
Tidal Enterprise Scheduler

Evaluation Guide

Evaluation Guide | Tidal Software

Tidal Enterprise Scheduler

�

Purpose
The purpose of this document is to discuss

the requirements for job scheduling software
in the modern distributed enterprise. This
guide provides a comprehensive list of key job
scheduling features and a description of each
feature; a companion checklist is also available.
The checklist is designed to assist those actively
evaluating job scheduling and event automation
software by providing a tool for quickly and
efficiently gathering information on products
under consideration.

To set the proper context for a detailed
discussion of key job scheduling features, this
document includes some background and history
on the evolution of the job scheduling marketplace.
This background will help the reader understand
how changing business and industry requirements
impact the job scheduling arena. Among the
handful of disciplines that routinely take place in
the data center, job scheduling may be the most
important of all. This is a bold statement, given
that job scheduling competes with other important
systems management functions like file backup,
network management and security.

While these are important disciplines in their
own right, there is no arguing that, depending
on the size of the enterprise, a job scheduler is
routinely managing thousands (or, in many cases,
tens of thousands) of individual business processes
every day. In fact, the number of processes involved
is so large that a manual approach is completely
unfeasible. Custom job scheduling solutions that
rely on native operating system utilities such as
CRON, NT Scheduler, PERL and VB scripts quickly
become unworkable and collapse under the weight
of their own unmanageable ‘spaghetti code.’ Given
this backdrop, it is easy to see how job schedulers
are an indispensable part of your IT infrastructure.

Background
The discipline of job scheduling was first

established in the 1970s when it became a key
strategic infrastructure component for large
mainframe-oriented data centers. A variety of
products were created and extensively marketed
until it became widely accepted that a robust
job scheduling tool was required if you were to
effectively manage applications on the mainframe.
During this period of mainframe-centric
computing, a common understanding of the key

features of job scheduling began to emerge. When
Unix began to make inroads into mainstream data
centers in the mid-1990s, IT managers widened
their search to job scheduling solutions for
managing the distributed environment.

As the shift to UNIX began, few of the existing
mainframe vendors created new job scheduling
offerings to fill the void. Instead, the mainframe
vendors and many mainframe-oriented data
centers experimented with attempts to manage
distributed workload from the mainframe. As
UNIX continued to make inroads into the data
center, a new group of competitors entered the
market with products created expressly for
managing distributed job scheduling.

As the two competing approaches were
deployed, it quickly became apparent that the
products create expressly for the distributed
environment were a far better approach, and the
mainframe approach to managing distributed
workload was relegated to a small market
segment. Even so, many mainframe data centers
still cling to the elusive dream of managing all
workload regardless of platform from a single
console. Unfortunately, few if any have been
able to achieve this goal and few vendors appear
focused on the issue.

The early distributed offerings proved to
be reasonably robust and did a passable job
of mimicking mainframe scheduling features
and functions, but they suffered from being
first generation products. Eventually, all of the
prominent vendors of these products ‘hit the wall’
in terms of scalability, flexibility and ease of use
and were ultimately acquired in the late 1990s by
mainframe companies who were still grappling
with the unique issues and challenges of the
distributed marketplace.

During the period that the first generation
products were being acquired, newer competitors
began crafting more advanced solutions for job
scheduling in the distributed environment. These
newer vendors had several distinct advantages
over their first generation counterparts including:

1.	 Improved development technologies. The
early products were generally challenged
because of the limitations of the base
technology used to develop them. By the
early to mid-90s, development tools for the
distributed environment had not really
matured sufficiently to be of significant value,

Tidal Enterprise Scheduler

�

Evaluation Guide

so products of that genre were generally
built on older, harder to maintain code bases
and used the UNIX Motif standard for their
graphical user interface. In fact, a number
of the first generation products were actually
ported from other proprietary platforms in
the early 1990s, with the usual complications
caused by porting aging software products.

	 The combination of the older, inflexible code
bases, lack of robust development tools and the
lack of any GUI standards created problems
as the market began to mature and the
requirements for distributed scheduling began
to change. These first generation products
could not keep pace with these changing
requirements and began to falter in terms of
scalability, ease of use, ease of installation and
configuration, and maintainability.

2.	 An understanding of cross-platform
development. Like their mainframe
predecessors, the early UNIX products
essentially had a single-platform orientation:
the only difference being that the platform was
UNIX instead of MVS or OS/390. This problem
came into focus when Windows 95/98 took over
the desktop and Windows NT/2000 began to
invade the data center.

	 While the early UNIX products had the initial
lead on Windows NT/2000, their shortcomings
for true cross-platform, distributed scheduling
became evident as more and more companies
attempted to incorporate Windows NT/2000
into their data center operations. Newer
generation of job scheduling products are
capable of exploiting the ease of use of the
Windows desktop and newer development
technologies. These newer products also
reflect a deeper understanding of the rigorous
requirements for building a true cross-platform
solution that incorporates UNIX, Windows and
other platforms.

3.	 A more mature marketplace. The latest
generation of products has been developed
with large distributed workloads in the form
of applications like SAP R/3, PeopleSoft and
Oracle already running in production. The
previous generation of products was built on
older technology and without the benefit of
being battle-tested with significant workloads.
Consequently, these early scheduling tools did

not have the power and scalability to manage
large distributed workloads when it inevitably
became a requirement. The shortcomings
of these products may not have been readily
apparent for several years, at which point
their users were then forced to look for a
replacement.

	 Many companies are in this position today –
looking to replace their first generation
job schedulers because of scalability and
maintenance issues. The latest generation
of products is designed to manage tens of
thousands of jobs daily. Unfortunately for the
early vendors – and their customers, it is much
easier to design a product to be scalable from
inception than to try to retrofit scalability	
into an older design.

4.	 An understanding of true 24x7x365
operations. When mainframe job schedulers
were first created, there were two distinct
periods of operation in the data center
– online and batch. Typically during the
day, the databases were ‘online’ and only
available to end-users for true “real time”
tasks that involved entering transactions
at their terminals. At night, the databases
were brought ‘offline’ and then batch activity,
typically reporting and other batch intensive
activities, were allowed to process. This
batch window was often as long 12 hours (for
example, 6:00 pm to 6:00 am). After the first
generation of distributed scheduling products
was built in the early 90’s, people began
to speak of the ‘shrinking batch window;’
however, for the new UNIX platform, the batch
window was still very much intact.

	 By the late-90’s, when the latest generation
of job scheduling products was being created,
two significant issues had started to change
the landscape for corporations and software
providers alike, namely globalization and
e-business. These phenomena began to
overwhelm data center operations with the
need for true 24x7x365 operations. The net
effect was the virtual elimination of the batch
window which essentially created a new set
of requirements for scheduling tools. The
latest generation of job schedulers is able
to respond to these evolving requirements
with the addition of new features for
improved scalability and better, faster

Tidal Enterprise Scheduler

�

workload management. Ultimately, these
new requirements require the job scheduler
to be a true “workload manager,” responding
to a wide variety of events for launching and
managing jobs, and not merely relying on the
traditional date and time model of scheduling
jobs. A number of these features including
event management are discussed later in this
document.

	 Over the years, job scheduling has matured
as a discipline and become accepted as
a requirement for any comprehensive
infrastructure management strategy.
During this maturation phase, the industry
has developed an understanding of what
the common, or core, functions that a
product needs to be considered a ‘serious’ or
‘industrial strength’ product. This section
of the evaluation guide discusses this core
set of features commonly acknowledged as
requirements for any serious scheduling tool.

Business Calendars
At the heart of any scheduler is the concept

of starting jobs at a particular date and time.
Internally, businesses actually run on a
variety of calendars including fiscal calendars,
manufacturing calendars, payroll calendars,
holiday calendars and others that all drive specific
aspects of a modern business. Job schedulers are
expected to provide comprehensive calendaring
facilities that are easy to use, graphical in nature
and able to combine calendars with one another
to achieve a desired result (for instance, what
day should payroll be run if it happens to fall on
a holiday?) Surprisingly complex calendars can
be required to manage a modern corporation
with some companies managing several hundred
depending on their size and number of geographic
locations. Because of the vital nature of this
feature, buyers are advised to scrutinize the
calendar capability of any product to see that it
meets their needs in terms of flexibility, ease of
use and complexity.

Dependencies
Right after the concept of the business

calendar in terms of importance, comes the idea
of the ‘dependency.’ As the word implies, this is the
ability of the scheduler to control the execution of
the various tasks by having them execute not just
on a certain date, but also in a particular order
and in conjunction with other tasks. The simplest
expression of a dependency is Job B follows Job A.
In other words, Job B cannot execute unless Job
A has completed. However, this simple concept
can get very complex very quickly. Job B might
have to wait for a particular file to arrive, or it
might have to wait for some data to be input by
a user, or it might be restricted from running
after a certain time in the evening. When looking
at the dependency capabilities of a product, it
is important to have a clear idea of the types of
dependencies that exist and to be able to easily
map those to the product. If the product cannot
create the calendar that is needed or run jobs in
the correct order and with the right dependencies
having been satisfied, then it is not likely to ever
meet a site’s core business needs and will be very
cumbersome to use.

Tidal Enterprise Scheduler

�

Evaluation Guide

Auto Recovery
In a perfect world, jobs would run correctly

every time; however, such is not the case. From
corrupt data file to users entering erroneous
data to programmers making mistakes, all of
these anomalies can lead to late or incorrect
processing. To deal with such unpredictable
issues, sophisticated job schedulers are expected
to accommodate automated recovery actions. This
feature needs to be flexible enough to allow for
a variety of responses to a ‘failure.’ For instance,
some failures are not meaningful enough to stop
subsequent processing, while others will corrupt
downstream processing and result in other
failures, inaccurate reports and other problems.
The product should be able to take distinctly
different actions based on the relative severity of a
problem encountered.

Additionally, the product should allow the user
to create multiple types of recovery scenarios. For
instance, in some cases it might be sufficient for
the scheduler to simply stop processing altogether
if the error is deemed severe enough. In other
cases, it might be decided that when a specific
type of error occurs the schedule should back up
a couple of steps and rerun those jobs. If that is
not sufficient, the user may run a series of related
recovery actions like restoring a database prior
to attempting to run the jobs again. Minimally,
the product selected should allow the user to
stop processing, continue processing and/or run
a series of recovery actions before moving on to
some subsequent step.

Alert Management
Because job schedulers perform such a

vital role in the infrastructure, they must be
able to generate an alert when something
unusual happens with the processing. This alert
management needs to be flexible enough to
handle a wide array of potential events and also
extensible so that it can identify and manage
events of the users’ choosing. Like auto recovery
this feature needs to be able to respond differently
to different types of events; in fact, alert
management and auto recovery often need to work
in conjunction with one another.

In a typical scenario, a job might fail, which
in turn, initiates some type of recovery action.
At the same time, there may be a desire to send
notification of the failure to a designated person.

This notification might be in the form of an email
to a specific user, a page to a technician, or a
message sent to a central management console.
Additionally, this alert management should allow
for some type of acknowledgement of the alert
so that the scheduler itself is informed when the
targeted person has received the alert. As with
other features, ease of use and flexibility are key.

Some products say that they have this alert
capability, but closer examination reveals that
this is only possible if the user writes a variety of
scripts to alert someone to a particular problem.

Tidal Enterprise Scheduler

�

Enterprise Application Support
The primary reason for implementing a job

scheduling solution is to be able to support
companies mission-critical applications. This
requirement has existed since the early days of
the mainframe and is still true today. What has
become more complicated is the sophistication
required to successfully integrate with today’s
leading applications. Many of today’s leading
applications – SAP, PeopleSoft, Oracle EBusiness,
Siebel, etc., have some type of built in scheduler.
At the same time, this scheduling capability
is insufficient to manage all of the various
applications in the enterprise, so integration of
these core applications becomes a central issue.

Selected job scheduling vendors have extended
their products to more readily encompass the
needs of these critical applications and created
interfaces that talk directly to the core scheduling
functionality in these applications. If you have
one of the applications listed above, there are
commercially available interfaces available and
it would be worthwhile for you to evaluate them.
At the same time, not all interfaces are created
equally, so take the time to understand how
the vendor actually supports the interface, how
current the interface is, what specific features are
available to support the application and whether
or not the application support is certified and on
what level the certification was achieved.

Framework/Network
Management Integration

Many companies today have implemented
some type of network or systems management
console. These products provide a variety of
features and functions, but in many cases are
implemented to provide a single-console view of
the enterprise. This single console typically deals
with the notion of “management by exception,”
which is simply the idea that given the incredible
number of events that occur within a moderate to
large IT shop, the operations personnel only want
to deal with the exceptional conditions
(typically the most serious errors).

Because a huge number of IT processes run
in batch mode, it is critical that the scheduler
integrate with the data center’s chosen framework
or network management console. Typically
this integration will be twofold: First, and
more obvious, the integration should allow the
scheduler to inform the network console when
there is some type of job failure (this is, in effect,
another type of alert management as discussed
above). Secondly, the integration should allow
the network management tool to monitor the
scheduler and its associated infrastructure.
Although not as obvious, this integration gives the
network tool the ability to monitor the health of
the scheduler itself. In this way, if the scheduler
or one of its distributed components should
experience an error, the network management
console should be able to report on any failures.

Security
It should be apparent that security is a

vital requirement of a job scheduler. If your job
scheduling product is in charge of running the
mission-critical processes in your data center, then
clearly you must control access to it. What may
not be so obvious, is that in addition to controlling
access to the scheduler itself, an administrator
may also want to control access to individual
features within the product by user or by group.

This requirement exists because of the
diversity of users, not all of whom need access to
all scheduling functions. For example, operations
personnel are typically given broad access to the
tool, but you might want to restrict their access
to certain jobs or certain features within the
scheduler. In some corporations, end users are

Tidal Enterprise Scheduler

�

Evaluation Guide

given limited access to the product so that they
can monitor the progress of jobs of particular
interest to them.

Other personnel may have the authorization
to create certain business calendars or jobs, but
they do not have the ability to run those jobs in
production.

The key when looking at the scheduler’s
security features is to look at ease of use and
granularity. Ease of use is necessary for quick
authorization changes for a given user or group
of users in response to changing business needs.
It is dangerously shortsighted to compromise an
operation’s security policies simply because it is
deemed too difficult to implement a particular
policy. Granularity, or refinement, is important
because of the need to make only certain
features of the product available to certain users.
Granularity makes it possible to easily grant
precisely the types of user rights to just those
users who need them.

Audit Trails
Many people relate audit trails to security

and while there is a strong connection, this is not
the only benefit of audit trails. With audit trails
in place, operations personnel can monitor and,
when necessary, undo changes to the scheduling
environment. For instance, even authorized and
well-intentioned users can make mistakes when
modifying the production schedule. Audit trails
the means to understand precisely what changes
were made to the production environment, and
who made them. Given the rapidly changing
requirements in data centers, it is important that
all changes to the production environment are
recorded.

A related topic is the concept of system
or scheduling logs. While true audit trails
are typically focused on what changes were
made, by whom, and when, logs are simply the
documentation about the results of a particular
execution of a job or schedule. Well-organized logs
give the user a clear indication of exactly what
workload ran and when it ran.

Ease of Use
Although this feature is hard to describe,

most users feel “they know it when they see it.”
More accurately, they tend to know it when they
experience it. Although this might be viewed
as a ‘soft’ requirement that is hard to pin down,
it should not be underestimated. Personnel
change jobs frequently and we often don’t have
our most experienced personnel on site at the
precise moment when a failure occurs or the daily
schedule needs modifying. For most users the
familiar “Windows Explorer” interface is the most
intuitive of all; newer products have generally
adhered to this type of interface, and, in some
cases, added additional graphical capabilities to
further simplify usability. It is also important to
point out that tools with intuitive interfaces are
not only easier to use, but ultimately produce
fewer user errors and faster recovery when errors
do occur.

Ease of Installation and Configuration
Given the dynamic nature of the modern data

center, with new hardware and applications being
added almost continuously, it is important that a
product be simple to implement and reconfigure.

During the evaluation phase, it can be difficult
to assess configuration and reconfiguration, but
potential buyers are encouraged to scrutinize,
at least the initial installation of the product.
Can you do the installation yourself? If not,

Tidal Enterprise Scheduler

�

can you at least follow along with the vendor to
understand the installation process? How long
did the implementation take? Hours? Days? Any
product that takes more than a day to get a basic
implementation up and running will probably not
be any easier to reconfigure when the operating
environment changes and, hence, is not a good
candidate for anyone who anticipates changes to
their environment.

Queues and Prioritization
The concept of queues dates back to the

mainframe and is very simple: not all jobs and
schedules are created equal. Not all jobs have
the same priority or requirements. A queue is
generally used to control resource allocation
by the scheduler. For instance, a queue can be
created that only supports lower-priority jobs. All
jobs of a certain priority or below get placed in
that queue, which is set to a lower priority than
some other queue where more important workload
is being managed. A classic example of using
queues is to have all user-submitted jobs put in
one queue for execution during off peak times,
while regularly scheduled production jobs are
placed in another queue of a higher priority. In the
area of queues and priorities, a scheduling product
needs to support the number and type of queues
and prioritization schemes required to effectively
ensure that high-priority jobs finish before the
lower-priority workload.

Architecture
Although every vendor describes its

environment differently, the accepted approach
to distributed scheduling is to have one or more
central processing hubs – often called a ‘master’ –
and then a variety of distributed components
that are installed on any distributed machine
where jobs need to be processed – typically
called ‘agents’. The last required piece of the
architecture is the client or GUI. It is generally
accepted practice to separate the GUI layer from
the core product, as it tends to make the product
easier to configure and maintain.

A key requirement to assess in this area is
the amount of flexibility and fault tolerance
available. Flexibility is really a measure of
how easy the product is to deploy in a given
environment. Can you have the master on your
machine of choice? Can you have the agents

and/or application adapters deployed on the
most desirable machines? Can you run more
than one master scheduling node and have the
various masters interacting with one another in
an intelligent way to provide increased flexibility
or fault tolerance? Some vendors have attempted
to disburse scheduling data throughout the
environment to make each scheduling node the
equivalent of the ‘master’, but the resultant issues
associated with error recovery in the event of a
node or network failure have largely ruled out
this type of architecture. Since the vast majority
of jobs described in a network have dependencies
on other jobs on other machines, there is little
justification for the added complication of moving
scheduling data around the network, when it can
be maintained more reliably and securely at a
central location.

Fault Tolerance
Fault tolerance as it relates to scheduling is

usually a reference to providing a ‘hot’ or standby
master or central processing hub. This secondary
master is configured so that it will immediately
take control of the scheduling environment in
the event of a failure by the original master.
Over the years, vendors have tried a variety of
approaches to fault tolerance, but the generally
accepted approach is to have a third node in the
configuration that monitors the health of the
master. If this third node loses contact with the
master for some predetermined period of time,
then primary responsibility for processing is
handed off to the secondary or backup master,
so it can continue to manage processing until
instructed to do otherwise.

In the early days of distributed technology
the primary cause of computing failure in the
enterprise was often a network failure. Some
of the first generation vendors experimented
with ‘network fault tolerance,’ or ‘cooperative
computing’ models to deal with network
failures. In this model, each node/machine in
the scheduling environment has essentially a
complete scheduler installed on it. This model
typically leads to a heavier and more complex
application being installed at each scheduling
node and also requires that scheduling data
be moved around the network to each machine
having one of these additional scheduling engines.
This continual movement of data around the

Tidal Enterprise Scheduler

�

Evaluation Guide

network can cause problems during failures
since each node in the network may need to be
recovered individually.

Graphical Management
In today’s world, it is a requirement that

scheduling products provide true graphical
management of the environment. This graphical
management can take a variety of forms, but
should include an easy to understand central
console from which all jobs and schedules can
be viewed. This list of jobs should be filterable so
that only certain types of jobs are visible or can
be sorted to the top of the list. Additionally, the
console needs to be color-coded so that certain
jobs – failures, in particular – can be highlighted
for easy viewing. As the console gets more
sophisticated, it might have other indicators to
tell users at a glance if one or more jobs are in an
error state.

More sophisticated products have ‘dashboard’-
like features which present the ongoing results
of scheduled activity in truly graphical format
such as bar charts. These charts can give novice
and experienced users alike a quick reference
to the progress of the daily schedule and the
number of jobs that have finished successfully/
unsuccessfully, the percentage of the daily
schedule that has already executed, and other
common measurements.

In addition to easy to use consoles, modern
schedulers have true graphical capabilities that
represent job streams graphically to make it easier
to understand job status and interdependencies.
These pictorial representations make both the
creation and trouble shooting of job streams
significantly easier.

Platform Coverage
Because a typical distributed enterprise

includes more than one type of hardware and
operating system, it is a requirement to thoroughly
analyze current and future needs with regard to
the scheduler’s platform and technology support.
A vendor should support the data center’s current
and future operating system requirements
and have a history of staying current when the
operating system is updated. It is also important
to consider the data center’s historic and
projected preferences for computing technology.
For instance, although Windows is the clear

choice for the GUI, do you want your distributed
job scheduling ‘engine’ or ‘master’ to reside on
UNIX or Windows? Ideally, being positioned to
have both UNIX and Windows is the best strategy,
since needs may change over time. An OS/390
data center will likely want the flexibility to have a
truly integrated enterprise solution that provides
integration with their mainframe scheduling
solution.

Database Support
Another aspect of platform coverage is

database support. On the mainframe it was and is
commonplace to use ‘flat’ or indexed files as the
underlying data repository for all of the scheduling
objects and rules. At the time these products were
written, relational databases were not in wide use;
in fact, DB2, now the leading mainframe database
product, didn’t arrive until the late 1980s. Early
distributed scheduling tools followed the flat-file
model, because they lacked reliable relational
database technology. However, with the arrival
of robust reliable relational database technology
in the middle 1990s, all of the leading products
now use a relational database as their repository.
Another benefit of using relational technology
is the ability to mirror the databases if desired
and incorporate this into a fault tolerance or
backup strategy, further facilitating unattended
operations.

Most of the job scheduling requirements listed
are considered core requirements for a modern
distributed scheduling solution. Some of these
requirements have evolved over time, like the need
for a relational database, graphical management
and a Windows-based interface, while others, like
support for business calendars and dependencies
have remained fairly static over time.

At the same time, there are some new
requirements that have emerged recently that
represent the ‘state of the art’ in job scheduling.
These new requirements include:

•	 Event-driven processing

•	 Event adapters

•	 Comprehensive APIs

•	 Scalability

•	 Web-based interface

Tidal Enterprise Scheduler

10

Additionally, if the job scheduler is well
integrated into the environment (see section
on API’s), the scheduler can also process events
coming from other systems management products
like network managers.

Event Adapters
Today’s increasingly complex and dynamic IT

environments require that systems be managed
much more holistically than before. The increasing
need for speed and efficiency dictates that all of
the applications, databases, systems and networks
be managed not as individual components, but as a
single integrated environment. Job schedulers are
a core technology for addressing this requirement,
but to do so they must be able to communicate
rapidly and reliably with the other applications
and technology components in the environment.

To facilitate this rapid communication, the job
scheduling vendor must supply the required event
adapters that integrate with the wide variety of
applications and systems in a given environment
to capture the events necessary for efficient and
effective management. If a specific event adapter
is not available, then other means for integrating
with the scheduler should be available so that
custom solutions can be created.

Comprehensive Programming
Interfaces (API’s)

In traditional job scheduling, the scheduler
was always the controlling entity and executed or
invoked other applications in the environment.
In today’s more complex environment, it is often
desirable for other applications to interface with
(or ‘call’) the scheduler directly in order to have
the scheduler provide scheduling services on
application’s behalf. Newer schedulers provide
comprehensive programming interfaces that easily
facilitate integration with other applications.

Event-driven Processing
When job schedulers were first created,

the clear methodology for managing jobs revolved
around time and dependencies. Job schedulers
were developed to run jobs at the right time and
in the right order. While those requirements
still exist, there are also new requirements
for managing ‘jobs’ on a real-time or event-
driven basis.

The adoption of Java and .NET for hosting
applications has sparked a need to manage
batch transactions that spawn across multiple
platforms to fulfill the complete business process;
however, neither application possesses scheduling
features. In order to support these modern types
of applications an effective job scheduler must
accommodate the scheduling needs of both
near-time and batch tasks across a diverse set of
infrastructure platforms.

With an event-driven approach, the scheduling
tool does not continually ‘ask’ (poll) if an event
has taken place, but instead, the scheduler can be
‘told’ immediately when the event has taken place
by working closely with the operating system –
for example, a file arrival. There are hundreds of
other events that can be used to trigger jobs –
changing data in a database, network events,
system events (such as memory utilization or disk
utilization) and so forth.

Tidal Enterprise Scheduler

11

Evaluation Guide

Scalability
Today’s job schedulers are required to be

vastly more scalable than their first generation
counterparts. It is not uncommon for mainframe
schedulers to manage 100,000 jobs per day. In
distributed job scheduling, most companies still
manage a few hundred to a few thousand jobs
per day. More computingintensive companies
are beginning to manage in excess of tens
of thousands of jobs per day. Many of these
companies are finding that their first generation
schedulers are unable to keep up with their
increasing workloads. The requirement for
increasing scalability will continue to escalate as
corporations begin to manage more jobs and also
incorporate more event drive capabilities into
their scheduling requirements.

Web-based Interface
In today’s world it is standard practice that

applications be “web enabled” and job schedulers
are no exception. A web interface for a job
scheduling tool simplifies administration of the
tool itself and also gives operations personnel
the utmost in flexibility to log on from anywhere
to monitor and control their scheduling
environment. When looking at the web-based
capabilities of the product it is also important to
know just how much of the product is available
through the web since some tools have only
limited capabilities in this area.

Conclusion
A job scheduler is a core component of

an enterprises’ overall systems management
strategy. With job scheduling, enterprises
attempt to proactively manage the flow of
essential business processes that are required
to run the business. The core features of job
scheduling are well understood and have stood
the test of time. At the same time, each vendor
has a slightly different interpretation of these
core features. Additionally, the market continues
to evolve and requires new features, continuous
innovation and new application support.
Enterprises need to continually evaluate their
applications management strategy to determine
their job scheduling requirements and whether
their current solution meets their current and
future needs.

2100 Geng Road, Suite 210, Palo Alto, CA 94303

1 (877) 55-TIDAL
info@tidalsoftware.com

www.tidalsoftware.com

© Tidal Software, Inc. 2005. All rights reserved. The Tidal Software logo and Tidal Enterprise Scheduler are registered trademarks or
trademarks of Tidal Software, Inc. All other trademarks or registered trademarks are the property of their respective owners.1012-A 06/06

