

IT 11 075

Examensarbete 30 hp
Oktober 2011

Evaluation and Implementation
of Distributed NoSQL Database
for MMO Gaming Environment

Yousaf Muhammad

Institutionen för informationsteknologi
Department of Information Technology

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Evaluation and Implementation of Distributed NoSQL
Database for MMO Gaming Environment

Yousaf Muhammad

Massively Multi-player Online Games have emerged as a most intensive data
application nowadays. Being massively used by simultaneously game players around
the world. This data require high level of performance, fault tolerance and scalability.
Distributed databases are one of the option we got for this kind of systems. The goal
is to give game players a high level of availability, fault tolerance and speed of the
database. So that the growing need of the players can be handled. NoSQL distributed
databases are nowadays are getting popularity for their opensourse, non relational
data stores, high performance, scalability and fault tolerance. Traditional relational
databases like MySQL, PostgreSQL seems to be loosing interest among the database
developer. NoSQL databases which includes Riak, CouchDB, Cassandra are rapidly
gaining interest because of there advantages over traditional databases. This study is
about choosing the best and reliable distributed database among SQL and NoSQL.

Pikkotekk AB provides network traffic load balancing services to the game developers
for their games. PikkoTekk have load balancing servers known as Pikkoservers that
works fully transparent to the game and fulfill all the requirement of massively multi
player online user that interacts with game all together.

Tryckt av: Reprocentralen ITC
IT 11 075
Examinator: Anders Jansson
Ämnesgranskare: Justin Pearson
Handledare: Christian Lönnholm

Contents

1 Introduction . 3

1.1 Research background . 3

1.2 Task of the thesis: . 4

1.3 Outline of Thesis: . 4

2 Theoretical Basis: . 5

2.1 SQL: (Structured Query Language) . 5

2.2 Difference Between NoSQL and SQL: . 5

3 Analysis . 7

3.1 Requirement of Distributed Database: . 7

3.1.1 Distributed Database Advantages: . 8

3.2 Databases: . 9

3.2.1 MySQL . 10

3.2.2 CouchDB: . 11

3.2.3 Riak . 12

3.3 Description of selected solution: . 13

4 Riak - A Distributed database for Distributed system. 15

4.1 Data Storage in Riak: . 15

4.2 Client Libraries in Riak: . 15

4.3 Clustering in Riak: . 16

4.4 The CAP Theorem: . 17

4.4.1 SQL, NoSQL Databases Vs CAP theorem: . 17

4.5 Replication In Riak: . 18

4.5.1 R Value and Read Fault Tolerance: . 19

4.5.2 W Value and Write Fault Tolerance: . 19

4.5.3 Conflict Handling in Riak: . 19

4.6 HTTP Interface: . 20

4.7 Components of Riak: . 20

4.7.1 RiakSearch: . 20

5 Implementation Environment: . 22

5.1 Erlang: . 22

1

5.2 Looby Server: . 22

5.3 Unity: . 24

5.4 Database Design: . 24

5.5 Interfacing With Riak Database: . 27

5.5.1 Socket Server Interface: . 28

5.5.2 Data Servers: . 29

5.5.3 C# Interface: . 31

6 Testing and Evaluation: . 33

6.1 Testing by Integrating with The Game: . 33

6.2 System Performance Evaluation: . 34

6.2.1 CouchDB Vs MySQL VS Riak Under 1 node Cluster: . 34

6.2.2 Comparison Between 1 and 2 Riak Nodes: . 38

6.2.3 Riak Benchmark Evaluation: . 42

7 Conclusion . 44

8 References . 45

2

Acknowledgement:

First of all, I would like to praise to almighty ALLAH for all the favours and mercifulness that bestowed

upon me not only for completing my Master thesis project but for everything that I have had achieved yet.

Secondly, I want to acknowledge my thanks to my supervisor Christian Lonnholm, Bjorn Dahlman and my

reviewer Justin Pearson for helping me out at different stages of my project.

Finally, my gratitude goes to my parents who always help me in achieving my desires in life.

3

1 Introduction

1.1 Research background

Traditional SQL RDBMS (Structured Query Language Relational Database Management System) are hard to

scale to the sheer amount of data and how to connect internally. One way to address this problem is by

using NoSQL database. The more interactivity of the gaming environment in modern days have attracted

more game users. In effect, the data generated through such multi-player network games are increasing

rapidly. So proper data management and data handling is the need of today for improving speed, reliability

and scalability of these gaming applications. Distributed database is the best bet among all.

PikkoTekk AB [PKT] provides state of the art network traffic load balance solutions to the video games.

So that unlimited number of players can join one game or multi-game at one time.

Figure 1: PikkoTekk Architecture

Figure 1 shows the Pikko architecture that has the ability to handle large number of identical single-

threaded game server. Pikko architecture provides appealing programming environment for the game de-

velopers and game servers developer by providing them an option to have a power of horizontal scalability

by running game server on single thread.

Any database whether its a SQL or NoSQL can fit into Pikko architecture. For high performance, scalab-

ility and fault tolerance modern distributed NoSQL database is recommended.

Game Server: The Pikko server software consists of Pikko server(Game Sever) and several cell servers.

Player in an online multiplayer game connect to the Pikko server, which handles load balancing between cell

servers. The cell servers handles physics, game logic and more.

4

LobbyServer: Lobby server gives user the platform to host the game, switching to other game, chatting

among users in network and enjoy other features apart from playing games only. It makes them socialize

and have an interactive gaming environment to spend more time on gaming.

1.2 Task of the thesis:

Video games industry has had a rapid growth over the past few years. According to the statistics by [PKT],

the sales of video games were $16 billion in 2007 and it is expected to grow over in upcoming years. This is

due to fact that technological growth which include high speed broadband take over the slow dial up network

access, video games in portable devices, multi player online games and rapid development of games by game

developers.

The aim of this thesis is to perform exhaustive comparison of NoSQL databases. Further, evaluate these

distributed NoSQL databases by their performance and advantages in distributed environment. Finally,

design and implementation of the database by testing it on real time distributed application.

Selection of the Database for the distributed application will depend upon the performance and scalability

of the compared NoSQL database.

In MMO Massively Multi player modern online games, apart from playing games socializing through

chat, joining and switching between different game environments, automated and manual hosting of games

are common features. To keep track of such large amount of user data in between sessions we normally use

a database backend. As the user activities normally span multiple servers, a distributed database suits this

task well. As scalability, availability and concurrency puts high pressure on the persistence of the database,

a smart design is needed to make transactions fluent.

1.3 Outline of Thesis:

1. Chapter 2 defines SQL, NoSQL and key difference between them.

2. Chapter 3 explains theoretical background which includes, Distributed Systems and comparison between

some popular SQL and NoSQL databases.

3. Chapter 4 gives a brief introduction about Riak.

4. Chapter 5 introduces the process of Implementation and introduction of tools used.

5. Chapter 6 introduces a tests and performance evaluation of the databases.

6. Chapter 7 concludes the thesis.

5

2 Theoretical Basis:

This chapter will explains some important concepts that relate to the thesis.

2.1 SQL: (Structured Query Language)

SQL is a one of many database language that can be used for querying and modifying relational databases.

In Relational databases data is stored in RDBMS (Relational Database Management System).

A database management system is a set of software programs that controls the organization,

storage, management and retrieval of data in a database. [DBM]

in Wikipedia 25/06/2011

In RDBMS data is stored in database tables. These tables are database objects and the most common

form of data storage in RDBMS. Each table in the database is divided in to small entities called field. Fields

are also called as columns of the data. Rows of the data consist of each individual entry in fields of the data.

Some RDBMS that uses SQL as there data manipulation language are Microsoft SQL server, Oracle,

MySQL, Mircosoft Access and Sybase etc. The most common and widely used SQL statements are Select,

Insert, Update, Delete, Create and Drop. By using these common and standard statements we can do pretty

much anything with the database.

Microsoft SQL Server: Microsoft SQL Server is one of the most popular database among relation data-

bases. SQL server is not only a database it is also a complete management system. Apart from the common

functionality of the database SQL server also comes with the addition tools like manipulation, report writing,

data import export, data structure and management.

Oracle: Oracle is considered as world leading relational database. Oracle was the first database that

support SQL as a manipulation language. [SOra]

2.2 Difference Between NoSQL and SQL:

NoSQL is an umbrella term designating a group of non-relational database systems or key-value stores.

A common trait to these systems is that usually they, in contrast to relational databases do not need a

fixed table structure. Their strong point is their distributivity, making them particularly suitable for scaling

up. Traditional database systems are known for their continuous consistency, which is traded for better

availability or partition tolerance in NoSQL databases.

6

The key difference between NoSQL and SQL is that NoSQL provide schema less data model that results

in faster read and writes in the database as compared to SQL.

Some of the commonly used NoSQL databases are CouchDB, Riak, Cassandra, Mnesia, BerkeleyDB, Ham-

sterDB, MongoDB and Redis etc. All NoSQL databases have there own advantages and drawbacks in term of

storage, performance and availability.

[LND] describes families and list of complete set of NoSQL databases.

Mnesia: Mnesia is a NoSQL database that is considered as an Object relational DBMS. It has all the

characteristics of DBMS which includes Locking, replication, logging, primary and secondary memory storage

etc.

Cassandra: Cassandra is known for its high scalability, decentralized nature, durability, fault tolerance

and linear in performance on adding new machine.

7

3 Analysis

In chapter 3, theoretical background is outlined. This chapter will discuss the design, implementation of

the database and interaction with the multiplayer game. In the next chapter comparison between different

database are done and also database to be implemented will be selected.

3.1 Requirement of Distributed Database:

A distributed database is a database that has no single physical location of its own. Instead, it is distributed

across the network of many computers. These computers are distributed geographically by connecting them

through communication links. User of the database thinks it as a centralized system but it is not in reality. The

main disadvantage of centralized databases is their vulnerability for downlink. Contrary of that, distributed

databases have advantage of fault tolerance. Generally speaking

Distributed database is a collection of multiple, logically interrelated databases distributed

over a computer network. A distributed database management system (distributed DBMS) is

then defined as the software system that permits the management of the distributed database

and makes the distribution transparent to the users. [PDDS,Chap.1]

A simple distributed database architecture is shown in figure 2

8

Figure 2: Distributed Database

In distributed databases data is shared among all the connected nodes that allows faster local queries

and subject to reduce network traffic.

3.1.1 Distributed Database Advantages:

This section will discuss some of the benefits of distributed database systems. According to [PDDS Chap.1]

advantages of DDBS are:

Transparent Management of Distributed and Replicated Data: Transparency of distributed and rep-

licated data involves hiding of logical and physical structure of data such that user is totally unaware of flow

of data between different nodes of the database.

It also provides data independence to the user by providing immunity of user application to change the

schema (logical database structure) of the database. Hiding that schema information from user application

provides physical data Independence to the application.

Distributed Database has to replicate data among other nodes in the network for performance, reliability

and availability reasons. It is off course desirable to have remote data locally for performance point of view.

9

Fragmentation Transparency: Database is divided in to fragments and moved to different locations.

This division is done by partitioning the database in to horizontally, vertically and treat each fragment as a

separate database object. This is done for gaining performance, reliability and availability of the database.

Reliability Through Distributed Transactions: Unlike centralized database, distributed databases provides

more reliability since they have replicated components. In centralized databases, if the database is down for

any reason every node or site of the network will be effected. In distributed databases there is no single

point of failure. If one node is down database is still accessible through other nodes in the network due to

replication components.

Improved Performance: In distributed databases performance is significantly improved. This perform-

ance factor depend upon two main points

• Due to property of fragmentation of the database, so that data is stored at the close proximity to the

point of use.

• Due to inherent parallelism of distributed database systems, each transaction or query to the database

result in executed in parallel to different nodes in the network. Query and transactions are also divided

in to sub query so that many queries can be executed at the same time.

Easier System Expansion: Another big advantage of distributed databases is that, they can expanded

according to the need of the organization. Adding a database node on the network will result in adding

processing and storage power to the network.

Adding node to the database will not effect the database in any case.

3.2 Databases:

When choosing database for any application we generally have two options. These options are SQL and

NoSQL. Most popular ones in SQL databases are PostgreSQL, MySQL and Oracle. In NoSQL databases there

are different categories of databases. In Key-value store there are Riak, Mnesia and others, in document store

there are CouchDB and other which are mostly selected by the game programmers or database designers

according to there requirements.

Both SQL and NoSQL databases support replication methods that are very useful for scalability and

load balancing. For instance SQL, MySQL and PostgreSQL can be configured for master-master replication

between two masters [GPGD][MRD].

10

3.2.1 MySQL

[OMS] MySQL server is one of the most widely used open source database management system nowadays.

MySQL falls into the category of relational databases. Relational databases are the databases that divide

the data in to small chunk rather them putting them all together in one data source. The data is stored in

tables which are referenced with another tables so that accessibility and flexibility is maximized. MySQL

was originally designed to handle the requirement of large database faster and consistent then any other

database. Keeping in mind the ease of use, security, connectivity, scalability and availability.

Scalability refers to balancing the load of the server among different server attach to the database by

adding hardware and processing power. Availability refers to increasing the accessibility of the database and

to ensure any hardware and software failure do not effect its availability.

3.2.1.1 Availability and Scalability in MySQL. MySQL uses different techniques to provide availability

and scalability in the systems. These techniques are: [HAC]

3.2.1.2 MySQL Replication: This technique provides asynchronous method of replication that can be

stop and restart any time. Data is replicated from the master node. Due to the asynchronous nature of

replication it would not guarantee that data will be replicated from master node to all the slaves nodes

immediately. Hence, this technique is useful based on the nature of the application.

3.2.1.3 MySQL Cluster: This technique provide synchronous method of replication. Unlike replication

of master slave replication method it creates a cluster. Data in cluster is replicated among all the nodes in

the cluster and accessibility to/from all the nodes is immediately. Main restriction using this technique is, all

the nodes in the cluster to be replicated should be within the LAN only i.e this technique does not support

geographically located nodes.

11

Figure 3: MySQL Cluster Replication

3.2.1.4 DRBD (Distributed Replicated Block Device): It is Linux based third party replicating tech-

nique. This technique fulfils all the requirements for high availability of the data. Data is replicated between

primary and secondary server by using virtual block device. These virtual block devices are associated with

physical block devices. Data written in virtual block devices is replicated among primary and secondary

servers physical block devices.

3.2.2 CouchDB:

[Cinfo] Unlike MySQL, CouchDB is a NoSQL schema free database. It is a document store database i.e.

data is stored and accessed from the documents of the database. Data in CouchDB is indexed to get high

performance and accessibility. CouchDB is famous for web applications and his nature of distributed and

ease of use. It provides some robust feature like incremental replication with bi-directional conflict detection,

scalability and reporting engine that uses tables and language as a Java-script for querying and indexing.

3.2.3.1 Scalability In CouchDB: CouchDB is also know as peer based distributed database. Because of

its creating replicas(copies of the whole database) on each peer connected to the database.

Replication method in CouchDB [Crep] is also synchronous and provide two main methods of replication

i.e. Simple and continuous replication. Data is updated or inserted in any node in the network which is

selected as a source for the replication (Master Node) and can be replicated to any destination node (Slave

Node). One can implement that by posting a HTTP request i.e

12

c u r l −X POST ht tp :// l o c a l h o s t :5984/ r e p l i c a t e −d

’{ ” source ” : ” h t tp ://192.168.0 .1/ database ” ,

” t a r g e t ” : ” h t tp :// admin : passward@e130 .238.11.182:5984/ database ”} ’

The above command is for simple replication in CouchDB. This will replicate the source database from

source to destination database only once i.e. we have to send request each time we have to replicate. We

have to send each HTTP command to each destination node (Slave Node).

Unlike simple replication in CouchDB, in continuous replication we do not have to send request each

time we have to replicate i.e. it will continuously detect changes in document and effect changes in all the

nodes in the database. The HTTP command for continuous replication is

c u r l −X POST ht tp ://127.0 .0 .1 :5984/ r e p l i c a t e −d

’{ ” source ” : ” db ” , ” t a r g e t ” : ” db−r e p l i c a ” , ” cont inuous ” : t rue } ’

3.2.3 Riak

Riak is a NoSQL key-value store [Bas]. Like CouchDB, Riak also provides web interface and creates replicas

of its files distributively. But unlike CouchDB, there is no peer to peer replication but rather do make replicas

according to the need of the user. User can change the number of replicas needed among the nodes of

the database for faster replication. Riak provides high level of auto balancing to increase availability and

performance in large distributed systems. Riak store data in form of Bucket, Key and value. Where bucket is

an object of Riak that contains all the information of raw data i.e. all the key and values will be stored in a

bucket.

Availability and Scalability in Riak: Riak is very good in providing availability and scalability as com-

pared to MySQL and CouchDB. Riak maintains replication of data among its nodes and is controlled by

setting the value called N-Value. This value is default to all nodes in Riak but can be overridden on each

bucket.

Riak is purely a distributed system. It is designed to be a distributed system. Reading and writing data

and executing map/reduce queries become more faster on adding node to the cluster of the Riak. By Default

value of N = 3 to all the nodes. Which means Riak will replicate all the data 3 times. Distribution of data is

automatically handled by Riak on all the connected nodes.

Comparison Between Riak and CouchDB:

13

Indexing: Riak do not have built-in indexing technique. RiakSearch provides three way to index the

documents [Bas]. Indexing using command line, indexing using Erlang api and index using Solr interface.

Indexing make the reads operation speed much faster.

CouchDB uses B-tree [BCou] to index the document and views. Btree is a built-in indexing mechanism

in CouchDB.

”From a practical point of view, B-trees, therefore, guarantee an access time of less than 10

ms even for extremely large datasets.”[CBT]

Dr. Rudolf Bayer, inventor of the B-tree

Btree creates a relation to data on disk through internal sequence identifier for each record. Which make

the large dataset accessibility faster.

Accessibility and Erlang as a development language: Both Riak and CouchDB are Erlang based.

Hence, inherit all the benefits of Erlang. Riak provide accessibility via HTTP and Protocol buffer but CouchDB

is only accessibility over HTTP.

Fault Tolerance, Scalability and Distributed Database: Riak is a distributed database because in order

to scale Riak we only have to do is to add another node. Riak automatically adjusts load balancing and

replication among the additional nodes. In Riak there is no single point of failure i.e. if any node in the

network is down it will not effect the network, other working nodes automatically respond to the client

requests. As far as my research is concern, there is no other database like Riak which provide that level of

fault-tolerance.

CouchDB is not a distributed system, its a replicating system. Good thing for CouchDB is that you

can arrange all kinds of network topology for replication. It does bi-directional replication i.e. any node

that is off-line whenever it comes on-line all the changes till the last synchronization will be automatically

synchronized. Scalability in CouchDB is very hard to do because you need to implement a sharding layer to

replicate your data between multiple Couches.[CDis]

3.3 Description of selected solution:

Pikkotekk is working on their system called lobby system where multiple player can play multiple games at

the same time, This system has a requirement of a database, that can fulfil the massive growth of users for

there on-line multi player games. Database should provide a powerful, reliable and scalable solution to store

massively multi player on-line game data. Due to its massive users, database should provide high level of

fault tolerance. Downtime of database effects the whole system.

14

Figure 4: LobbySystem

The above figure shows a general architecture of the lobby system. Where UGameDB is the required

database for their system. Unity based games client will either connect to the database through Lobby server

for playing games or by directly through the PikkoServers.

In direct comparison, Riak emerges as the best solution for the above mention system, because of its

scalable and distributed architecture, it can fulfil all the requirement of lobby system.

15

4 Riak - A Distributed database for Distributed system.

Now the desired approach has been selected and described briefly, the concepts involved in completeness of

this project will be presented here.

The main focus of this chapter will be detailed presentation of Riak database. [Bas] Riak comes with

open source/enterprise editions influenced by Dr.Eric Brewers CAP theorem and Amazons dynamo paper.

Riak is build for ease of operations and fault tolerance. Riak is distributed under the license of Apache 2

open source. Riak is written primarily in Erlang and C as a programming language. Since Riak is written

in Erlang, therefore excel in fault tolerance, parallelism and stability. Main feature includes de-centralized

key-value store, flexible Map/Reduce engine, fault tolerance, highly scalable, friendly HTTP/JSON Query

interface that is best suited for web applications.

This chapter is divided in two parts, first part explains the basic theoretical principles of Riak. The second

part will explain Riak from developers aspects.

4.1 Data Storage in Riak:

Riak supports multiple back-end data storage. Bitcask is a default database for Riak and can support plug able

backends data storage like Dets, Ets, Erlang balanced trees (gb trees) and writing directly to the filesystems.

Data in Riak can only be organized in bucket, key and value pair format. Each values in a bucket is

identified by a unique key i.e. each bucket contain a unique pair of key value pairs. Each bucket/key entries

can point to another entries to form a link of entries and these entries can be accessed through link walking

via Riaks HTTP interface.

4.2 Client Libraries in Riak:

Currently Riak supports six client libraries that can be used to interface with Riak. User can select any

language among the supported client libraries. Selection of libraries is also depend upon the application and

programmer ease. The supported languages are:

Erlang: Since Erlang is a development language of Riak, it is tightly integrated with HTTP and protocol

buffer interfaces of Riak.

JavaScript Riak used JQuery in order to interface to Riak. JavaScript is an official language for querying

Riak.

16

Java Support Java language for interfacing. Client can integrate Java based application by using Java

Client for communicating Riak.

PHP Can interface with PHP language using PHP client.

Python: Can interface with Python language using Python client.

Ruby: Ruby is also officially supported language for Riak interfacing.

4.3 Clustering in Riak:

Nodes in Riak form a cluster. This cluster is divided in to Virtual Nodes(Vnodes) and partitions to form a ring

to get all the advantages of Riak. Ring is a 160 bit integer space divided in to equally sized partition[Bas].

Figure 5: RiakCluster

Each node in a ring also known as physical node runs a certain amount of virtual nodes(VNodes). Each

Vnode occupy a single partition in the ring. Partition size of the ring is defined when Riak is configured or

at cluster initialization. To understand more clearly how Riak form a ring cluster, consider partition size of

ring is 32 as shown in above figure. We calculate the number of Vnodes as

17

Vnode = (number of p a r t i t i o n) / (number of nodes)

Each node in a cluster is responsible for 1 / (total number of physical nodes) i.e. if we have 4 nodes then

each nodes is responsible for 8 partitions in ring as shown in above figure.

This shows the followings [Bas]

• There is no master node all nodes in Riak are serving equal purpose.

• Riak uses consistent hashing to distribute data around the cluster.

• Each Node in cluster is capable to serve each client requests.

Moreover, Riak cluster is capable of shrinking and expanding dynamically that is if any node is added or

removed from the cluster. Cluster expands or compact it self to distribute the data accordingly.

4.4 The CAP Theorem:

CAP Theorem was formulate by Professor Brewer from University of California. CAP stands for Consistency,

Availability and Partition tolerance. In distributed system, Partition tolerance also known as fault tolerance

is considered as a most important property [CThe1]. Partition tolerance is a property that implies subsystem

should not respond incorrectly unless whole system failure. If any component of the system is not functional

or have some kind of software or hardware issues then operation should be carried out successful. Consist-

ency means in distributed system operation carried out at one node should have consistent state through

out all the nodes in the system unless explicitly changed. The operation should be carried out as a whole or

should not carried out at all. Availability means system should respond to all client request. There should

not be any case where system fail to respond client request. According to [CThe1][CThe2][CThe3] [CThe4]

the CAP theorem is

It states, that though its desirable to have Consistency, High-Availability and Partition-tolerance

in every system, unfortunately no system can achieve all three at the same time.

4.4.1 SQL, NoSQL Databases Vs CAP theorem:

According to [Bre00] theoretically CAP is required for a distributed systems but in reality only two prop-

erties can be follow. The relational databases like MySQL and Postgres follow consistency and availability.

Since the standard follow by relational databases are ACID. ACID stands for Atomicity, Consistency, Isolation

and Durability. NoSQL databases like MongoDB, Terrastore, Scalaris, Berkeley DB, MemcacheDB and Redis

follow Consistency and partition tolerance. Whereas Cassandra, CouchDB and Riak follow Availability and

Partition tolerance [VSNO].

18

Figure 6: CAP

Riak gives option to the developer to control CAP by giving the feature of changing the value of N, R and

W. Changing these values means tuning Riak by telling how many copies of data you want at bucket level.

This feature makes Riak differ from other NoSQL databases. Riak also provides eventually consistency next

to availability and partition tolerance. Eventually consistency means, that database might be inconsistent for

a very short time. For Riak, eventually consistence is in term of millisecond [TCR].

4.5 Replication In Riak:

Data in Riak is replicated according to the default value of N that is N=3. Which means data in cluster will

be replicated among 3 nodes in the cluster. It is recommended that there should be 3 nodes in a Riak cluster

to get maximum performance from Riak. One can have three or more number of nodes on same machine,

but this will not result in better performance because we are replicating some data on same machine i.e.

each data will have three copies on same machine. Adding physical node in the Riak cluster will result in

sharing load and processing.

To change the N-value for a bucket from default (N=3) to some thing else one can issue a Put command.

$ c u r l −v −X PUT −H ” Content−Type : a p p l i c a t i o n / j son ” −d ’{ ” props ” : { ” n va l ” : 2}} ’

h t tp ://127.0 .0 .1 :8098/ r i ak sea r ch / p layer

19

This command will change the value of N from 3 to 2 i.e. we want Riak to make copies of each data in

bucket 2 times in a cluster.

4.5.1 R Value and Read Fault Tolerance:

For read fault tolerance purpose, Riak allows users to use R value for fetching(reading) data from the bucket.

R value make sure that number of nodes should respond with the result for the read request to consider

successful.

r i a k c p b s o c k e t : get (C l i en t , Bucket , Key , [{ r , 1}])

In above GET command for getting value from bucket ¨Bucket¨ of key ¨Key¨ from open socket ¨Client¨

will send request to all nodes in the cluster and get command will be considered sucessful if any one node

respond with the result. This R value improve read fault tolerance in Riak.

4.5.2 W Value and Write Fault Tolerance:

For write fault tolerance purpose, Riak allow users to use W value to Write/Update data in to the bucket. W

value make sure that number of nodes should result in a successful write for a request to consider sucessful.

r i a k c p b s o c k e t : put (C l i en t , In se r tOb j e c t , [{w, 2}])

The above PUT command will insert Object stored in variable ¨InsertObject¨ with W value 2. Which

means objects will be inserted according to value of N but this request will be considered successful only if 2

nodes in cluster will respond successful write.

4.5.3 Conflict Handling in Riak:

Since Riak is a distributed database, many users can commit a transaction at the same time to the same

or different nodes. Although, due to high availability in Riak, all nodes in Riak cluster are not required to

respond to client request any single node in cluster is fully capable to respond to client request. Multiple

clients can update same attribute at the same time this can cause conflict in database. Different NoSQL

databases use different techniques to solve conflicts in distributed database.

Cassandra uses time stamps to tag the data and compare the time stamps to determine the newest version

of the data.

MongoDB uses last one wins techniques to resolve conflicting issues [RVN].

Neo4j uses traditional RDBMS techniques to solve conflicts in database. Unlike Riak which ensure that

database is always available for datastorage, Neo4j do not allow conflict to happen on the first place and do

necessary precautions to prevent from happening. These techniques are describe in [NeoTrans].

20

In Riak for solving conflict issues vector clock is used. To allow multiple users to change same attribute of

a bucket at the same time. We need to enable allow mult property to true. By default this property is false.

$ c u r l −v −X PUT −H ” Content−Type : a p p l i c a t i o n / j son ”

−d ’{ ” props ” : { ” a l low mult ” : t rue }} ’ \

ht tp ://127.0 .0 .1 :8098/ r i a k /Bucket name

this command will enable allow mult property to true for the bucket named ¨Bucket name¨. Vector

clock keeps track of all the versions of data on the bucket where allow mult property is true. When a value

is stored in Riak, vector clock initialize a first version of the vector clock. When another user or a same user

wants to change the same data, he will provide the previous updated vector clock of the object in order to

change the current object. Changes applied by the next user issue another vector clock for that object. In

this way, Riak resolves the conflict problems.

4.6 HTTP Interface:

Riak uses REST API (Application Programming Interface) for accessing object from the cluster. Riak uses

HTTP GETs, PUTs or POSTs for the storage operation and reading link walking and MapReduce. Applications

that uses Rest as their API can access everything via HTTP interface like images, videos, audios in short every

kind of data.

4.7 Components of Riak:

The latest release of Riak comes with the following components.

1. Riak Core - Dynamo-Inspired distributed systems framework.

2. Riak KV - Distributed Key/Value store inspired by Amazons Dynamo.

3. Riak Search - Distributed index and full-text search engine.

Riak search is a sub component of Riak KV. If you have Riak search install and running then you also

have RiakKV cluster. Which means, by using Riak search you can get advantages of both Riak KV and Riak

Search.

4.7.1 RiakSearch:

RiakSearch is build around RiakCore and tightly integrated with RiakKV [RSea]. Due to these factor, Riak-

Search inherit advantages of distributed, scalable, fault tolerance and real time from Riak KV. RiakSearch

provides features which includes full text search engine facility and built-in indexing of data.

21

RiakSearch provide build-in indexing service of data that makes the reading and writing the data in to

the database much faster.

4.7.1.1 Indexing In RiakSearch: For indexing documents in RiakSearch, system use a schema file in

which we define a required fields, unique keys and the default analyser for each field. Each bucket have its

individual file.

RiakSearch tokenizes the schema file or document in to an inverted index using standard Lucene Analayzer

[RSea]. When the document is inverted index RiakSearch uses consistent hashing to distribute the indexed

data across the cluster called term partitioning. According to [TPI] by using term partitioning in distributed

databases increase the overall throughput of the query with large data set.

4.7.1.2 Querying in RiakSearch: Querying in RiakSearch is done by following lucene syntax. Lucene

query has an advantage of full-text search engine. Lucene query syntax support term searches, lexicograph-

ical range queries, field searches and wild card searches.

Querying any database involve two steps which are planning and executing. In planning database tries

to maximize data locality and inter-node traffic. In executing step database tries to find the nature of the

query. If the query is single term query then it will be executed on single node. Where as wild card queries

and range queries are executed in multiple nodes.

RiakSearch uses a series of merge-joins, merge-intersections and filters to generate the resulting set of

matching bucket/key pairs[RSea].

22

5 Implementation Environment:

5.1 Erlang:

Erlang was develop in 1980 by company named Ericsson. Erlang is short abbreviation of Ericsson Language.

The history behind Erlang is, group of person were doing a research on some series of programming language

to find the best suited language for telecommunication. Unfortunately they did not find the best match, so

they end up by implementing there own language known as Erlang.

Erlang was developed to satisfy the highly concurrent need of Telecom applications. Moreover, it is

also good at satisfying the need of multiple concurrent processes, distributed applications, fault tolerance

and ability of handling large amount of concurrent transactions. Erlang is considered as one of the best

programming language for distributed systems. Jeo Armstrong one of the main developer of Erlang release

the first version of Erlang in 1986 at Ericsson Computer Science Laboratory. Since then continuous progress

has been made up till now to make Erlang one of the best functional language for telecommunication.

In 1996 Ericsson released an API known as OTP (Open Telecom Platform) in Erlang. OTP offered lot

of testing, error handling mechanism and techniques for system robustness. Erlang become officially open

sourced for public in 1998.

5.2 Looby Server:

Looby server is distributed system that is implemented in Erlang/OTP at PikkoTekk. Below figure shows a

general framework of Looby Server.

23

Figure 7: Lobby Interface

the bottom layer in the figure 7 is database layer. This layer deals with the database operations which

includes all the inventory information, user statistics, player information and games information at the lobby

server. User connects to the lobby server by giving there credential information. After successful logon, user

have to create an instance of the game he/she wants to play. Lobby server have predefined list of games that

player can choose and can create instance of each game. Users can also include the game of its own choice

on the server to be played among his peers. Since lobby system is a multi player application, so multi user

can logon and can join any game they want. Each player in the system can play many games at the same

time or can create instance of more them one game at the same time.

Whenever game want to get or save data to/from the database it will communicate with database API.

Database API responsibility is to communicate with database and in response from the database, data is

forward to the database API. Database API inform the result of communication with the database to the

game.

24

5.3 Unity:

[U3d]Unity is a game development tool. Unity provides simple IDE for designing and developing 3d games

faster and easily. JavaScript and C#.Net is main game development language support by unity. Game

developer can use unity on MAC and Windows platforms.

The feature provides by unity are

• Integrated Editor

• Component based Architecture

• Game Engine

• Scripting Platform

Unity provides an integrated editor where user can organize there games objects, games assets, games

scripts in hierarchy order. It contains very powerful interface where one can drag and drop games objects

on to the game and can get live view of the game in development mode. Switching from development mode

to play mode only started moving object and add animation to it. This feature is very helpful for the game

developer.

Game engine in Unity contains all the necessary tools that are required to develop games not only for

browsers also for portable devices. such as

• Graphics Engine (For 3d graphics purposes etc)

• Physics Engine (For changing object movement etc)

• Audio Engine (Engine that can play audio in 2D and 3D space)

• Animation systems (for mixing and real time vertex/bone reassignment etc)

Provide Scripting platform that embed mono (Software that allows developer to programme any lan-

guage on any platform or that makes languages platform independent). Support scripting language include

c#, JavaScript and boo [Ubas]

5.4 Database Design:

The requirement of distributed database is to handle the massive amount of games data from massive on-

line multi players. Game data includes player information, game information, which player is playing which

game, which player is playing against which player, group of players, group against which group of players,

score of each player on each game and inventory information of each player.

Schema file for Riak is as fellows

25

{

schema ,

[

{ vers ion , ”1 .1 ”} ,

{ d e f a u l t f i e l d , ” Nickname ”} ,

{ defau l t op , ” or ”} ,

{n val , 3} ,

{ a n a l y z e r f a c t o r y , { erlang , t e x t a n a l y z e r s , s t a n d a r d a n a l y z e r f a c t o r y }}

] ,

[

%% Don ’ t parse the f i e l d , t r e a t i t as a s i n g l e token .

{ f i e l d , [

{name , ” fname ”} ,

{ a n a l y z e r f a c t o r y , { erlang , t e x t a n a l y z e r s , s t a n d a r d a n a l y z e r f a c t o r y }}

]} ,

%% Don ’ t parse the f i e l d , t r e a t i t as a s i n g l e token .

{ f i e l d , [

{name , ” lname ”} ,

{ a n a l y z e r f a c t o r y , { erlang , t e x t a n a l y z e r s , s t a n d a r d a n a l y z e r f a c t o r y }}

]} ,

%% Don ’ t parse the f i e l d , t r e a t i t as a s i n g l e token .

{ f i e l d , [

{name , ” Nickname ”} ,

{ a n a l y z e r f a c t o r y , { erlang , t e x t a n a l y z e r s , s t a n d a r d a n a l y z e r f a c t o r y }}

]} ,

%% Don ’ t parse the f i e l d , t r e a t i t as a s i n g l e token .

{ f i e l d , [

{name , ” Ins tance ID ”} ,

{ a n a l y z e r f a c t o r y , { erlang , t e x t a n a l y z e r s , s t a n d a r d a n a l y z e r f a c t o r y }}

]} ,

%% Don ’ t parse the f i e l d , t r e a t i t as a s i n g l e token .

{ f i e l d , [

{name , ”gameID ”} ,

{ a n a l y z e r f a c t o r y , { erlang , t e x t a n a l y z e r s , s t a n d a r d a n a l y z e r f a c t o r y }}

26

]} ,

%% Parse the f i e l d in prepara t ion fo r f u l l−t e x t search ing .

{ f i e l d , [

{name , ”qname”} ,

{ a n a l y z e r f a c t o r y , { erlang , t e x t a n a l y z e r s , s t a n d a r d a n a l y z e r f a c t o r y }}

]} ,

%% Parse the f i e l d in prepara t ion fo r f u l l−t e x t search ing .

{ f i e l d , [

{name , ” itemname ”} ,

{ a n a l y z e r f a c t o r y , { erlang , t e x t a n a l y z e r s , s t a n d a r d a n a l y z e r f a c t o r y }}

]} ,

%% Parse the f i e l d in prepara t ion fo r f u l l−t e x t search ing .

{ f i e l d , [

{name , ” i temvalue ”} ,

{ a n a l y z e r f a c t o r y , { erlang , t e x t a n a l y z e r s , s t a n d a r d a n a l y z e r f a c t o r y }}

]} ,

%% Parse the f i e l d in prepara t ion fo r f u l l−t e x t search ing .

{ f i e l d , [

{name , ” competitorName ”} ,

{ a n a l y z e r f a c t o r y , { erlang , t e x t a n a l y z e r s , s t a n d a r d a n a l y z e r f a c t o r y }}

]} ,

%% Parse the f i e l d in prepara t ion fo r f u l l−t e x t search ing .

{ f i e l d , [

{name , ” score ”} ,

{ type , i n t e g e r } ,

{ padding s ize , 10} ,

{ a n a l y z e r f a c t o r y , { erlang , t e x t a n a l y z e r s , i n t e g e r a n a l y z e r f a c t o r y }}

]} ,

%% Treat the f i e l d as a date , which c u r r e n t l y uses noop ana lyze r f a c to ry .

{ f i e l d , [

{name , ” date ”} ,

{ type , date } ,

{ a n a l y z e r f a c t o r y , { erlang , t e x t a n a l y z e r s , s t a n d a r d a n a l y z e r f a c t o r y }}

]} ,

27

%% A dynamic f i e l d . Anything ending in ” t e x t ” w i l l use the s t a n d a r d a n a l y z e r f a c t o r y .

{ dynamic f ie ld , [

{name , ”∗ t e x t ”} ,

{ a n a l y z e r f a c t o r y , { erlang , t e x t a n a l y z e r s , s t a n d a r d a n a l y z e r f a c t o r y }}

]} ,

%% A dynamic f i e l d . Catches any remaining f i e l d s in the

%% document , and uses the a n a l y z e r f a c t o r y s e t t i n g def ined

%% above fo r the schema .

{ dynamic f ie ld , [

{name , ”∗”}

]}

]

} .

The above schema shows the schema file for game database. Any bucket on which this schema file is

loaded will automatically index the fields according to fields name. These fields are player first name(fname),

player last name(lname), PlayerNickname, Game Instance ID(InstanceID), Game ID (gameID), quest name

(qname), Weapon ID (Itemname), Weapon stat (Itemvalue), Player Score (score), date and time.

5.5 Interfacing With Riak Database:

Since Unity and Riak both are platform dependent. Unity can only run under windows or MAC platform and

Riak do not support windows and currently supports only Linux platform. Keeping these limitation in mind,

there is a need of APIs that can interact between game and database.

So the proposed architecture is:

28

Figure 8: Interfaces

Lobby system have lot of games and each games have many players. Whenever, game need data from the

database. Game will try to connect to the socket server and request IP address and port of data server from

where it can get data. Socket server is connected with data servers and have list of available and working

data servers. If any data server is up or down socket server is informed about the current status of each data

server. So socket server respond game request by providing the running and feasible data server IP and port

address. Having IP and port of the data server, now game can send database operations or query request to

the database servers. Database server are connected to Riak nodes. Riak can respond to any request from

data server distributively.

5.5.1 Socket Server Interface:

Most of the socket server API functions are written in socketserver.erl.

The socket server interface was designed to enable communication between Linux(Riak) and Windows(Unity

Games). In Linux node, there is always a socket running named ”Socketserver”. The functionalities of the

29

socket server are.

• Provide Dynamic Port functionality

• Provide Multi Socket support

Figure 9: Socket Server Interface

Each game will be assigned a dynamic port so that each game can get individual port. Dynamic port is

very effective because sending a receiving massive data to/from one port and cause problem in long terms.

Multi socket is very helpful for fault tolerance purposes. Putting load on one socket can be cause of

bottleneck and abnormal terminations. Techniques are applied so that load sharing between the data server

can be handled.

5.5.2 Data Servers:

Most of the data server functions are written in module erl api.erl

Data server is an API that is used to communicate with Riak directly. It contains functions that are

responsible for doing database operations on the database.

Since Riak is key-bucket store so the data should be stored in form of key bucket value. By keeping this

in mind, I am populating data in Riak in form of

Bucket , Key , [{ f i e l d1 , value1 } ,{ f i e l d2 , value2 } ,{ f i e l d3 , Value3 }

In this case we have unique key and each key contain values of all the attributes of the schema shown in 5.5.

5.5.2.1 List buckets(Riak Client Object): This function is used to fetch the list of all the buckets in

the database. Riak Client Object is an object of Riak client, in our case I am using Erlang as Riak Client.

30

L i s t b u c k e t s (C l i e n t) .

This function call will return all the bucket from Riak object Client.

5.5.2.2 List keys(Bucket,Riak Client Object): This function is used to fetch all the keys that a bucket

¨Bucket¨ contains. Where B̈ucketänd R̈iak Client Objectäre two parameters required for that function.

B̈uckets̈hould be name of the bucket from where the list of keys are required.

L i s t k e y s (Player , C l i e n t)

This function call will return all the keys from bucket P̈layer¨.

5.5.2.3 Get bucket values(Bucket,Key,Riak Client Object): This function is used to fetch all the val-

ues from the bucket. Where Bucket, Key and Riak Client Object are the two parameters required for that

function. Since each key in bucket contain all values of the attributes of the schema so this function will

return values of specified key K̈ey¨. For example

ge t bucke t va lue s (Player , yousaf , C l i e n t) .

This function call will return values with there attributes from bucket ¨Player¨ of Key ¨Yousaf¨.

5.5.2.4 Search key(Bucket, Query,Riak Client Object): This function will query the database for the

specific query and return the number of keys that fulfil the query condition. Where Bucket, Query and

Riak Client Object are the parameter required for the function. This function can also return result for query

of types wildcards and range. Query parameter needs the desired indexed query.

search key (Player , date :[20110501 TO 20110601] , C l i e n t) .

This function call will return the key from bucket ¨Player¨ that are generated from date 2̈0110501¨ to

2̈0110601¨.

5.5.2.5 Insert data(Bucket,Key,Data,Riak Client Object) This function is used to insert data in to the

database. Where Bucket, Key, Data and Riak client Object are the parameters that are required for this

function. Data should be in format of list with tuples.

i n s e r t d a t a (Player , t e s t , [{ playername , t e s t 1 } ,{ score ,0} ,{ data ,201106026} ,{gameID

, snowbox }] , C l i e n t) .

This function call will insert one record into the database of bucket ¨Player¨ with key ẗesẗ.

31

5.5.2.6 Delete key(Bucket,Key,Riak Client Object): This function is used to delete any key in the

bucket. Where Bucket, Key, Raik Client Object are the required parameters of the function. Key to be

deleted has to be passed to the parameter ¨Key¨

de l e t e key (Player , yousaf , C l i e n t)

This function call will delete the key ¨yousaf¨ from bucket P̈layer̈.

5.5.2.7 Update value(Bucket,Key,Field,Value,Client): This function is used to update the current value

of any key in the database. Where required parameter are Bucket, Key, Field, Value, Riak Object. Field is

attribute of the bucket whose value is required to update. Value is the updated value.

update value (Player , yousaf , score , 200 , C l i e n t)

This function call will update the value of attribute ¨score¨ to 200 from key ¨yousaf¨ of bucket P̈layer¨.

5.5.2.8 Search by field(Bucket,Key,Field,Client): This function returns value of specified attribute.

Where required parameter are Bucket, Key, Field, Riak Object. Field is the parameter, where the required

attribute name is passed to fetch the value from the database.

S e a r c h b y f i e l d (Player , yousaf , playername , t e s t 1) .

this function call will search for the player name whose value is test1 and return the complete record of

it.

5.5.3 C# Interface:

Function of this interface is to provide user friendly environment for the game developer. There are two

class designed named Bucket.cs and Database.cs. These two class provides ease to the programmer to work

around the database.

Database class is a singleton class to connect to the Riak database. This class contains all the methods

required for the connection to the database. To connect to the database programmer has to create an instance

of that class. Object created by this instance can be used any where in the class.

Database b = Database . ge t In s t ance ;

b . connect (MasterSocketIP , MasterSocketPort) ;

Since Riak is a bucket key-value store, Bucket.cs is designed so that programmer can create instance of

any bucket he want to use. Instance of any bucket created by this class can be used any where in the class.

32

Benefit of this class is, programmer do not have to specify bucket name again and again for any database

operation. for example

Bucket a = new Bucket (b , ” p layer ”) ;

This class required two parameters. Database Object and name of the Bucket. This class act as a diction-

ary for the programmer like game developer can add, update and delete objects from bucket.

a . add (” pe ter ” , ” playername ” , ” Pe ter ”)

a . de l e t e (” pe te r ”)

a . update (” yousaf ” , ” score ” , ”300”)

33

6 Testing and Evaluation:

This chapter introduces some techniques to test and evaluate the database.

6.1 Testing by Integrating with The Game:

PikkoTekk develop a test game for testing the overall system known as SnowBox. The sequence diagram

for some database operations that involves all the modules involved in the process is described in the figure

below

Figure 10: Sequence Diagram of DB transactions

The figure 10 shows a use case of user to login into the system, does set of transactions on the database

and logout to the system. The live demonstration of the game is shown in the figure below

34

Figure 11: Snowbox Game

6.2 System Performance Evaluation:

The process to evaluate the performance of the database is carried out by executing a set of transaction that

includes the get/select and puts/insert/update on the database via database API. One of the requirements

of Pikkotekk is to evaluate the performance of Riak, CouchDb and Mysql. For this purpose separate API is

designed to communicate with each database separately. Each API executes a fix number of transactions on

the database.

The file riaktest.erl, mysqltest.erl and couchtest.erl are used. Each file contains a group of API functions

which are required to test the performance of the database such as creating a unique key to be inserted each

time the put transaction is applied, getting a set of keys/buckets or records from the database.

Databases are evaluated by the number of transactions per seconds and maximum number of user can

be connected to the database on the fixed number of time. For this purpose I choose Tsung. Tsung is an

open source distributed load testing and performance evaluation tools for client server applications. All

three database are executed under tsung with the parameters of 200 users that runs parallel to execute the

transactions to be hit on the database in the duration of 1 minutes.

6.2.1 CouchDB Vs MySQL VS Riak Under 1 node Cluster:

The comparison between CouchDB, MySQL and Riak is:

35

Figure 12: CouchDB TransactionRate

Figure 12 shows that, by concurrently executing 200 users CouchDB manage to execute maximum of 140

transactions per seconds in the duration of 1 min.

Figure 13: CouchDB Users Arrival Rate

Figure 13 show that, after approx 10 sec tsung manage to send approx 130 user connections request

out of which CouchDB able to connect only approx 120 users per second successfully at time duration of 1

36

minutes CouchDB connects 140 users per seconds.

Figure 14: MySQL TransactionRate

Figure 14 shows that, by concurrently executing 200 users MySQL manage to execute maximum of

approx 130 transactions per seconds in the duration of 1 min.

Figure 15: MySQL User Arrival Rate

37

Figure 15 show that, after approx 10 sec tsung manage to send approx 120 user connections request out

of which MySQL able to connect only approx 110 users per second successfully and at time duration of 1

minutes MySQL connects approx 130 users per seconds.

Figure 16: Riak Transaction Rate

Figure 16 shows that, by concurrently executing 200 users per second Riak manage to execute maximum

of 160 transactions per seconds in the duration of 1 min.

38

Figure 17: Riak Users Arrival

Figure 17 show that, after approx 10 sec tsung manage to send approx 150 user connections request

out of which Riak able to connect only approx 133 users per second successfully and at time duration of 1

minutes. Riak connects approx 160 users per seconds.

From above comparison, it is concluded that Riak performs better in comparison to CouchDB and MySQL.

6.2.2 Comparison Between 1 and 2 Riak Nodes:

To get the maximum numbers of transaction per seconds and users per seconds parameter for evaluation are

changed. Previously maximum users are based at 200 users per sec and total time duration was 1 minute but

now users are increased to 5500 and total time will be 5 minutes. These parameter are defined on tsung.xml.

<?xml ver s ion =”1.0”?>

<!DOCTYPE tsung SYSTEM ”/ usr / l o c a l / share / tsung / tsung −1.0. dtd”>

<tsung l o g l e v e l =”no t i c e ” ve r s ion =”1.0”>

<c l i e n t s >

<c l i e n t host=” l o c a l h o s t ” u se con t ro l l e r vm=”true ” weight=”5” maxusers=”100000”/>

</ c l i e n t s >

<se rver s>

<s e r ve r host =”130.238.11.182” por t =”8098” type=”tcp ”/>

<s e r ve r host =”130.238.11.167” port =”8098” type=”tcp ”/>

</se rve r s>

<monitoring>

<monitor host=”myserver ” type=”snmp”/>

</monitoring>

<load>

<a r r i v a l p h a s e phase=”1” durat ion =”27” un i t=”second”>

<user s a r r i v a l r a t e =”455” un i t=”second”/>

</a r r i va lphase>

<a r r i v a l p h a s e phase=”2” durat ion =”27” un i t=”second”>

<user s a r r i v a l r a t e =”910” un i t=”second”/>

</a r r i va lphase>

39

<a r r i v a l p h a s e phase=”3” durat ion =”28” un i t=”second”>

<user s a r r i v a l r a t e =”1365” un i t=”second”/>

</a r r i va lphase>

<a r r i v a l p h a s e phase=”4” durat ion =”27” un i t=”second”>

<user s a r r i v a l r a t e =”1820” un i t=”second”/>

</a r r i va lphase>

<a r r i v a l p h a s e phase=”5” durat ion =”28” un i t=”second”>

<user s a r r i v a l r a t e =”2275” un i t=”second”/>

</a r r i va lphase>

<a r r i v a l p h a s e phase=”6” durat ion =”28” un i t=”second”>

<user s a r r i v a l r a t e =”2730” un i t=”second”/>

</a r r i va lphase>

<a r r i v a l p h a s e phase=”7” durat ion =”27” un i t=”second”>

<user s a r r i v a l r a t e =”3185” un i t=”second”/>

</a r r i va lphase>

<a r r i v a l p h a s e phase=”8” durat ion =”27” un i t=”second”>

<user s a r r i v a l r a t e =”3640” un i t=”second”/>

</a r r i va lphase>

<a r r i v a l p h a s e phase=”9” durat ion =”27” un i t=”second”>

<user s a r r i v a l r a t e =”4095” un i t=”second”/>

</a r r i va lphase>

<a r r i v a l p h a s e phase=”10” durat ion =”27” un i t=”second”>

<user s a r r i v a l r a t e =”4550” un i t=”second”/>

</a r r i va lphase>

<a r r i v a l p h a s e phase=”11” durat ion =”28” un i t=”second”>

<user s a r r i v a l r a t e =”5500” un i t=”second”/>

</a r r i va lphase>

40

</load>

<opt ions>

<opt ion type=” t s h t t p ” name=”user agent ”>

<user agent p r o b a b i l i t y =”80”>Mozi l la /5.0 (X11 ; U; Linux i686 ; en−US; rv : 1 . 7 . 8) Gecko/20050513 Galeon /1.3.21</ user agent>

<user agent p r o b a b i l i t y =”20”>Mozi l la /5.0 (Windows ; U; Windows NT 5 .2 ; f r−FR ; rv : 1 . 7 . 8) Gecko/20050511 F i r e f o x /1.0.4</ user agent>

</option>

</opt ions>

<se s s ions>

<s e s s i o n name=”http−example ” p r o b a b i l i t y =”100” type=” t s h t t p ”>

<request> <ht tp u r l =”/ s o l r / p layer / s e l e c t ?q=playername : yousaf ” method=”GET” ver s ion =”1.1”/> </request>

<th inkt ime value =”1” random=” f a l s e ”/>

</ses s ion>

</se s s ions>

</tsung>

The result on running on 1 Riak node are:

Results of 1 Riak Node:

Figure 18: Riak Transaction Rate at 5500 users on 1 Riak node Cluster

Figure18 shows that on 1 node Riak cluster, 1200 transactions per seconds can be performed.

41

Figure 19: Riak Users Arrival Rate at 5500 user on 1 Riak node Cluster

figure19 shows that around 15,00 users requested to connect to the database per seconds but only max-

imum of 1200 users per seconds are able to connect to database. Lets see what happen if we add another

node in to the cluster.

Results of Adding another node into the Riak Cluster:

42

Figure 20: Riak Transaction Rate at 5500 user on 2 Riak node Cluster

By adding another node into the Riak cluster transaction rate per seconds increases from 12,00 to approx

15,00 transaction per seconds as shown in figure 20.

Figure 21: Riak Users Arrival Rate at 5500 user on 2 Riak node Cluster

As in 1 node, Riak could not responds to all the users request per seconds but by adding another physical

node in to the cluster scale the database by responding to all the users requests as shown in the figure 21.

6.2.3 Riak Benchmark Evaluation:

Riak benchmark is done using the Basho´s measurement software that determine the number of transactions

per seconds executed per second. The benchmark requires a configuration file, which contains necessary

parameter to start the benchmark. It executes the given number of worker that simultaneously perform the

given task.

{mode , max} .

{durat ion , 5} .

{ concurrent , 1000} .

{ dr iver , ba sho bench dr i ve r r i akc pb } .

{ code paths , [”/home/ yousaf / basho bench /deps/ s t a t s ” ,

”/home/ yousaf / basho bench /deps/ r i a k c ” ,

”/home/ yousaf / basho bench /deps/ p ro tobu f f s ”] } .

43

{ key generator , { i n t t o b i n , {uni form int , 10000}}} .

{ va lue genera tor , { f i x ed b in , 10000}}.

{ r i a k c p b i p s , [{130 ,238 ,11 ,182} ,{130 ,238 ,11 ,167}]} .

{ r i a k c p b r e p l i e s , 1} .

{ operat ions , [{ get , 4} , {put , 4}]} .

{mode,max} parameter wants information about the number of operation to be perform on the data-

base. where max means as many operation per seconds possible.[BeB]

{duration,5} parameter need information about the duration of total time for the benchmark.

{concurrent,1000} This parameter shows, how many parallel processes/worker should perform the

task.

{riakc pb ips} wants the information about the IP’s of nodes connected to the Riak cluster.

{riakc pb replies,1} wants information about how many nodes should respond to consider a successful

read or write.

{operations,[{get,4},{put,4}]} want how many read/get and write/put per worker should perform on

the database.

Figure 22: Riak Benchmark

According to figure22, Riak cluster benchmark performs around 1000 operations per seconds in the

duration of 600 sec.

44

7 Conclusion

During the project, I have fulfil the requirements of PikkoTekk to provide a powerful, reliable and scalable

solution to store massive multiplayer online game data. Which involves design and implementation of

distributed database. To embed the solution into their systems architecture is designed and implemented.

According to my research, I found Riak efficient in performance, highly and easily scalable. Its built in load

balancer and replication among the nodes in the cluster is very powerful functionality that differentiate Riak

among others NoSQL databases.

Unlike any other NoSQL database Riak is purely a distributed database. If your application is massively

increasing the no of users and you need to scale your database. If you choose Riak, you only need to add

physical node into the cluster according to the growing need of the users. Performance, load balancing and

data distribution Riak handles by himself. In comparison with CouchDB, I found CouchDB ease of use but

very difficult to scale. Both Riak and CouchDB provides features to increase the performance of reading and

writing to the database.

Riak is developed in Erlang, thus inherit concurrent process execution, efficient error handling and stable

performance.

45

8 References

[SORa] Oracle ht tp :// sea r cho rac l e . t e c h t a r g e t . com/ d e f i n i t i o n / Oracle

[CBT] CouchDB B−Tree ht tp :// guide . couchdb . org / d r a f t / b t ree . html

[DBM] DBMS ht tp :// en . wik ipedia . org / wiki / Database management system

[PKT] PekkoTekk AB ht tp ://www. pikkotekk . com

[BeB] Benchmarking with Basho Bench

ht tp :// wiki . basho . com/Benchmarking−with−Basho−Bench . html

[RVN] Riak Comparison ht tp :// wiki . basho . com/Riak−Comparisons . html .

[TCR] Tunable CAP Contro l s in Riak . h t tp :// wiki . basho . com/Tunable−CAP−Contro l s

−in−Riak . html

[TSU] Tsung an open−source multi−pro toco l d i s t r i b u t e d load t e s t i n g t o o l

h t tp :// tsung . er lang−p r o j e c t s . org /

[TPI] Mauric io Marin , Car los Gomez−Pantoja , Senen Gonzalez , Veronica Gi l−Costa

Schedul ing I n t e r s e c t i o n Queries in Term P a r t i t i o n e d Inver ted F i l e s

[U3d] About Unity ht tp :// unity3d . com/ uni ty / .

[Ubas] Unity Bas i c An In t roduc t i on ht tp :// technology . b l u r s t . com/ unity−bas i c s−overview /

[RSea] Riak Search ht tp :// wiki . basho . com/Riak−Search . html .

[NeoTrans] Transac t ions in Neo4j h t tp :// wiki . neo4j . org / content / Transac t ions .

[VSNO] V i sua l Guide to NoSQL systems ht tp :// blog . nahurst . com/ v i sua l−guide−to−nosql

−systems .

[Bre00] Brewer , E r i c A . : Towards robust d i s t r i b u t e d systems (a b s t r a c t) . PODC, 7 , 2000.

[CThe1] Brewer Conjuecture and the F e a s i b i l i t y of Cons i s tent , Ava i lab le , P a r t i t i o n−

Tolerant web s e r v i c e s .

h t tp :// c i t e s e e r x . i s t . psu . edu/viewdoc/download? doi =10.1.1.20.1495& rep=rep1&type=pdf

[CThe2] CAP theorem ht tp :// devblog . streamy . com/2009/08/24/cap−theorem/

[CThe3] CAP Theorem ht tp :// guide . couchdb . org / d r a f t / cons i s t ency . html

[CThe4] CAP Theorem ht tp ://www. royans . net / arch / brewers−cap−theorem−on−d i s t r i b u t e d

−systems / .

[CDis] Sharding in CouchDB ht tp :// wiki . apache . org /couchdb/ C o n f i g u r i n g d i s t r i b u t e d

sys tems

[BCou] The power of B−Tree ht tp :// guide . couchdb . org / d r a f t / b t ree . html .

[Bas] In t roduc t i on to Riak ht tp :// wiki . basho . com/An−In t roduc t ion−to−Riak . html .

46

[LND] L i s t of NoSQL databases and t h e i r f a m i l i e s . h t tp :// nosql−database . org /

[MRD] MySQL r e p l i c a t i o n Documentation . h t tp :// dev . mysql . com/doc/refman /5.5/ en/

r e p l i c a t i o n . html

[Crep] Couch DB − The D e f i n i t i v e Guide Re p l i c a t i o n . h t tp :// guide . couchdb . org / d r a f t /

r e p l i c a t i o n . html

[OMS] Overview of MySQL Server ht tp :// dev . mysql . com/doc/refman /5.5/ en/what−i s−mysql . html

[Cinfo] CouchDB In t roduc t i on

ht tp :// couchdb . apache . org / docs / i n t r o . html

[HAC] High A v a l i b i l i t y and S c a l i b i l i t y of MySQL . ht tp :// dev . mysql . com/doc/refman /5.5/ en/

ha−overview . html

[GPGD Group PostGRESQL Global Development : Rep l i ca t ion , C lus te r ing , and Connection Pool ing .

h t tp :// wiki . p o s t g r e s q l . org / index . php? t i t l e=Re p l i c a t i on%2C Clus t e r ing%2C and Connect ion

Pool ing&o ld id=10880

47

	exjobbsframsida
	Abstract
	ThesisReport.pdf
	Introduction
	Research background
	Task of the thesis:
	Outline of Thesis:

	Theoretical Basis:
	SQL: (Structured Query Language)
	Difference Between NoSQL and SQL:

	Analysis
	Requirement of Distributed Database:
	Distributed Database Advantages:

	Databases:
	MySQL
	CouchDB:
	Riak

	Description of selected solution:

	Riak - A Distributed database for Distributed system.
	Data Storage in Riak:
	Client Libraries in Riak:
	Clustering in Riak:
	The CAP Theorem:
	SQL, NoSQL Databases Vs CAP theorem:

	Replication In Riak:
	R Value and Read Fault Tolerance:
	W Value and Write Fault Tolerance:
	Conflict Handling in Riak:

	HTTP Interface:
	Components of Riak:
	RiakSearch:

	Implementation Environment:
	Erlang:
	Looby Server:
	Unity:
	Database Design:
	Interfacing With Riak Database:
	Socket Server Interface:
	Data Servers:
	C# Interface:

	Testing and Evaluation:
	Testing by Integrating with The Game:
	System Performance Evaluation:
	CouchDB Vs MySQL VS Riak Under 1 node Cluster:
	Comparison Between 1 and 2 Riak Nodes:
	Riak Benchmark Evaluation:

	Conclusion
	References

