Evaluation and Treatment of Vascular Injury

Jason A. Lowe, MD September 2014

Prior versions Timothy McHenry, MD; March 2004 Heather Vallier, MD; January 2006

Identify vascular injuries

Confidently and accurately evaluate vascular injury

Coordinate treatment

1-3% of all extremity trauma

Occurs more with penetrating trauma GSW 46% Blunt 19% Stabbing 12%

Pathology of Injury

Spasm Intimal flap External compression Compartment syndrome Hematoma **Thrombus** Laceration/transsection **External projectiles Bone fragments**

Successful diagnosis and management of extremity vascular injuries requires:

*Thorough history and physical *High index of suspicion *Rapid administration of care Mechanism of injury heightens the surgeon's awareness of potential vascular insult

Considerations: *Fracture Personality *Presence of dislocation *Blunt trauma vs penetrating trauma

High Risk Fractures

Open fractures

Segmental diaphyseal fractures

Floating limbs

Associated crush injuries

Fracture Specific Vascular Injuries

Clavicle Supracondylar humerus Pelvic ring Distal femur Tibia plateau Tibia shaft Subclavian Brachial Gluteal, Iliac, Obturator Popliteal Popliteal tibial

Dislocations Associated with Vascular Injury

Scapulothoracic dissociation 64-100% Knee dislocation 16%

Stretching or shearing of vessels

Intimal damage/dissection, thrombus

Subtle clinical findings

27% amputation rate

Penetrating Injury

Direct injury to vessel: Laceration/transsection

Exam findings: May not always be obvious

Delayed pseudo-aneursym and AVF

9% amputation rate

Physical Exam

Hard Signs Pulsatile bleeding

Expanding hematoma

Thrill at injury site

Pulseless limb

Soft Signs Asymmetric limb temperature

Asymmetric pulses

Injury to anatomically-related nerve

History of bleeding immediately after injury

Vascular injuries are dynamic injuries!

Repeat examinations

Emergency Department Management

Control Bleeding Compressive dressing Judicious tourniquet

Fluid resuscitation

Reduce & splint fractures

Re-evaluate

Ankle Brachial Index

Indications Asymmetric pulses Soft exam findings High energy tibia plateau fractures All knee dislocations

Vascular consult and advanced imaging for ABI <0.9

ABI does not define extent or level of injury

Ankle Brachial Index

Benefits Cheap Easy Negative predictive value between 96% and 100%

Limited diagnosis Venous injuries False positive with arterial spasm Injuries can preclude cuff placement

Technician dependent

Time intensive

Steep learning curve

Limited indication in acute trauma patients

Angiography

Historical Gold Standard

Localizes the lesion

Defines type and extent of lesion Active hemorrhage vs occlusion

Allows treatment planning embolization vs bypass

Angiography Disadvantages

Patient risks Renal insult Anaphylaxis latrogenic vessel injury

Expensive

Difficult to resuscitate patients

Delays operative intervention

<u>Multi-Detector CT</u> <u>Angiography (MDCTA)</u>

Replacing angiography as standard of care

95% sensitivity and 87% specificity

Decreased contrast load

Fast

Effective costwise

MDCTA Disadvantages

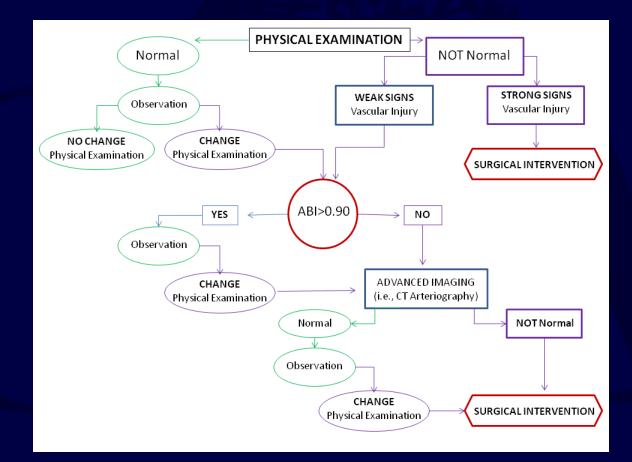
Cannot exclude all arterial dissections -May still require angiography

Limited resolution in presence of -Foreign bodies -Vascular calcifications

Surgical Exploration

Indications:

Frank vascular injury


Vascular injury not amenable to endovascular repair

Expanding/pulsatile hematoma

Thrill at injury site

Pulseless limb

Evaluation Algorithm

Sequence of Surgical Treatment

Who goes first? Vascular or Orthopaedics

Who Goes First?

Meta-analysis shows sequence of fixation (vascular vs orthopaedic) does not affect amputation rate

Traction upon vascular repair is not shown to lead to vascular compromise

Treatment

Have a protocol in place

Consider each patient individually Restore blood flow Debride devitalized tissue Stabilize fractures

Indications for Fasciotomy

Diagnosis of acute compartment syndrome

Arterial injury requiring repair

Combined arterial venous injury

Warm ischemia > 6hr

Cold ischemia > 12hr

Prognostic Factors

Soft tissue injury (crush)

Level of vascular injury

Collateral circulation

Ischemia time

Patient factors

<u>Complications of Vascular</u> <u>Injury</u>

Blood Loss

Compartment syndrome

Tissue necrosis

Infection

Amputation

Death


30 yr old presents with elbow dislocation and report of bleeding at the scene

Arterial bleeding is observed in ED

Vascular is consulted

Patient to OR within 3 hours of injury

Direct arterial repair of brachial artery

29 yr old MVC with bilateral open lower extremity injuries

Cold feet bilateral mangled RLE

No pulses

No pulse with traction **Foot perfusion improves** CT angiogram ordered/vascular consult Normal LLE Patient taken to OR for I&D ex-fix left and guillotine amputation right **Pulse returns LLE** Q2 hour vascular checks

12 hours post op patient loses pulse

Taken to OR emergently by vascular for on-table angio and endovascular bypass of intimal flap

Infection develops HD #4, sepsis, and AKA is performed

Vascular Injuries: Summary

Maintain high index of suspicion *Recognize common injury patterns *Thorough, repeated examination

Rapid recognition and treatment is paramount

Have a protocol for evaluation and treatment

- 1. Berg RJ, Okoye O, Inaba K, Konstantinidis A, Branco B, Meisel E, Barmparas G, Demetriades D. Extremity Firearm Trauma: The impact of injury parttern on clinical outcomes. The American Surgeon. 12;2012:1383-11387.
- 2. Doddy O, Given MF, Lyon SM. Extremities-Indications and techniques for treatment of extremity vascular injuries. Injury 2008;39:1295-1303
- 3. Farber A, Tan TW, Hamburg NM, Kalish JA, Joglar F, Onigman T, Rybin D, Doros G, Eberhardt RT. Early fasciotomy in patients with extremity vascular injury is associated with decreased risk of adverse limb outcomes: A review of the National Trauma Data Bank. Injury 2012;43:1486-1491
- 4. Fowler J, Macintyre N, Rehman S, Gaughan JP, Leslie S. The importance of surgical sequence in the treatment of lower extrmeity injuries with concomitant vascular injury: A meta-analysis. Injury 2009;40:72-76
- 5. Hafez HM, woolgar J, Robbs JV. Lower extremity arterial injury: Results of 550 cases and review of risk factors associate with limb loss. J Vas Surg 2001; 33:1212-9.
- 6. Halvorson JJ, Anz A, Langfitt M, Deonanan JK, Scott A, Teasdall RD, Carroll EA. Vascular injury associated with extremity traum: Initial Diagnosis and management. JAAOS 2011;19:495-504
- 7. Flanagin BA, Leslie MP Scapulothoracic Dissociation. OCNA 2013;44:1-7
- 8. Lynch K, Johansen K, Can Doppler pressure measurement replace "exclusion" arteriography in the diagnosis of occult extremity arterial trauma? Ann Surg 1991;214:737-41
- 9. Mills WJ, Barei DP. The value of the ankle-brachial index for diagnosing arterial injury after knee dislocation: a prospective study. Journal of Trauma 2004;56:1261.
- 10. Miranda FE, Dennis JW, Veldenz HC, Dovgan PS, Frykberg ER: Confirmation of the safety and accuracy of physical examination in the evaluation of knee dislocation for injury of the popliteal artery: a prospective study. J Trauma 2002;52:247-252.
- 11. Peng PD, Spain DA, Tataria M, Hellinger JC, Rubin GD, Brundage SI. CT angiography effectively evaluates extremity vascular trauma. The American Surgeon 2008;74:103-107
- 12. Reigerm, Mallouhi A et al. Traumatic arterial injuries of the extremities: initial evaluation with MDCT angiography. AJR 2006;186:656-64.
- 13. Wallin D, Yaghoubian A, Rosing D, Walot I, Chauvapun J, Virgilio C Colifornia T. Computed Tomographic angiography as the primary diagnostic modality in penetrating lower extremity vascular injuries: a Level I trauma experience. Annals of Vascular Surgery 2011;25:620-623

For questions or comments, please send to ota@ota.org