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Abstract—Real-time tracking allows to trace goods and enables
the optimization of logistics processes in many application areas.
Camera-based inside-out tracking that uses an infrastructure of
fixed and known markers is costly as the markers need to be
installed and maintained in the environment. Instead, systems
that use natural markers suffer from changes in the physical
environment. Recently a number of approaches based on machine
learning (ML) aim to address such issues.

This paper proposes evaluation criteria that consider algorith-
mic properties of ML-based positioning schemes and introduces a
dataset from an indoor warehouse scenario to evaluate for them.
Our dataset consists of images labeled with millimeter precise
positions that allows for a better development and performance
evaluation of learning algorithms. This allows an evaluation of
machine learning algorithms for monocular optical positioning
in a realistic indoor position application for the first time. We
also show the feasibility of ML-based positioning schemes for an
industrial deployment.

I. INTRODUCTION

Real-time tracking is used to trace goods and optimize
logistics processes in many applications such as large indoor
warehouses. Mobile, monocular optical positioning approaches
meet the requirements of exact real-time positioning and large-
scale tracking Their cheaper cost and robustness surpasses
other, e.g. RF- and LIDAR-based systems.

Camera-based inside-out tracking, i.e., self-positioning, of-
ten uses an infrastructure of fixed, known markers installed
and maintained in the environment [1]–[5]. Besides time-
consuming solutions that use manually installed hand-crafted
markers, there are also methods that use natural features, e.g.
edges and walls [6], [7]. However, both approaches require
expensive feature detection [8] and matching with a reference
database at runtime which not only consumes much CPU time.
Additionally, changes in the physical environments result in a
poor position quality if we use natural markers.

Many optical indoor positioning approaches are limited in
their usability as they rely on the assistance from additional
knowledge or sensors. This includes location references such
as 3D models, depth information in RGB-D images, detailed
pre-recorded image dictionaries, synthetic markers, projected
targets (e.g. laser grid), or additional sensors such as IMUs [9].
Such combinations suffer from high setup effort and cost, high
computational load at runtime (e.g. image dictionary), limi-
tation by distance (e.g. projection) or the need for additional

sensors (RGB-D). While there are methods that may help, e.g.
direct [10] and sparse [11] SLAM (Simultaneous Localization
and Mapping), the basic problems of occlusion, installation,
processing costs, and degeneration remain. The construction of
scene models through dense and sub-pixel multi-view stereo
reconstruction [12], [13] using direct image alignment, or
generative models [14], i.e., models that exploit combinations
of appearance, have lower CPU requirements [15]. But they
need a lot of memory to store the map information.

Recent advances in machine learning, such as regression
forests [16]–[18] and deep convolutional neural networks
[8], [19]–[22], may become an alternative. Regression forests
directly learn the positioning from pixels to world points,
using feature detection methods (like SIFT and ORB) and
RANSAC for camera pose estimation. Instead, deep learning
(DL) delegates feature extraction and matching to a deep neu-
ral network that uses a cascade of convolutional operators, i.e.,
convolutional layers, to extract meaningful information, e.g.
features and estimated positions. Machine learning approaches
need thousands of images from the target area, each labeled
with its pose, i.e., position and orientation. During a training
phase we capture significant features and learn their relation to
positions. This enables the prediction of poses from previously
unseen images in a subsequent navigation phase.

However, the evaluations that are proposed in these ap-
proaches often lack completeness from an indoor positioning
point of view as many aspects (e.g. changing environments and
lighting conditions) remain open. Hence, it is difficult to judge
the real-world applicability of such approaches. This paper
makes the first attempt to transfer this ML research into a real
localization application. We analyze the general requirements
of training datasets for image-based location estimation with
regard to homogeneity and precision for an indoor localization
task from the logistics context.

The remainder of the paper is structured as follows. Sec. II
gives an overview of related evaluation datasets and commonly
used evaluation methods. In the following, we present our
main contributions. First, we provide a common ground to
properly evaluate ML-based positioning schemes in practice in
Sec. III. Second, while available datasets are either outdated,
not comprehensive or compile datasets based on a specific
topic (e.g. landmark retrieval) we introduce the Warehouse
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dataset, which models an industrial localization use-case and
that includes highly precise reference labels in Sec. IV. Third,
we evaluate state of the art ML-based positioning approaches
based on our dataset using our evaluation criteria in Sec. V.
Sec. VI concludes.

II. RELATED WORK

We first discuss publicly available datasets (Sec. II-A)
before we discuss how ML-based positioning schemes are
usually evaluated in practice (Sec. II-B).

A. Datasets

We can categorize the available datasets for optical local-
ization in outdoor, small indoor, and large indoor areas.

Outdoor datasets are widely adopted in the DL literature
[8], [16], [20], [23], [24]. The Cambridge Landmark dataset
[8] uses five large-scale urban outdoor scenes (areas from 875
m2 to 50,000 m2) with considerable clutter, e.g. pedestrians
and vehicles, and under various weather conditions. Structure
from Motion (SfM) calculates 3D models from down-sampled
videos (which results in a sparse spacing of about 1m be-
tween camera positions) to estimate position labels. However,
while such datasets are optimal for outdoor localization, e.g.
navigating in urban environments, they are inappropriate to
evaluate indoor localization in industrial environments due to
their different lighting, volatility and feature conditions.

Small scale indoor datasets range from small rooms to
multi-floor areas, connecting rooms by corridors, and feature
offices. The 7 Scenes dataset [18] includes seven different
small-scale (3D scans up to 6 m3) indoor scenes. The SLAM-
based KinectFusion system [25] takes images with a resolution
of 640 × 480 and depth information. However, the scenes
mostly include highly textured areas, e.g. offices and kitchens,
that lack global ambiguities [24]. The University dataset [26]
includes five different scenes, e.g. conference rooms and
offices, connected by corridors, resulting in a total of 9,694
images for training and 5,068 for testing. However, the ground
truth is obtained by manual walks through the scenes using
Google Tango, which offers a poor accuracy of 6cm in small
scenes to 3m in large scenes [27]. Moreover, the pose-graph
optimization framework that obtains a globally consistent map
introduces location constraints.

Large indoor datasets not only cover rooms and offices but
also complete university buildings and shopping malls.

The Baidu [28] dataset covers 5,000 m2 of a shopping mall
with 682 training images that either capture the store fronts
or the corridor, and 2,296 query images at random positions.
As the images have been captured at different times there are
also moderate appearance changes. Ground truth is obtained
using a highly precise LiDAR. To create 3D models 20% of
the training images were annotated to guide the labeling of
other images. However, the authors recorded only one route
through the mall with a low number of training images.

The Matterport3D [29] dataset that covers large indoor
scenes, e.g. apartments and offices, is used for scene un-
derstanding and semantic segmentation. The Wijmans [30]

dataset includes large indoor areas (up to 34,000 m2) recorded
with a 3D scanner and consists of 277 RGB-D panoramic
images captured on five floors of a university building. It
includes significant challenges, such as repetitive patterns
(stairs), textures (walls), building structures (windows), and
moved furniture or moving people. However, both datasets
lack recordings with bigger environmental changes for evaluat-
ing optical localization, e.g. many moved objects, and changed
illumination.

The InLoc [31] dataset extends [30] with 329 images from
two of the five floors. The images were matched to the most
similar reference RGB-D image from the previous dataset.
Then their poses were calculated (using P3P-RANSAC and
bundle adjustment). As the new images were recorded months
later at different times of day they include further changes,
e.g. moved furniture, occluders (people), and different illumi-
nation. However, the data not only stems largely from an office
environment, which is not applicable to industrial applications.
ML, and DL in particular, needs considerably more training
data to learn important features from changed environments.

Another large-scale indoor dataset [32] includes two sep-
arate recordings for 4 small indoor scenes (12 rooms), e.g.
offices and apartments, combined to a larger area. Ground truth
position labels were obtained from the RGB-D information
with methods of reconstruction and global bundle adjustment.
However, the indoor locations are comparably small and the
dataset lacks global ambiguities.

The TU Munich Large-Scale Indoor [24] dataset includes
1,314 images, spaced 1m apart, covering a university floor of
5,575 m2. NavVis M3 provides sub-cm accuracy for ground
truth positions. While the dataset is challenging as it contains
repetitive structures and textureless walls (on which methods
based on feature detectors suffer), it lacks dynamic appear-
ances changes, e.g. moved structures and occlusion.

Our proposed dataset includes specially crafted test trajecto-
ries that help to answer specific questions in the evaluation of
novel algorithms, e.g. generalization to unseen images, areas
with varying proximities to static objects and robustness in
both dynamic and homogenic environments, and focuses on
industrial applications.

B. Evaluation Criteria

Not only ML-based approaches but any fingerprinting-based
locating scheme determines the position of mobile tags after it
initially has seen a training dataset with ground truth positions.
However, as commonly applied evaluation strategies vary
strongly it is hard to compare existing implementations based
on their evaluation results.

Concrete quantifications for the dimensions of the data
are, e.g. generalizable criteria for sampling test data from a
training dataset, i.e., point or blockwise sampling and gaps,
different spacings of separate test recordings in and around
a given training dataset, i.e., for interpolation and generaliza-
tion analysis, or specific tests with illumination and dynamic
environments, i.e., for evaluation of the positioning robustness.
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Some datasets provide different data for training and test.
While [8] uses separate, partially overlapping paths for testing
and training, it does not introduce a systematic test approach
to gain insights on particular aspects. Training data in [28]
was recorded methodically on straight paths at equidistant
intervals, while the query dataset simply uses images from
random places in the target area. [31] uses test images from
mobile phones that cover two out of five areas from the
training dataset. However, all of those approaches differ in
their nature and none of them introduces a systematic data
selection based on localization requirements.

ML-based fingerprinting approaches on RF-signals, e.g.
WiFi or cellular, often record data in varyingly spaced grids
[33], based on floor plans with (sub) room-level position
accuracy [34], [35], randomly, e.g. on street corners [36] or
on random walks. They also split the data in training and
test sets differently. Test data is either sampled randomly
[35], [36] or along parallel lines through the grid [33], [37].
[34] allows spatial (room precision) and temporal (months
apart) sampling of test data. However, none of the above
approaches describes the test data selection criteria sufficiently
or derives a systematic strategy that could be applied for
optical localization. As they are not equivalent the results also
differ.

Furthermore, also the applied accuracy metrics differ. Com-
monly used is the percentage of predictions below an error
threshold [18], e.g. for small-scale datasets <5cm for the
position and <5◦ for the orientation. This is problematic as it
is less meaningful than, e.g. the median error. Others [24] [8]
use the median position and orientation error. This reduces
the result to one value, leaving out errors over time, error
distribution, axis-specific error values, and location-specific
behavior, i.e., problematic untextured areas.

Our contribution aims at providing test criteria that enable
unified performance evaluations of fingerprinting- and ML-
based locating schemes. We provide definitions on relevant
trajectorial data and concise methods to sample data for
training and test from recorded data sets.

III. EVALUATION CRITERIA

A. Properties

Training and test data sets can be sampled specifically to
evaluate certain algorithmic properties of ML-based position-
ing schemes. We define such properties as follows.

Generalization. Algorithms may be able to predict previously
unseen positions well if they are close to previously
seen positions, but fail to generalize to areas that are
further apart, i.e., they fail to interpolate between known
fingerprints. This can also be the result of overfitting.

Environmental scaling. The positioning performance can
differ over area scales, which are known to correlate
with model size or prediction quality in many algorithms.
The positioning schemes then may have a much larger
positioning error for large environmental scales.

Scale transition. Having both small and large scale areas
in the same dataset may affect performance, e.g. when
features have to be learned scale-invariant.

Volatility. Another type of overfitting, i.e., to input data,
happens if the algorithm learns a training set’s volatile or
mobile features and later fails to generalize to changed
features or previously unseen test samples.

Ambiguity. The environment may include ambiguous fea-
tures, i.e., that are repetitive or untextured, affecting the
accuracy of the prediction. As a result an algorithm may
estimate a mixture of those positions.

Motion artifacts. In real-world use cases, images may show
challenging blur, unsteady angles, and new view points.
The artifacts are manifold and include, e.g. the typical
bobbing of human walking motion or swift turning of
vehicles in curves. Such motion artifacts have an influ-
ence on the features of the image as their features are
commonly not part of the training data. This may cause
a poor positioning performance.

These properties represent a set of any positioning scheme’s
crucial performance indicators under hard real-world condi-
tions. We will use them to construct benchmark datasets, i.e.,
property-specific training and testing data.

B. Data Recording and Sampling

The datasets can either be recorded in a uniformly dis-
tributed grid over the target area, or along trajectories. This
choice depends on the technologies involved in recording and
processing, and (to a large part) on cost and time constraints.

Grid-based approaches record data uniformly and with
variable density in the covered area. We may sample training
and test data sets from it either element-wise or block-wise, see
Fig. 1. The scale-related properties, i.e., environmental scaling
and scale transition, and feature ambiguity, i.e., ambiguous
walls and floors, are testable using any of the two sampling
strategies.

The element-wise random sampling in Fig. 1a is commonly
used to evaluate the general functionality of a positioning
scheme. However, we need to be careful as testing may
easily degenerate to benchmarking the system against its own
training samples. The sampled data from densely recorded
grids is too similar to the training data. In contrast, the block-
wise sampling in Fig. 1b allows for better insights regarding
interpolation or generalization, depending on the scale of the
block’s size and its location, i.e., the larger the better.

(a) Random sampling. (b) Random block sampling.

Figure 1: Grid-based recording: training data (black dots on white background)
and test data (red crosses).
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(a) Vehicular motion
(random, small tail
size).

(b) Restricted vehic-
ular motion.

(c) Human motion
(random, large tail
size).

Figure 2: Motion of objects.

However, grid-based recording is a bad choice for the
remaining two properties, i.e., volatility and motion artifacts.
First, a highly volatile scenario requires many separate record-
ings. This can be very time-consuming and costly as it does not
scale with the grid density and covered area. Second, typical
motion artifacts practically cannot be tested (as there are none).

Recorded trajectories on the other hand not only capture
volatility more easily but also allow to evaluate for motion
artifacts. The motion artifacts depend on the tracked object,
see Fig. 2. Vehicular motion (Fig. 2a) often includes blur
due to angular shifts of the camera and stuttering due to
drive controls. However, motion artifacts are often reduced
for vehicles on restricted paths (Fig. 2b) such as automated
conveyer systems. The unpredictable human random walk
(Fig. 2c) includes most artifacts, e.g. steps cause vertical
bobbing, shaking and blur, and the camera pose is much more
random and difficult to stabilize.10 If sequential positioning
schemes, i.e., that use a series of images over time, are
evaluated, it is important to capture trajectories that cover such
motion models.

Recorded trajectories in general are less dense than uni-
formly recorded grids and less time consuming and costly to
record. Therefore, they are the practical option for recording
largely volatile scenarios. Most of the other properties, i.e., the
scale-related ones and ambiguity, can also be tested by simply
transfering sampling strategies from the grid-based recordings
to the trajectory strategy.

To evaluate for generalization it is best to use additional
recordings, see Fig. 3. Figs. 3a and 3b show tests for inter-
polation between learned data. While tests that sample from
positions closer to training data in Fig. 3a are more fine-
grained, the equidistant spacing of the test samples in Fig. 3b
may additionally cause reduced precision if predictions are on
either training trajectories (overfitting). The 2D trajectory in
Fig. 3c is the equivalent for the grid-based block sampling of
tests in Fig. 1b. The trajectory in Fig. 3d represents sampling
of training and test data from a single trajectory. The gaps
in both training and test, indicated by blue crosses, increase
the difficulty further, in sparsely recorded trajectories, or may
be necessary to prevent over-representation, i.e., overfitting to
densely clustered training samples. This sampling strategy is
especially useful for ML-based approaches that make use of
sequential, i.e., trajectorial, training data.

10Similarly, the big vertical freedom and extreme velocities of drones
introduce very high levels of motion artifacts.

(a) Close in-
terpolation.

(b) Precision
of generaliza-
tion.

(c) 2D trajec-
tory.

1/3

1/3

(d) Gaps in
data.

Figure 3: Sampling strategies for trajectorial data (training data with black
dots, test data with red crosses). The strategies show: sampling in (3a) tests
close range interpolation, (3b) tests precision using a centered trajectory, (3c)
transfers these trajectories to 2D scenarios. (3d) shows how sampling from
only one trajectory, including gaps (blue crosses) can be done.

IV. WAREHOUSE DATASET

With our indoor logistics Warehouse dataset we aim at
providing a solid basis for the development and evaluation
of ML-based positioning schemes and criteria to tackle the
current challenges [38]. Warehouse includes different scenarios
that allow a detailed analysis of positioning schemes based on
the properties that we lined out in Sec. III.

Our dataset covers an area of 1,320 m2 and 464,804 images
with a size of 640 × 480 pixels. Each image is labeled with
a sub-millimeter position and sub-degree orientation that we
acquired using an optical laser-based Nikon iGPS reference
system. We recorded the images using a platform with 300mm
diameter that carries eight cameras (calibrated Logitech C270)
facing in different directions, see Fig. 4a. The distance between
the cameras is a few centimeters, which we calibrated out.
We mounted the cameras on a programmable 3D-positioning
system (PosSys), see Fig. 4b, and moved it through the
Fraunhofer IIS L.I.N.K. (localization, identification, naviga-
tion, communication) test center.

In the test center we model a complex warehouse scenario
that poses realistic challenges to optical positioning schemes.
It includes three high-level racks (see Fig. 5a) and open spaces
(see Fig. 5b) with complex, volatile structures (boxes, mobile
work benches, and mobile wall segments, see Fig. 5c) and
ambiguous elements, e.g. repeated structures and homoge-
neous texturing (e.g. white walls, large black wall segments,
unmarked floors, see Fig. 5d). The lighting conditions vary
among combinations of artificial and natural light.

(a) Recording device. (b) 3D-PosSys.

Figure 4: Recording platform with eight cameras, spaced at 45◦, mounted on
3D-positioning system.
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(a) Racks-area. (b) Open area.

(c) Volatile features. (d) Repetitive features.

Figure 5: The L.I.N.K. warehouse environment.

Our dataset includes separate recordings of various trajec-
tories. We designed two trajectories for training and seven
trajectories for testing, see Table I for an overview.

We recorded the training data in horizontal and vertical
meandering trajectories through the whole hall, see Fig. 7a, to
have a dense recording that is similar to a grid pattern. This
gives the user the ability to sample freely from the training
data, e.g. only from one of the camera angles facing a white
wall, or from eight cameras between two high-level racks.

We generated testing data with the intent to evaluate the
specific properties that we lined out in Sec. III-A, and that
require their own test trajectories. The blue line in Figs. 7b-h
show the testing trajectories in the warehouse.

We recorded three trajectories to test for generalization and
follow the strategy from Fig. 3. Our dataset includes multiple
parallel trajectories (10cm apart) that pass between horizontal
or vertical training trajectories. These parallel trajectories are
recorded once for the open area (Fig. 7b) and once for the
racks-area (Fig. 7c). The trajectory of cross uses both areas and
is at 45◦ to both the meandering paths, and thereby has varying
distances to positions seen in the training data (Fig. 7d).

Second, there are two scale-related datasets. Small scale
is a trajectory that is only at close proximity to the racks
(Fig. 7e). The large scale recording is only in the large open
area with larger distances to larger, more ambiguous global
features (Fig. 7f).

The volatility dataset includes volatile features. Starting
from the initial training dataset, we change the illumination
and move small, medium and large objects, i.e., boxes, work
benches and wall segments (Fig. 7g). This affects both the
rack-area and the open area.

To allow the evaluation of the influence of motion artifacts,
one test scenario was recorded mounting the recorder on a
forklift. It includes blurry images at quick turns, higher camera
speeds, and the camera angles are not steady.

Table I:
THE SPECIFICATION OF THE WAREHOUSE DATASET.

name area images tests for
Training hor. meander 30 × 20 99,807

vert. meander 30 × 20 102,417
Testing generalize open area 20 × 17 74,046 General.

generalize rack area 8.25 × 18.5 57,408 General.
cross 24.5 × 16 17,979 General.
large scale 19 × 19 44,590 Env.
small scale 10 × 11 16,211 scaling
volatility 29 × 13 29,239 Volatility
forklift 37 × 13 23,097 Motion

V. EXPERIMENTS

In our experiments we showcase the evaluation criteria
under application of our Warehouse dataset on a state-of-the-
art deep learning method.

A. Experimental Setup

Fig. 6a shows a birds-eye view of a 3D-reconstruction of the
warehouse, that was obtained using VisualSfM [39] with 800
images from all camera angles, exemplifying that SIFT-based
methods struggle in this difficult environment. The mapping
of the walls and high-level racks does not align with the floor
plan. The newer SfM approach COLMAP [40] performs worse
in reconstructing the layout of the warehouse, see Fig. 6b.

Hence, our experiments use positioning schemes that di-
rectly work on the images. As our baseline positioning scheme,
we use the CNN-based PoseNet [8]. PoseNet is a modified
version of GoogLeNet, with the classification/softmax layer
replaced by a fully connected layer followed by pose regres-
sors. The network takes an input image of 224x224 pixels
to calculate the 6-DOF pose, which consists of the absolute
3D-position in meters and the orientation in degrees.

We use the pre-trained weights made available by the
authors and fine-tune the network for Warehouse. For training,
we set the loss function’s β-parameter to 250 (pre-tests showed
the best results for that). Furthermore, we randomly sample
the training set as 95% of the combined meandering datasets,
featuring all camera angles of both horizontal and vertical
trajectories, and calculate the accuracy using the remaining
5% samples every 1,000 iterations and choose the intermediate
network weights that provide the best accuracy.

To use the input data for the evaluation we need to normalize
the images. Normalization is an important step with CNNs to
reduce the correlations among the training and testing data.
For the evaluation of a training dataset we calculate a mean

(a) Dense reconstruction of Ware-
house with VisualSfM.

(b) Sparse reconstruction of Ware-
house with COLMAP SfM.

Figure 6: Structure from motion.
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(h) Ambiguity (↑).
Figure 7: Warehouse dataset training data and test results for PoseNet. The training dataset includes horizontal and vertical meandering, with two high-level
racks indicated by rectangles. In test plots it is drawn in grey grid lines, testing data in blue. Predicted positions are colored from green to red (red > 2m
error). Blue boxes depict the high-level racks. The arrows show the direction of the camera that is used for testing.

from all images of this set and subtract it from each individual
image. The same mean image is also subtracted from the
test images. Since the size of the images is 640 x 480 we
scale them down and center-crop them to 224 x 224 to fit the
network’s input layer.

Our training and test hardware setup is a Linux system with
an Intel(R) Core(TM) i7-7700 CPU 3.60GHz and an NVidia
GeForce GTX 1070 with 8GB VRAM. One forward pass
through the network takes 16ms on average.

Since many industrial use-cases only require 2D positioning,
e.g. forklift tracking, we focus on performance in 2D (xy-axis
position and yaw angle only) in our experiments, while the
data itself would allow for full 6-DOF evaluations. As a key
performance indicator for the position errors we use the Mean
Absolute Error (MAE) on to the xy-plane, and the Circular
Error Probable (CEP) median, and its 95 percentile CE95.
Additionally, we calculate the median error of the yaw angles.

To evaluate the properties of the ML-based positioning
schemes, we conduct different tests. The results from each
of the test datasets are given in Table II.

B. Generalization

To evaluate for the generalization property we consider the
rack area, the open area, and their combination. First, we only
test with the camera that faces the racks (Figs. 7b-d, ←).

Fig. 7b shows the results for the open area. Predictions are
colored by their error, i.e., from green if the error is < 2m to
red if the error is > 2m. The positions of the recorded test
trajectories are between the horizontal and the vertical training,
spaced 10cm apart to test for unseen positions.

With a CEP of 1.06m, an MAE of 1.72m, and an angular
error of 0.27◦, the results show that the system can locate
itself relatively well between densely recorded training data.
Fig. 7c shows the results for the racks-area. The horizontal

trajectories, facing the wall next to and behind the racks, and
the ones in the open area, are as good as in the previous
test. However, errors are clustered in the vertical trajectories
behind and between the racks, and are biased towards the
open area. Fig. 7d shows the result of the cross trajectory
test. The predictions of positions mostly perform well. Again,
predictions between the racks have an error of up to about
5m on the x-axis, while there is a much lower error on the
y-axis. There are also some discrepancies of the predictions in
the end segment at the bottom, where the negative influence
of natural light from the south wall windows has an effect.

The results in the open area are better than in the racks-
area as the rack-area’s training samples are underrepresented.
These tests show the overfitting to the training samples of open
area. But in summary the results show that the positioning
scheme interpolates well between known trajectories. The
precise clusters of predictions on the horizontal trajectories
and the low CEP indicate a real-world applicability for many
use-cases.

Table II:
POSITION RESULTS OF TEST SCENARIOS.

Scenario MAE 2D CEP CE95 Rotation CEP

generalize open area 1.72m 1.06m 5.05m 0.27 ◦

generalize rack area 2.43m 1.76m 7.96m 0.457 ◦

cross 1.08m 0.86m 3.08m 0.18 ◦

small scale 2.31m 1.17m 8.99m 0.18 ◦

large scale 1.14m 0.90m 2.83m 0.18 ◦

volatile 2.5m 1.74m 7.35m 0.56 ◦

ambiguity 2.95m 1.26m 15.86m 0.23 ◦

forklift motion 6.76m 5.42m 16.61m 145.6 ◦
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C. Environmental Scaling

Figs. 7e and 7f show the scale-specific tests with the camera
that faces the racks (←). While most of the positions in the
small-scale scenario in Fig. 7e have an error below 1.17m
there are also outliers with large errors between the high-level
racks (CE95 8.99m), similarly to the ones in Fig. 7c (CE95
7.96m). The results in Fig. 7f show that the performance
decreases with a growing distance to the south and west
walls. There the test samples contain many ambiguous features
and difficult illumination, e.g. illuminated windows, and the
positions get biased towards the center.

Similarly to generalization, the training dataset does not
allow an accurate prediction in the small racks-area due to
the unbalanced training data density. In the open area, while
the predictions are mostly within expectations, the system
suffers from the difficult environment, e.g. homogeneous areas
(white, featureless walls or gates, black wall segments) and
illumination. The training samples contain windows that are
either illuminated by natural light or night dark, while the
test samples only show illuminated windows. With many
ambiguous features and difficult illumination, the performance
deteriorates. However, with a CEP of 0.90m and a CE95 of
2.83m PoseNet performs very well in general which may be
sufficient for many real-world use-cases.

D. Volatility

The evaluation with variations in the environment in the
volatility scenario (Fig. 7g) uses added mobile work benches
in the open area, moved large wall segments and shifted boxes
in the high racks, see also Figs. 8a and 8b. The test data is
sampled from the camera facing the east wall, so that both the
volatile elements in the rack-area and in the open area have
an impact.

Fig. 7g shows that the system tolerates small additions
passably, if these do not occlude large parts of the image, such
as crates. But larger, moved features pose challenges, see the
predictions at y>15m. With an MAE of 2.5m and CE95 of
7.35m, the negative effects are visible in Fig. 7g. Above the
horizontal at y>14m, added features occlude already learned
features, and moved, large wall segments at the east wall cause
larger prediction errors. Besides recording training data with
different lighting conditions, it is also important to have as
many volatile features in a training dataset, as the environ-
ment can realistically contain. However, it is impressive that
although there are significant changes in the environment, the
positioning scheme’s fingerprinting approach still maintains a
CEP of 1.74m.

E. Ambiguity

For testing the robustness to ambiguity we examine a
relevant section of the large scale trajectory facing towards
the upper wall (↑). It features two similar black wall segments
(Fig. 5d) at x = 15 and x = 30. Fig. 7h shows that the system
performs well in the areas of these wall segments with a small
CEP of 1.26m. However, with a fraction of the test images, the
system confuses the two wall segments, due to their extremely

(a) Training. (b) Test.

Figure 8: Volatile features in Warehouse.

similar features. Furthermore, between the wall segments, the
system falsely predicts its distance to a large wall-filling QR
code. From 21 < x < 26, the code covers most of the images
and the prediction error is the largest. This shows in the high
CE95 of 15.86m, which is heavily scewed by the clusters of
erroneous outliers.

Frame filling ambiguity is problematic for optical position-
ing schemes. Temporal information, using for example LSTM-
cells, may help cover these cases. Similarly, a Bayesian filter
modeling constraint motion may be able to stabilize ML-
based predictions. Alternatively, a multi-camera approach with
orthogonal viewing directions may be viable.

F. Motion Artifacts

To test a typical warehouse vehicle’s positioning, we
mounted the cameras on a forklift’s roof. We sampled the
test data from the camera facing backwards, relatively to
vehicular motion. The forklift results in Table II show that the
predictions have large errors with a CEP of 5.42m and a CE95
of 16.61m. The trained network is not easily transferable to
the changed camera motion and height without network fine
tuning with additional training samples. These results lead to
the conclusion that a transfer to more dynamic use cases with
higher velocity requires additional work, e.g., sensor fusion,
filter algorithms or more training samples. A stand-alone ML-
approach that uses single images to predict a pose (such as
PoseNet) gets confused by the motion artifacts.

VI. CONCLUSION

With Warehouse, we presented the first dataset for self-
positioning in a large industrial indoor scenario with high pre-
cision ground truth labels. We introduced criteria to properly
evaluate ML-based positioning schemes and introduced six key
algorithmic properties of such positioning schemes. We used
these criteria and our dataset to evaluate a popular ML-based
algorithm.

The results show strengths and weaknesses of ML-based po-
sitioning schemes. Based on this work ML-based approaches
can be evaluated and developed under consistent criteria that
enables better insights and comparability.

In future work we use our dataset to evaluate comple-
mentary positioning schemes, i.e., that incorporate temporal
correlation of features using, e.g. Bayesian filters and LSTM
cells, in the neural network architecture.
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DATASET

The Warehouse dataset and the trained models are available
for download under https://www.iis.fraunhofer.
de/warehouse.
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