequal. 
Therefore, the research team conducted the t-test suitable for unequal variances. Table 8 shows 
the result of the t-test. Since the t value (1.89) was greater than the critical one-tail t value at a 5 
percent significance level (1.65), the research team rejected HI

0 and concluded that the mean 
speed adjacent to the DSDS was significantly less than the mean speed upstream for a short-term 
period. 
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Table 7: F-test Results for Hypothesis I, Fenwick Avenue 

Speed (mph)  Upstream Adjacent 
Mean 21.72 21.50 
Variance 36.61 28.86 
85th percentile 27 27 
Observations 4643 5032 
df 4642 5031 
 
f 1.268 
f critical one-tail * 1.048   

* For α = 0.05 
 
 

Table 8: t-test Results for Hypothesis I, Fenwick Avenue 
 

Speed (mph)  Upstream Adjacent 
Mean 21.72 21.50 
Variance 36.61 28.86 
Observations 4643 5032 
 
Hypothesized mean difference 0 
df 9308 
t stat. 1.891 
t critical one-tail * 1.645 

* For α = 0.05 
 
 
 
Hillen Road 
 
Table 9 shows the F-test result for Hillen Road. Since the f value (2.69) was greater than the 
critical f at a 5 percent significance level (1.02), the research team rejected H0 and concluded that 
the variances were unequal. Therefore, the t-test suitable for unequal variances was conducted. 
Table 10 shows the t-test result. Since the t value (93.15) was much greater than the critical one-
tail t at a 5 percent significance level (1.65), the research team rejected HI

0 and concluded that 
the mean speed adjacent to the DSDS was significantly less than the mean speed upstream for a 
short-term period. 
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Table 9: F-test Results for Hypothesis I, Hillen Road 

Speed (mph)  Upstream Adjacent 
Mean 38.31 35.42 
Variance 25.42 9.459 
85th percentile 43 38 
Observations 36,688 35,306 
df 36,687 35,305 
 
f 2.687 
f critical one-tail * 1.017 

* For α = 0.05 
 
 

Table 10: t-test Results for Hypothesis I, Hillen Road 
 

Speed (mph)  Upstream Adjacent 
Mean 38.31 35.42 
Variance 25.42 9.459 
Observations 36,688 35,306 
 
Hypothesized mean difference 0 
df 61,061 
t stat. 93.15 
t critical one-tail * 1.645 

* For α = 0.05 
 
 
Perring Parkway 
 
All six hypotheses can be studied with the data from Perring Parkway. Since the other two sites’ 
distances were shorter, only the effective distance and time were tested on Perring Parkway. 
Therefore, the rest of this section explains each hypothesis’ test results. 
 
Hypothesis I 
  
Table 11 shows the F-test results for Hypothesis I. Since the f value (1.51) was greater than the 
critical f at a 5 percent significance level (1.02), H0 was rejected and the variances were deemed 
unequal. Therefore, the research team conducted the t-test suitable for unequal variances. Table 
12 presents the result of the t-test. Since the t value (6.42) was greater than the critical one-tail t 
at a 5 percent significance level (1.65), the research team concluded that the mean speed adjacent 
to the DSDS was significantly less than the mean speed upstream for a short-term period. 
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Table 11: F-test Results for Hypothesis I, Perring Parkway 
 

Speed (mph)  Upstream Adjacent 
Mean 47.57 47.10 
Variance 71.07 47.17 
85th percentile 56 54 
Observations 22,101 20,822 
df 22,100 20,821 
 
f 1.507 

 f critical one-tail (α = 0.05) 1.023 
 
 

Table 12: t-test Results for Hypothesis I, Perring Parkway 
 

Speed (mph)  Upstream Adjacent 
Mean 47.57 47.10 
Variance 71.07 47.17 
Observations 22,101 20,822 
 
Hypothesized mean difference 0 
df 42,053 
t stat. 6.417 
t critical one-tail (α = 0.05) 1.645 

 
 

Hypothesis II 
 
The research team tested Hypothesis II to determine whether the DSDS produced a long-term 
reduction in mean speed. Table 13 shows the F-test result. H0 could not be rejected since the f 
value (0.75) was less than the critical f at a 5 percent significance level (0.98). Therefore, the 
variances were considered equal. Table 14 presents the t-test results. Since t value (-52.4) was 
less than the critical one-tail t at a 5 percent significance level (1.65), HII

0 could not be rejected. 
Therefore, the mean speed adjacent to the DSDS was not less than the mean speed upstream for a 
long-term period, i.e., the DSDS is not an effective long-term tool. 

 

 

 

 

 

 



33 
 

Table 13: F-test Results for Hypothesis II, Perring Parkway 

Speed (mph)  Upstream Adjacent 
Mean 46.15 48.36 
Variance 21.32 28.40 
85th percentile 51 53 
Observations 28,020 27,629 
df 28,019 27,628 
 
f 0.751 

 f critical one-tail (α = 0.05) 0.980 
 
 

Table 14: t-test Results for Hypothesis II, Perring Parkway 
 

Speed (mph)  Upstream Adjacent 
Mean 46.15 48.36 
Variance 21.32 28.40 
Observations 28,020 27,629 
 
Hypothesized mean difference 0 
df 55,647 
t stat. -52.38 
t critical one-tail (α = 0.05) 1.645 

 
 
Hypothesis III  
 
The research team tested Hypothesis III to determine whether the mean speed upstream of the 
DSDS increased after three months of continuous DSDS operation. The F-test results, presented 
in Table 15, indicated that the variances were unequal. Therefore, the research team conducted a 
t-test for unequal variances. As shown in Table 16, the t-test results indicated that the mean 
speed upstream of the DSDS after three months of operation was more than the mean speed 
immediately after installation, underlining the long-term effect of the DSDS. 
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Table 15: F-test Results for Hypothesis III, Perring Parkway 
 

Speed (mph) 
 Short-Term 

Upstream 
Long-Term 
Upstream 

Mean 47.57 46.15 
Variance 71.07 21.32 
85th percentile 56 51 
Observations 22,101 28,020 
df 22,100 28,019 
 
f 3.334 

 f critical one-tail (α = 0.05) 1.021 
 
 

Table 16: t-test Results for Hypothesis III, Perring Parkway 
 

Speed (mph) 
 Short-Term 

Upstream 
Long-Term 
Upstream 

Mean 47.57 46.15 
Variance 71.07 21.32 
Observations 22,101 28,020 
 
Hypothesized mean difference 0 
df 32,366 
t stat. 22.59 
t critical one-tail (α = 0.05) 1.645 

 
 
Hypothesis IV 
  
The research team tested whether the mean speed of vehicles adjacent to the DSDS decreased 
after three months of DSDS operation. Based on the F-test results (Table 17), the research team 
conducted a t-test for two samples with unequal variances. The research team concluded that the 
mean speed adjacent to the DSDS after three months was not less than the mean speed 
immediately after the DSDS installation. 
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Table 17: F-test Results for Hypothesis IV, Perring Parkway 
 

Speed (mph) 
 Short-Term 

Adjacent 
Long-Term 

Adjacent 
Mean 47.10 48.36 
Variance 47.17 28.40 
85th percentile 54 53 
Observations 20,822 27,629 
df 20,821 27,628 
 
f 1.661 

 f critical one-tail (α = 0.05) 1.022 
 
 

Table 18: t-test Results for Hypothesis IV, Perring Parkway 
 

Speed (mph) 
 Short-Term 

Adjacent 
Long-Term 

Adjacent 
Mean 47.10 48.36 
Variance 47.17 28.40 
Observations 20,822 27,629 
 
Hypothesized mean difference 0 
df 38,093 
t stat. -22.02 
t critical one-tail (α = 0.05) 1.645 

 
 
Hypothesis V  
 
The research team tested whether the mean speed of vehicles adjacent to the DSDS decreased for 
a short term after DSDS installation. Since the F-test results in Table 19 indicated that the 
variances were unequal, the research team conducted a t-test for two samples with unequal 
variances. The research team rejected HV

0. Therefore, the mean speed adjacent to the DSDS a 
short term after installation was less than the mean speed pre-DSDS installation (Table 20). 
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Table 19: F-test for Hypothesis V, Perring Parkway 
 

Speed (mph)  Before Short-Term After 
Mean 48.83 47.10 
Variance 61.08 47.17 
85th percentile 56 54 
Observations 111,616 20,822 
df 111,615 20,821 
 
f 1.295 

 f critical one-tail (α = 0.05) 1.018 
 
 

Table 20: t-test for Hypothesis V, Perring Parkway 
 

Speed (mph)  Before Short-Term After 
Mean 48.83 47.10 
Variance 61.08 47.17 
Observations 111,616 20,822 
 
Hypothesized mean difference 0 
df 31,750 
t stat. 32.67 
t critical one-tail (α = 0.05) 1.645 

 
 
Hypothesis VI 
  
Finally, the research team tested whether vehicles’ mean speed upstream of the DSDS decreased 
for a short term after installation. As presented in Table 21, the F-test indicated that the variances 
were equal. Therefore, the researchers conducted a t-test for two samples with equal variances. 
The results (Table 22) indicated that a short-term after the installation, the mean speed 
downstream of the DSDS was not less than the mean speed upstream of the DSDS. 
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Table 21: F-test for Hypothesis VI, Perring Parkway 
 

Speed (mph)  Upstream Downstream 
Mean 46.15 48.25 
Variance 21.32 52.56 
85th percentile 51 55 
Observations 28020 32631 
df 28019 32630 
 
f 0.406 

 f critical one-tail (α = 0.05) 0.981 
 
 

Table 22: t-test for Hypothesis VI, Perring Parkway 
 

Speed (mph)  Upstream Downstream 
Mean 46.15 48.25 
Variance 21.32 52.56 
Observations 28020 32631 
 
Hypothesized mean difference 0 
df 60,649 
t stat. -41.74 
t critical one-tail (α = 0.05) 1.645 

 
 
Data Aggregation 
 
More than 110,000 pairs of valid speed data (upstream and downstream of a DSDS) were 
recorded from the three sites for seven days of DSDS operation. Because data was missing in 
some cases and some cars changed lanes, it was impossible to track individual cars upstream, 
adjacent to, and downstream of DSDS. The conventional statistical analysis used in the previous 
section was a complete aggregate analysis, which analyzed the average speeds as a single value. 
The research team proposed a hybrid analysis to aggregate the data. There are two possible 
methods for aggregating the speed data. 
 

1- Aggregation based on an equal number of vehicles (n) passing a section in an appropriate 
time interval. In this approach, different time periods may be used in order to have the 
same number of vehicles. 
 

2- Aggregation based on equal periods of time (t). In this approach, different number of 
vehicles may be used in order to have the same time period. 

 
Based on a preliminary analysis, the research team decided to use the first approach. The 
research team grouped and calculated the mean speed of every 50 consecutive vehicles (n=50). 
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Fifty vehicles, a small number, are probably in the same time period. In the hybrid approach, a 
single mean value represents 50 actual records from the original data. After aggregation, the 
110,000 pairs of speed data were transformed into 2,210 aggregated values.  
 
The second approach was tested for t equal to 15 minutes and 30 minutes. In this case, each 
record would represent a category and its corresponding volume. This approach is inferior to the 
first approach because each category’s number of cars varies. Consequently, the second 
approach’s weights required adjustment to attain fair impact of each actual speed in the model. 
The second approach was not used further in this study. 
 
The research team applied linear regression, CATREG, and BN to the aggregated data in order to 
supplement the conventional statistical analysis and to answer the research questions.  
The research team formed 13 variables from the collected data, 11 of which were categorical. 
Table 23 describes the variables and categories (states) associated with each variable. The 
research team classified the variables into five groups. The first three groups—time & day, road-
related (e.g., speed limit and number of lanes), and DSDS-related variables—were naturally 
independent variables, while the last two (speed and compliance) were dependent variables. 
Speed data was not used directly in the analysis; thus, 11 variables were used.  
 
The research team chose the suitable number of states for the BN. When there is a fewer number 
of states, there is a fewer number of scenarios in the nodes’ probability tables. The number of 
scenarios within any node’s probability table is determined by the multiplication of its parents’ 
number of states by the node’s number of states. To ensure that each scenario’s conditional 
probability table could be elicited from the data, the number of states in each node was 
minimized in such a way not to compromise the model fit.  

 
Time and Day 
 
The research team divided the variable Day into weekday and weekend, and divided the variable 
Time into peak and off-peak. Peak and off-peak were obtained from diurnal distribution of the 
traffic presented in Figures 14-19. 
 
Road-Related Variables 
 
There were three variables in the road-type group: Speed Limit, School Zone, and Number of 
Lanes. As mentioned earlier, the speed limits of the three study areas were 25 mph, 35 mph, and 
45 mph. 
 
According to the literature, a DSDS highly affects speed compliance in a school zone. In this 
study, only the 25 mph road (Fenwick Avenue) was located in a school zone. The number of 
lanes may affect vehicle speed. Two of the sites (Perring Parkway and Hillen Road) had three 
lanes and one (Fenwick Avenue) had one lane.  
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Table 23: Variable Description for BN Modeling 
 

 
 
DSDS-Related Variables 
 
Three DSDS-related variables were used: Size, Effective Time, and Effective Distance. As 
mentioned earlier, two sizes of DSDS, small (15 inches by 8 inches) and large (1.5 feet by 3 
feet), were utilized in the study. Effective Time, a continuous variable, represents the number of 
days that the DSDS was operational. This variable was discretized into four states: Day 1-2, Day 
3-7, Day 8-12, and Day 13+. The effective distance of the DSDS represents the location of the 
second speed detector: adjacent to the DSDS or downstream of the DSDS.  
 
Speed and Compliance Variables 
 
As stated earlier, speed data upstream and downstream of the DSDS was recorded for each of the 
three sites. Since the three sites’ aggregated data was combined in a unique dataset to capture the 
effect of different invariants on the drivers’ speed limit compliance, the research team formed 
and utilized three speed-related variables, named compliance variables. The compliance 
variables were used instead of the absolute speed data. The three compliance variables were 
Speed Alteration, Compliance Before, and Compliance After.  
 
The research team decided not to treat compliance variables as binary (i.e., compliance and non-
compliance) because a vehicle speed slightly above the speed limit can be considered speed limit 
compliant. In the United States, the police’s rule of thumb is to issue speeding tickets for speeds 
10 to 20 percent above the speed limit. The research team specified four levels of speed 
compliance: 

Type Variables Type Number 
of states  States 

Time & 
Day 

Day Discrete 2 weekend / weekday 
Time Discrete 2 peak / off-peak 

Road  
Speed Limit Discrete 3 25 / 35 / 45 
School Zone Discrete 2 yes / no 
Lane Number Discrete 2 1 / 3  

DSDS  
Size Discrete 2 small / big 
Effective Time Continuous  1~2 / 3~7 / 8~12 / >12  
Effective Distance Discrete 2 nearby / far-downstream 

Speed 
Avg. Speed Upstream  Continuous   _ 
Avg. Speed 
Downstream Continuous  _ 

Compliance 

Speed Alteration Discrete 3 decrease / constant / increase 

Compliance Before Discrete 4 LSL / L1.07SL / L1.15SL / 
HSL 

Compliance After Discrete 4 LSL / L1.07SL / L1.15SL / 
HSL 
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(i) less than speed limit (LSL)  
(ii) more than the speed limit but less than 7 percent above speed limit (L107SL) 
(iii) between 7 and 15 percent above the speed limit (L115SL) 
(iv) more than 15 percent above the speed limit (H115SL) 

 
The research team evaluated different percentages over the speed limit (such as 5, 7, 10, 15, and 
20 percent) and selected values of 7 percent and 15 percent over the speed limit to categorize 
compliance since the data distribution was uniform.   
 
Speed Alteration and Compliance After can be used as the dependent variables in CATREG and 
in BN’s final node. Compliance Before affects Compliance After and can be used as an input 
(independent variable). These three variables were calculated based on the two average speeds of 
every 50 vehicles traveling upstream and downstream of a DSDS. The frequencies of states for 
these three variables are presented in Tables 24 and 25.  
 
 

Table 24: Speed Alteration States 
 

 Decrease Constant Increase Total 
No. 831 504 433 1768 
%  47.0% 28.5% 24.5% 100 

 
 

Table 25: States of Compliance before and after DSDS Installation   
 

  LSL L1.07SL L1.15SL HSL Total 
Compliance 

Before 
No. 348 512 740 168 1768 
%  19.7% 29.0% 41.9% 9.5% 100 

Compliance 
After 

No. 360 888 463 57 1768 
%  20.4% 50.2% 26.2% 3.2% 100 

 
 
This study does not deal with the change in average gaps as a performance measure because it is 
an average quantity and does not show the real and critical gap of individual cars. The effect of 
DSDS on drivers’ gap acceptance could be investigated if the complete disaggregate data were 
available (i.e., n=1). For n>1, gap may not be useful due to the wide range of gap values.  
 
Linear Regression Model 
 
The research team converted Size, Alteration, Compliance Before, and Compliance After into 
ordinal variables. Day, Time, and School Zone were converted into binary variables. A linear 
regression model was then applied to two dependent variables, Compliance After and Speed 
Alteration, as presented in Tables 26 and 27.  
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Table 26: Linear Regression Results on Compliance after DSDS Installation 
 

Independent Variable Coefficient  P-Value 
School Zone -0.610 <0.0001 
Speed Limit   0.045 <0.0001 
Compliance Before -0.203 <0.0001 
Effective Distance   0.102    0.034 
Effective Time   0.002 <0.0001 
Constant -0. 603 <0.0001 

 
R2=0.324 

 
 

Table 27: Linear Regression Results on Speed Alteration 
 

Independent Variable Coefficient  P-Value 
Speed Limit   0.026 <0.0001 
Compliance Before -0.587 <0.0001 
Effective Distance   0.123    0.001 
Effective Time   0.004  <0.0001 
Constant -0.728  <0.0001 

 

R2=0.657 
 

 
After DSDS installation, the compliance rate was higher in the school zone than in non-school 
zones. When the speed limit increases, Compliance After decreases. Interestingly, Compliance 
Before had a reverse effect on Compliance After. When the distance from the DSDS location 
increased 10 percent, the Compliance After decreased 0.2 percent. The more time past the DSDS 
installation date, the less effective the DSDS became. 
 
As stated in Tables 26 and 27, the R2 value of the second regression model was higher than the 
first one. Therefore, Speed Alteration can be explained better as a dependent variable than 
Compliance After in the linear regression model. A school zone designation did not seem to 
affect speed alteration, probably because drivers were already driving under the speed limit 
before they observed a DSDS. The rest of the independent variables had a similar effect on 
Speed Alteration as on Compliance After.   
 
Categorical Regression Model (CATREG) 
 
The research team performed a CATREG model between every two variables to find the 
correlation between the categorical variables. Then, the research team performed a forward 
regression to find the model that best explained the relationship between the dependent and 
independent variables. The developed models were utilized to construct the BN model. As 
presented in Table 28, the most important factors of Compliance After were School Zone, Size, 
Effective Distance, Speed Alteration, Effective Time, Day, and Time. 
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Table 28: CATREG Results   
 

Independent Variable Importance Coefficient  P-Value 
School Zone   0.604   0.425 <0.0001 
Size   0.204   0.206 <0.0001 
Effective Distance   0.100   0.258 <0.0001 
Speed Alteration   0.061   0.128 <0.0001 
Effective Time   0.057 -0.065    0.167 
Compliance Before -0.021 -0.113 <0.0001 
Day -0.007 -0.021    0.006 
Time   0.001   0.014    0.615 

 

R2=0.292 
 
 
Bayesian Network (BN) 
 
BN Construction 
 
Generally, the network should be as shallow as possible. Redundant links should be eliminated to 
decrease the network complexity and to avoid over-fitting (Cinar and Kayakutlu, 2010); 
however, the forecasting capability of the network should not be compromised. In addition, one 
should avoid creating loops between nodes. The final structure of this study’s network is shown 
in Figure 22. The target node, Compliance After, is green. The research team created a 
conditional probability table of nodes, wherein each state is presented as a belief bar. To create 
this format, the research team used Netica software (Netica, 2011), which utilizes the theory of 
posterior marginal probability to represent the joint probability of an event.  
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Figure 22: BN Structure  

 
 
Model Validation  
 
Performance evaluation ensures that a predictive model performs appropriately. Evaluation 
methods and criteria are critical in the model’s performance calculations. One of the most 
predominant methods in this field of study is the division of the dataset into two subsets: one that 
trains the network and a second smaller set that tests it. Different test-set ratios, ranging from 10 
to 25 percent of the data, have been reported in BN-related studies (Xu et al., 2005; Dlamini, 
2010). The model’s error rate and three scoring rules of logarithmic loss, quadratic loss, and 
spherical payoff for the test set are the most common measures to evaluate the predictive power 
of the model. 
 
In the current study, 80 percent of the combined data from all three sites was randomly selected 
for the training set and the remaining 20 percent was used for test set. The learning process was 
performed only on the first 80 percent to calibrate the BN model. An expectation-maximization 
algorithm was used in the calibration process. The BN model was calibrated with 1,768 
aggregate records and was tested with the other 442 records. The evaluation was a two-step 
process. First, the BN model was used to predict the probability distribution of the target node 
(i.e., compliance rate after DSDS). Then, the predicted values were compared to the observed 
values.  
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Table 29 presents the BN model’s goodness-of-fit using four criteria. The error rate shows the 
percentage of false predictions. The three scoring rules (logarithmic loss, quadratic loss, and 
spherical payoff) are computed based on the actual belief levels of node states. The scoring rules 
are used to evaluate model efficiency and classification ability, rather than considering only the 
state with highest probability (Morgan and Henrion, 1990). The logarithmic loss and quadratic 
loss vary from zero to infinity, with zero as the best fit of model. Spherical payoff varies from 
zero to one, in which one indicates the best fit. Although these scoring rules display the 
discrepancy of model outcomes accurately, they are not readily interpretable. Equation 6 shows 
the formulation of these rules (Netica, 2011). M is the mean function over all cases of test file, Pc 
is the estimated probability of the true state, and Pj is the estimated probability of jth state when 
there are n sates for the question node. 
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Table 29 demonstrates a strong correlation between the training and testing parameters, which 
guarantees that there is no over-fitting problem in the BN learning process. The model 
assessment results, particularly for the test set, also indicate that the BN model can act as a 
reliable tool for sensitivity analysis of different components of drivers’ compliance rate.  
 

 
Table 29: BN Model’s Goodness-of-Fit 

 
Criteria Train set Test set 
Error Rate 30.94% 33.71% 
Logarithmic Loss  0.6561 0.7255 
Quadratic Loss 0.4124 0.4551 
Spherical Payoff 0.7595 0.7345 

 
 
Sensitivity Analysis 
 
This study aimed to determine the effectiveness of a DSDS on drivers’ compliance with the 
speed limit. BN can identify how each node (variable) would change when another node 
changes. This section describes the sensitivity analysis of speed compliance with respect to other 
variables’ changes. Sensitivity analysis is a valuable method to study the variation in a statistical 
model’s output when input changes.  
 
Table 30 summarizes the computed sensitivities for each node in the constructed BN. The 
variables are based on two factors, mutual information and the percentages. Mutual information, 
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also called entropy reduction, is the anticipated reduction in uncertainty of a random variable due 
to another random variable. For two random variables of X and Y, the mutual information of I(X; 
Y) is a measure of dependency between X and Y. The mutual information of I is calculated as 
Equation 7 (Cover and Thomas, 2006). In this equation, p(x, y) is the joint probability function of 
X and Y. 
 

���; ��= 	����− 	ℎ	��|��= 	 ∑ ���, ��log �(�,�)
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Table 30 presents the most effective factors on Compliance After in descending order. As shown, 
Speed Alteration is the most effective. The top five variables were examined further.  
 
 

Table 30: Sensitivity of Compliance after DSDS Installation with Respect to Other Variables 
 

Node (Variable) Mutual info.  Percent 
Speed Alteration      0.26828 16.8 
Speed Limit 0.15361 9.63 
DSDS size  0.09915 6.22 
Effective Time        0.06513 4.09 
Compliance Before 0.04794 3.01 
Lane                 0.01109 0.70 
School Zone 0.01109 0.70 
Effective Distance 0.00423 0.27 
Day 0.00012 0.01 
Time 0.00010 0.01 

 
 
Table 31 presents the effect of Table 30’s five most important variables on the final node, 
Compliance After. Any change in the probabilities of the independent nodes’ states adjusts the 
belief bars of the target node’s state. Hereafter, Base case refers to the results presented in Figure 
21. In the Base case, 22.2 percent of sample was LSL downstream of DSDS, and 54.1, 20.3, and 
3.4 percent of the sample was L107SL, L115SL, and H115SL, respectively.  
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Table 31: Compliance After Sensitivity to Other Variables 
 

(Variable) 
State 

LSL 
% 1 

L107SL 
% 2 

L115SL 
% 3 

H115SL 
% 4 

(Speed Alteration)     
Decrease 38.8 57.0 4.1 0.1 
Constant 7.4 65.1 26.5 1.0 
Increase 12.6 23.1 47.5 16.8 

(Speed Limit)     
25 98.4 0.5 0.5 0.5 
35 21.9 72.7 3.4 2.0 
45 18.8 46.8 30.1 4.3 

(DSDS Size)     
Large 18.8 46.8 30.1 4.3 
Small 28.0 66.9 3.2 1.9 

(Effective Time)     
1 to 2 days 31.2 55.9 10.5 2.4 
3 to 7 days 27.3 58.1 13.2 1.4 
8 to 12 days 21.8 53.1 21.6 3.5 
More than 12 days 9.9 47.4 35.5 7.2 

(Compliance Before DSDS)     
Less than speed limit 29.8 37.3 23.9 9.0 
Speed range: 1 ~1.07 of speed limit 20.2 51.7 27.0 1.1 
Speed range: 1.07~1.15 of speed limit 20.3 64.5 13.3 1.9 
Higher than 1.15 of speed limit 20.5 51.9 22.4 5.2 

1: Base percentage: 22.2%                3: Base percentage: 20.3% 
2: Base percentage: 54.1%             4:  Base percentage: 3.4% 

 
 
Speed Alteration was divided into three states: decrease, constant, and increase. Table 31 
indicates that when all drivers decrease their speed after observing a DSDS, the probability of 
LSL increases from 22.2 to 38.8 percent, while the probability of L107SL slightly increases from 
54.1 to 57 percent. However, the probability of L115SL and H115SL decreases dramatically. If 
the vehicles’ speeds stay constant, the probability of LSL decreases to 7.4 percent; however, the 
probability of L107SL and L115Sl increases to 65.1 and 26.5 percent, respectively. If the drivers 
increase their speed after observing a DSDS, the probability of driving LSL decreases to 12.6 
percent, while the probability of driving L107SL drops to 23.1 percent. However, the probability 
of driving L115SL and H115SL increases.  
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There were three values for Speed Limit: 25, 35, and 45 mph. When the research team changed 
the speed limit to 25 mph for all sites, the probability of LSL increased dramatically to 98.4 
percent and the probability of L107SL decreased dramatically to 0.5 percent. When all the study 
sites’ had a speed limit of 35 mph, the probability of LSL slightly decreased to 21.9 percent and 
the probability of L107SL increased dramatically to 72.7 percent. When all the study sites’ had a 
speed limit of 45 mph, the probability of LSL decreased to 18.8 percent and the probability of 
L107SL and L115SL increased dramatically to 46.8 and 30.1 percent. This indicates that speed 
limit compliance on a 25 mph road is generally higher than on 35 mph and 45 mph roads. The 
vehicle speeds after DSDS observation are mainly LSL on a 25 mph road, while they are 
L107SL on a 35 mph road. The speed limit compliance is lower on a 45 mph road than on the 
other two roads.  
 
When a large DSDS was used for all sites, the probability of LSL for Compliance After 
decreased to 18.8 percent. This probability also decreased to 46.8 percent for L107SL. When a 
small DSDS was used for all sites, the probability of LSL and L107SL increased to 28.0 and 66.9 
percent, respectively. The research team concluded that the smaller DSDS was more effective. 
However, the small DSDS was utilized on the roads with lower speed limits. The correlation 
between Size, Speed Limit, and Number of Lanes was very high. 
 
When the research team used an Effective Time of 1 to 2 days for all cases, the probability of 
LSL and L107SL increased to 31.2 and 55.9 percent, respectively. When the Effective Time was 
3 to 7 days for all cases, the probability of LSLS reduced to 27.3 percent and the probability of 
L107SL increased to 58.1 percent. However, both percentages were higher than the Base case. 
When the Effective Time for all cases was more than 12 days, the probability of LSL and 
L107SL reduced to 9.9 and 47.4 percent, respectively. This indicates that the longer the time 
after DSDS installation, the lower the effectiveness of the DSDS. As presented in Table 31, the 
probability of LSL and L107SL reduced while the probability of L115SL and H115SL increased 
the greater the days after installation.   
 
If all speeds were LSL upstream of a DSDS, the probability of LSL increased to 29.8 percent and 
the probability of L107S decreased to 37.7 percent. Interestingly, the highest Compliance After 
happened when the Compliance Before was L115SL. This is probably because drivers traveling 
7 to 15 percent higher than the speed limit reduced their speed after passing a DSDS.  
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DISCUSSION 
 
The research team employed different statistical tools to evaluate the effectiveness of DSDS. The 
t-test indicated that DSDS is effective in the short term only for a short distance. However, the 
research team utilized other tools because t-test is aggregate, only compares average speeds, and 
cannot do sensitivity analysis. 
 
Since it was impossible to track each individual car, the research team aggregated the upstream 
and downstream speeds for every 50 cars. To find the important factors affecting speed 
compliance, the research team applied a linear regression model. The regression results showed 
that factors affecting speed compliance downstream of a DSDS were school zone, speed limit, 
speed compliance upstream of DSDS, period after installation, and distance from DSDS. 
However, the R2 of the linear regression model was very low (0.324) because most of the 
variables were ordinal or nominal. Because speed alteration is ordinal, the research team used it 
as the dependent variable. Consequently, R2 improved to 0.654. 
 
The research team complemented the study by constructing a BN and performing a more detailed 
sensitivity analysis. In addition, the research team developed a better compliance prediction 
model since the BN error rate was lower than the regression model. Similar factors affected the 
Compliance After. For example, the regression model indicated that a speed limit increase would 
decrease Compliance After. However, the BN specified how much each compliance category 
would change when the speed limit changed from 25 to 45 mph.  
 
The BN construction was based on road-related data. Information about drivers, such as their 
behavior, attitudes, and socioeconomic information, was not considered in the BN because it was 
not available. In order to find the effect of drivers’ socioeconomic information and attitudes on 
speed compliance, the research team developed a multinomial logit model using the survey 
questionnaire data. Surprisingly, none of the coefficients were significant. Therefore, the 
research team concluded that drivers’ socioeconomic information and attitudes did not have a 
significant effect on speed compliance downstream of DSDS. Thus, the developed BN is a 
reliable model. 
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CONCLUSIONS 
 
This study collected speed data upstream and downstream of a DSDS on three corridors with 
different speed limits: 25, 35, and 45 mph. The 25 mph site was a school zone. The data was 
collected with a digital counter for at least one week. After analyzing the data with different 
statistical models, the research team concluded that DSDSs are effective. However, a DSDS 
should be used as a temporary solution because its effectiveness reduces with time. The research 
team also concluded that a DSDS is effective only for short distance, as drivers increase their 
speed after passing the DSDS. Therefore, DSDSs should be used on critical points. A critical 
point could be defined as an area where the probability of crashes is high or safety is very 
important (e.g., work zones or school zones). When a DSDS is combined with another speed 
control device, such as a speed camera, its effectiveness increases. 
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