
Autonomous Robots 14, 33–49, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Evaluation of Architectures for Mobile Robotics

ANDERS OREBÄCK AND HENRIK I. CHRISTENSEN
Centre for Autonomous Systems, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

oreback@nada.kth.se

hic@nada.kth.se

Abstract. In this paper we make a comparative study of some successful software architectures for mobile robot
systems. The objective is to gather experience for the future design of a new robot architecture. Three architectures
are studied more closely, Saphira, TeamBots and BERRA. Qualities such as portability, ease of use, software
characteristics, programming and run-time efficiency are evaluated. In order to get a true hands-on evaluation, all
the architectures are implemented on a common hardware robot platform. A simple reference application is made
with each of these systems. All the steps necessary to achieve this are discussed and compared. Run-time data are
also gathered. Conclusions regarding the results are made, and a sketch for a new architecture is made based on
these results.

Keywords: robots, architecture, comparison, service robot, software

1. Introduction

Mobile robotics is gradually gaining momentum both
for commercial applications and as vehicles for re-
search in a diverse set of domains. Initial design of
robots used a sense-plan-act paradigm for the con-
trol of robots, e.g., Albus et al. (1987) and Barbera
et al. (1984). Today it is widely recognized that the
most efficient strategy for design of robots is the use
of a hybrid deliberate architecture, where there is a
successful coordination between deliberation and re-
active control. Such architectures are used in most
of the robots reported in the recent literature, e.g.,
RAP (Firby, 1989), Xavier (Simmons, 1994), Saphira
(Konolige and Myers, 1996), and 3T (Bonasso et al.,
1997).

Given a fairly general agreement on basic archi-
tectural principles, one might expect that a common
software basis is available and that such a system
is used for exchange of algorithms across labora-
tories and for technology transfer. This is unfortu-
nately not the case. A quick review of the literature
and the set of commercially available platforms re-
veals that a wide variety of different software archi-

tectures are available. Typical architectures include
Mobility from RWI (Real World Interface, 1999),
Saphira from IS-Robotics/SRI (Konolige and Myers,
1996), TeamBots (Balch, 2000), RAP (Firby, 1989),
Xavier (Simmons, 1994), and BERRA (Lindström
et al., 2000). The use of a single common architecture
would, however, have a tremendous potential, and one
is left wondering why such a plethora of architectures
are available and what are the characteristics of these
architectures?

What can be learned from each of these architec-
tures and is there a possibility to perform a synthesis of
a common architecture, or are the approaches adopted
too different to allow for synthesis of a single unified
architecture? In this paper the overall requirements for
a mobile robot architecture are outlined in terms of
dimensions to be considered, and basic requirements
in terms of control, modularity, software engineering,
and run-time performance. Using these requirements
it is possible to consider to what extent the most com-
monly used architectures fit these requirements. In ad-
dition, it is possible to draw a number of conclusions
with respect to the basic methods needed for a unified
architecture.



34 Orebäck and Christensen

2. The Hybrid Deliberate Architecture

Traditionally the architectures of the robot software-
systems were of a hierarchical type, highly influenced
by the AI research of the time. This meant a system
having an elaborate model of the world, using sensors
to update this model, and to draw conclusions based
on the updated model. This is often called the sense-
plan-act paradigm. The systems did not perform very
well, partly because of the difficulty in the modeling
of the world, partly because of relying too much on
inadequate sensors.

In 1987 Rodney Brooks revolutionized the field by
presenting an architecture based on purely reactive
behaviors with little or no knowledge of the world,
see e.g., Brooks (1987). However, the purely reactive
scheme does not perform well when performing com-
plex tasks. A hybrid approach has since then been com-
mon among researchers, e.g., Arkin (1990).

2.1. The Layers

The hybrid systems are usually modeled as having
three layers; one deliberate, one reactive and one mid-
dle layer. The bottom reactive layer performs repet-
itive calculations on raw or extracted data. These
calculations should be carried out in near real-time
for safety-critical considerations. The modules in this
layer are normally stateless. The top deliberate layer
handles planning, localization, reasoning and interac-
tion with human operators. The middle layer, often
called either the sequencer layer, or supervisory layer,
bridges the gap between the deliberate and the reactive
layers.

Figure 1. The hybrid deliberate architecture.

The reactive layer of a hybrid system is often be-
havior based. This means that the subsystem consists
of separate behaviors, where each behavior has one
specified non-complex task. The behaviors represents
a tight coupling from the sensors to the actuators. The
reactive layer also consists of sensors and actuators.
Sensor produce data that are passed on to one or more
concurrently running behaviors. Sensor fusion modules
can extract higher level data from two or more sensors.
Since several behaviors can be active at the same time,
the results must be fused into a single crisp actuator
command. This is done in an actuator command fu-
sion module. A model of a generic hybrid deliberate
architecture can be seen in Fig. 1.

2.2. Examples of Hybrid Deliberate Architectures

The concept of the hybrid deliberate architecture is gen-
erally attributed to Arkin (1986, 1987). The approach
was implemented in the AuRA architecture. AuRA has
a hierarchical system consisting of a mission planner,
a spatial reasoner, and a plan sequencer coupled with a
schema controller which forms the reactive system. A
schema manager controls and monitors the behavioral
processes during execution. Each behavior is associ-
ated with a perceptual schema that provides the stimu-
lus that the behavior requires. The control commands
from the behaviors are summed and normalized in a
special process and then sent to the hardware. As we
see, this layout matches very well that of Fig. 1.

The XAVIER system (Simmons, 1994; O’Sullivan
et al., 1997) has been developed at CMU. The sys-
tem is composed of four layers with specific functions:
task planning, path planning, navigation, and obstacle



Evaluation of Architectures for Mobile Robotics 35

avoidance. The first two would fit into the top layer of
the generic architectecture. Virtual sensors correspond
to the sensor fusion module. The actuator command
fusion is not needed since only the obstacle avoidance
commands the actuators.

The architecture of the 3T (Bonasso et al., 1997) sys-
tem corresponds very well to the generic architectec-
ture. Principles for placing modules in the layers are
based on four parameters, time, bandwidth, require-
ments from missions and modifiability. The reactive
layer consists of skills which maps onto the behaviors
in our generic model. The middle sequencing layer op-
erates by using RAP (Firby, 1989).

The developers of the Saphira, see Section 5.1, ar-
chitecture have not chosen to illustrate their system in
terms of layers. Some sort of mapping to the generic
model can anyway be made. Closest to the actuators
are the reactive behaviors which would fit into our re-
active layer. The sensors however, provide their data to
modules that extract higher order data that are inserted
into the Local Perceptual Space LPS. The LPS is used
by other modules, regardless of their temporal or data
abstraction level. As can be seen in Fig. 4, there are
also goal and navigation behaviors. In the top we have
the PRS-lite and a topological planner that would fit
into the deliberate layer.

The BERRA architecture, see Section 5.3, just like
3T, closely resembles the generic model. The layering
is however more of a descriptive issue and not as funda-
mental to the architecture as in 3T. Sensors and sensor
fusion modules are called resources. Controllers rep-
resent both the actuators and actuator command fusers.
The middle layer is called the Task Execution Layer.

The TeamBots architecture, Section 5.2, has no real
deliberate layer. One could place most of the Clay
classes in the reactive layer. Clay also contains meth-
ods for sequencing of tasks. These would fit into the
middle layer.

3. Dimensions of an Architecture

In order to define and design a common architecture
for mobile robot applications it is essential to consider
the key characteristics of the underlying system.

One can briefly summarize basic requirements as:

– Robot hardware abstraction
– Extendibility and scalability
– Limited run-time overhead
– Actuator control model
– Software characteristics

– Tools and methods
– Well documented

Each of these requirements are discussed in more de-
tail below to clarify the basic requirements and provide
a basis for evaluation of existing systems.

3.1. Robot Hardware Abstraction

Portability is a highly desirable design goal, since hard-
ware is generally subject to change. A portable archi-
tecture should provide abstraction of hardware such
as sensors and actuators. Although robot manufactur-
ers have different hardware solutions, the fundamental
basis often remains similar. At the lowest level, one or
two motors control the drive and steering. Often a sonar
ring and bumpers are present.

The manufacturer usually provides an API that lets
the programmer use slightly higher level commands
such as to move in absolute or velocity mode. The ar-
chitecture should encapsulate these hardware specific
commands into a generalized set of commands. Ide-
ally the hardware characteristics should be kept in a
single file in the software source. Then this file would
be the only place where changes have to be made when
moving the system to new hardware.

Abstractions should be made at different levels. For
instance, on a synchro-drive system, a move command
at a higher level will be transformed into separate
low-level commands for the drive-motor and the steer-
motor. This way, a programmer can choose the level
suitable for his application programming. See Fig. 2
for an example of hierarchical abstraction.

This abstraction at the same time makes it more dif-
ficult to exploit special purpose sensors and hardware
and there is thus a balance between abstraction and effi-
ciency. In all but a few circumstances, efficiency should
be sacrificed since the software usually is more costly
and outlives the hardware.

3.2. Extendibility and Scalability

Extendibility means here the support for adding new
software modules as well as new hardware to a system.
This is a very important aspect, since robotic systems in
research environments tend to evolve in terms of both
hardware and software. Adding new sensors is pretty
much a standard activity in such environments. In terms
of software, in behavior based systems the addition of
new behaviors is also a common practice. Scalability



36 Orebäck and Christensen

Figure 2. An example of hierarchical hardware abstraction.

is achieved by using efficient communication and well
planned data flow. Avoiding bottlenecks and unneces-
sary constraints are also of importance. Scalability has
to be addressed at the architectural level, by for instance
providing means for distributing processes over several
hosts.

3.3. Run-Time Overhead

The run-time environment is defined by a number of
factors, including

1. memory requirements
2. cpu requirements
3. frequency
4. end-to-end latency.

In this context, frequency refers to the number of
control-loops that the bottom layer runs per second.
End-to-end latency refers to the maximum time it takes
for a sensor reading to give impact on a hardware ac-
tuator command.

3.4. Actuator Control Model

In behavior based systems, the output from the individ-
ual behaviors need to be fused in order to produce one
crisp actuator command. This can be done in a number

of ways. Different kinds of simple superposition are
however the most prevalent.

The actuator control model of the robot ultimately
defines how the robot will move. A fast and smooth
behavior is usually desirable. Unfortunately, this area
has become a source of religious belief. Some argue
for the behavior based approach, others for the fuzzy
logic approach, and so on. Note though that most of
these models do not exclude the others but can be used
together in a system.

3.5. Software Characteristics

A robotic system must be robust and reliable and has to
be prepared to handle unexpected situations. The archi-
tecture of the system must provide the framework for
robust integration of required skills. For research and
development purposes, an architecture should provide
support for:

– A conceptual framework for reusability
– A clear distinction between levels of competence
– Simple integration of new components and devices
– Simple debugging
– Prototyping

The following are characteristics (Gabriel, 1993)
that should be considered for a general software system.



Evaluation of Architectures for Mobile Robotics 37

The relative weights of these characteristics is a debated
topic.

– Simplicity—the design must be simple, both in im-
plementation and interface.

– Correctness—the design must be correct in all ob-
servable aspects.

– Consistency—the design must not be inconsistent.
– Completeness—the design must cover as many im-

portant situations as is practical.

Moreover, a good architecture is based on a formal
theoretical ground. It is very important that the pro-
grammers who will be developing for the system, get
a clear view of the architecture. Otherwise they may
program the system away from the original idea, and
the result may lose the cohesiveness it originally had.
Optionally, users may be provided with an alternate
simplified view.

3.6. Tools and Methods

Various tools can be used when constructing a software
architectural system. As far as possible, standardized
(by bodies such as ISO, ANSI, OMG, POSIX) tools
should be used since proprietary tools tend to be short
lived, and there is often skepticism among others to
adopt them. As mentioned earlier, the hardware man-
ufacturer provides the basic interface for accessing the
hardware. This is likely a C language API. On top of
this, functions or classes should be constructed to en-
capsulate and to separate the hardware specifics. These
functions can in turn be called by higher level functions
forming a powerful vocabulary.

With the advent of object oriented programming,
portable and reusable modules can be programmed.
This trend can also be seen in robotics. Earlier sys-
tems were almost exclusively programmed in the C
language, with the exception of the AI community us-
ing LISP. Now, OO-based languages such as C++ and
JAVA are the most popular tools. The next step will be
to use component technologies such as CORBA (see
below).

The governing ideas and principles of the architec-
ture should be visualized in a graphic manner. A single
graph can often clarify pages of explanatory text. UML
(Booch et al., 1999), the Unified Modeling Language
has become is a standard tool for both design and visu-
alization. UML has the advantage that it is supported
by tools that allow automatic synthesis, analysis and
code-generation.

A key component in a robot system is a reliable and
efficient communication mechanism. Modules need to
exchange data and events. Run-time monitoring and
error handling are also of great importance. Since in
some systems, processes may be distributed on a num-
ber of computers, host-to-host communication should
be transparent. This requires a broker object that can
assist other objects in finding each other. A minimum
requirement is to be able to activate and deactivate a
module at run-time. Run-time reconfiguration of in-
terconnections should also be possible. For scalabil-
ity reasons, dynamic objects and process invocation
on a live-when-needed basis is also highly desirable.
Modern tools have factory patterns that aid in this. Data
transfer can be initiated in either a pull or a push fashion.

In the past, several middle-ware standards such as
sockets, Remote Procedure Calls (RPC), TCX (Fedor,
1993) or ACE (Schmidt, 1994) were developed. Re-
cently, a number of new interesting frameworks have
emerged. These lift the problem of distributed pro-
gramming to a higher level of abstraction. The most
well known of these are CORBA, ActiveX, and EJB.
CORBA (Common Object Request Broker Architec-
ture) (OMG, 2001) is a standard managed by the Ob-
ject Management Group. Microsoft’s ActiveX is a set
of technologies based on COM (Component Object
Model). Enterprise Java Beans (EJB), is a specification
just like CORBA. All these technologies can interact
with each other and they all adhere to the Interface De-
scription Language (IDL). They provide component
models and integration frameworks, which means that
we can use them for the interaction as well as for the
system descriptions.

3.7. Documentation

In order for an architecture to achieve success, that is
used apart from locally, the documentation has to be
rigorous. The following parts should be available in a
proper documentation.

– The philosophy behind the architecture.
– A programmers guide.
– A users guide.
– An architecture reference manual that describes the

API on each level.
– Code documentation.

The most difficult part of it is to keep the documen-
tation current with the system. Documentation can be
performed in a number of ways.



38 Orebäck and Christensen

– Printed manuals.
– Web-pages.
– UML/class diagrams.
– Comments in the source.
– Javadoc, Doxygen

A combination of these is highly desirable. The
JavaDoc/Doxygen utilities have the advantage of be-
ing embedded in the code. This way the documenta-
tion is always up to date, even if changes in the code
still require corresponding changes in the comments.
These documentation tools are excellent for code doc-
umentation but fails to capture the overall conceptual
model for the system, consequently a combination of
documentation strategies is needed.

4. Aim of Study

The aim of this study is to determine the characteristics
of a range of common architectures according to the
above dimensions. Conclusions can then be drawn that
can aid in the design of new architectures.

One important issue to keep in mind, is that one must
separate an architecture, from an implementation of the
architecture. However, this kind of study can never be
performed on a theoretical architecture, so what we
really are comparing are implementations of architec-
tures. Ideally, we should have a number of implemen-
tations of each one, in order to make more accurate
judgments.

Another aim of this study is to provide guidance
to readers who are about to choose between available
robot systems. The following are examples of issues
that have been addressed:

– Abstraction models
– Methods of control
– OS Support
– Language API
– Programmer efficiency
– Run-time efficiency
– Software overhead (size of code)
– Tools and methods
– Documentation

4.1. The Test-Case

The test-case considered was a simple service agent
system. In this case, it meant that the operator could
command the robot to navigate to anywhere in an office

Figure 3. The Nomadics super scout.

environment. For this purpose, the robot maintains a
map of the area which is given a priori.

The commands were issued either as keyboard in-
structions or, if possible, using speech commands. The
map names were assigned human friendly names, such
as ‘living room’, ‘dinner table’ etc. When possible, the
robot would respond with synthesized speech. After
arrival at the desired goal, the robot would be ready for
another command. This scenario can easily be trans-
ferred into an interactive tour-guide robot. Then the
modalities of speech input and output, as well as main-
taining a more complex dialog, would be of greater
importance.

All architectures were ported to one common robot
platform, the Nomadic Super Scout (Nomadic, 2000),
see Fig. 3. This is a small robot incorporating an indus-
trial PC, Pentium 233 MHz, 64 MB memory and 6 GB
hard disk. The scout has 16 Polaroid ultrasonic sen-
sors and 6 tactile bumpers. A radio ethernet modem is
available as well as facilities for audio I/O. The mother-
board communicates to a controller-board through a se-
rial port. The hardware control processor is a Motorola
MC68332. Additionally, a TMS320C14 DSP is respon-
sible for high-bandwidth motor control at a rate of
2 kHz. The scout is shipped with the RedHat Linux
(currently 6.x) operating system and a C language API.

5. Architectures Considered

5.1. Saphira

Saphira (Konolige and Myers, 1996) is a robot con-
trol system developed at SRI International’s Artificial



Evaluation of Architectures for Mobile Robotics 39

Figure 4. The Saphira architecture.

Intelligence Center. It was first developed in conjunc-
tion with the Flakey mobile robot project (Saffiotti
et al., 1993), as an integrated architecture for robot
perception and action (Fig. 4). The software runs a re-
active planning system with a fuzzy controller and a
behavior sequencer.

There are integrated routines for sonar sensor in-
terpretation, map building, and navigation. At the
center of the architecture is the Local Perceptual
Space (LPS). It accommodates various levels of in-
terpretation of sensor information, as well as a pri-
ori information from sources such as geometric maps.
The main system consists of a server that manages
the hardware, and Saphira which is a client to this
server.

5.2. TeamBots

TeamBots (Balch, 2000) is a Java-based collec-
tion of application programs and Java packages for
single- and multi-agent mobile robotics research.
TeamBots is an example of a system with a high
degree of granularity. A very large collection of
classes and interfaces are available for developing new
software.

One selection of these classes is called Clay which is
a package of Java classes that can be combined to create
behavior-based robot control systems. Clay takes ad-

Figure 5. A TeamBots simulation.

vantage of Java syntax to facilitate combining, blend-
ing and abstraction of behaviors. Clay can be used to
create simple reactive systems or complex hierarchi-
cal configurations with learning and memory. A ba-
sic interface is inherited by all robot classes. Team-
Bots is widely used in research and teaching. It has
been ported to a number of robot platforms. Team-
Bots is primarily constructed for simulation, and it has
an easy to use graphical interface for such purposes
(see Fig. 5).

5.3. BERRA

BERRA (BEhavior based Robot Research Architec-
ture) (Lindström et al., 2000), is an architecture
with the primary design goals of scalability and
flexibility. All components are heavy weight pro-
cesses and can be transparently placed anywhere on
the network. The implemented system makes heavy
use of the ACE (Adaptive Communication Environ-
ment) (Schmidt, 1994) package. By using this pack-
age, OS dependent system calls are wrapped, allow-
ing for portability across a wide range of Operating
Systems.

ACE also includes powerful patterns for client/
server communication and service functions (Schmidt
and Suda, 1994) which are used in the system. The
implemented system has been tested in a significant
number of missions in the lab, where one room has
been set up as an ordinary living room (Andersson
et al., 1999). See Fig. 6 for a diagram view of
BERRA.



40 Orebäck and Christensen

Figure 6. The BERRA architecture.

6. Evaluation of Software Characteristics

6.1. Programming the Test System

6.1.1. OS, Language Support and Std Libraries

6.1.1.1. Saphira. Saphira supports the most number
of operating systems. Several flavors of UNIX and also
MS windows is supported. The graphical user inter-
face is based on Motif, so Motif libraries are required
for developers. There are several coding methods used
in the Saphira architecture. The core of the system is
programmed in the C language. A special high-level
interpreted language has been designed called Colbert
(Konolidge, 1997). It has a C-like syntax with seman-
tics based on finite state machines. A part of Saphira
is written in LISP. There are signs of speech feedback
in the code, but it seems to have been dropped at some
time, since we never managed to make the client com-
municate with the server.

6.1.1.2. TeamBots. TeamBots is entirely built in
JAVA. The source has been carefully grouped into
classes that form a fine grained collection of compo-
nents. This means that TeamBots can be run on ba-
sically all platforms that support JAVA. This includes
most types of UNIX, MS Windows, as well as MacOS.
Note that in order to run on a real robot, the actual
hardware must be supported by device drivers (a spe-
cial Java Class).

6.1.1.3. BERRA. BERRA has been tested on Linux
and Solaris. Theoretically, all platforms supported by

ACE can be considered. The current version relies
on ACE version 5.x. GNU CC version 2.95.x is rec-
ommended. In order to utilize speech, either Festival
(Black and Taylor, 1997) or a DoubleTalk speech card is
required. The speech recognition system is Esmeralda
(Fink, 1999), which is a (non-free) system from the
University of Bielefeldt. Some vision functions are
based on Blitz++ (Veldhuizen, 1998). BERRA is writ-
ten entirely in C++. Base classes and templates form
the basis of the code structure.

6.1.2. Communication Facilities and Performance.
Only one of the studied architectures (BERRA) are
of the multi-process type and therefore make use of
inter-process communication. BERRA bases all com-
munication on sockets using ACE (Adaptive Commu-
nication Environment). BERRA supports both UNIX
and INET socket protocols. TeamBots includes a com-
munication package, and it is used for communication
between robot instances.

6.1.3. Hardware Abstraction. Hardware abstraction
in Saphira is performed in the robot server. This means
that there is only one level of abstraction. Client pro-
cesses can never address the lower level hardware.

In TeamBots, the hardware abstraction is very ad-
vanced. The interface SimpleInterface is implemented
for all robots. It is also possible to address the hardware
at a lower level. The same applies for control. The class
ControlSystemS is a super-class for all control systems.

BERRA has basically one high-level abstraction.
Methods exist for controlling the hardware at lower
level, but this is achieved by parameterizing the high
level commands using a difficult syntax.

6.1.4. Porting and Application Building

6.1.4.1. Saphira. Porting of the hardware level code
for Saphira was a major task. We were supplied with
the source code used for the Pioneer platform server.
This consisted of a large number of C files with unclear
inter-dependencies. Since we were not supplied with
the source code of the Saphira client, direct observation
of the robot was the only means of debugging.

Regarding the application, all of the relevant behav-
iors were already present in the system. The construc-
tion of the map and incorporating it into the LPS was
also fairly straightforward. Localization then worked
right out of the box. By using Colbert, a reasonable text
based user interface was created. However, the system
lacks route planning. The Colbert language might have



Evaluation of Architectures for Mobile Robotics 41

been used for this, but it was unclear to us how that
could be done. This means that with Saphira we could
only navigate to a point immediately accessible from
the current location.

6.1.4.2. TeamBots. Porting of TeamBots to the No-
madic Scout was a straightforward process. There ex-
isted already a version for Nomadic Nomad150. The
main difference is that the Scout has a differential-
drive system whereas the Nomad150 is equipped with
a synchro-drive.

Building of the application turned out to involve
quite a lot of work. TeamBots is primarily constructed
for pure reactive and non-interactive systems. Thus,
we had to write high level code that could take com-
mands from the operator and then activate the correct
behaviors. Most of the relevant behaviors existed in
the distribution, but a scheme of behavior states was
added to enable switching between these. A simple
route planner was also built. Something completely
missing in the original TeamBots distribution are
methods for localization.

6.1.4.3. BERRA. BERRA previously ran on
Nomad200 and Nomad4000. The abstraction for these
platforms can accept calls from multiple clients. The
Scout can only be accessed by one client. This posed a
problem for BERRA since it consists of multiple pro-
cesses, where several processes need to access the hard-
ware. A major rewrite was performed so that only one
process of BERRA would access and manipulate the
robot hardware. This modification will make it easier
to migrate BERRA to other platforms in the future. All
code needed for the application was already present in
the system.

6.1.5. Documentation. Saphira is clearly the best
documented system. There are plenty of papers de-
scribing the philosophy behind the architecture. There
is also a Saphira Manual that includes a user’s guide,
a programmer’s guide and an API reference. The code
however, is poorly documented. For TeamBots on the
other hand, there is only the javadoc generated class
documentation. The code is well documented. A book
is currently being written. For BERRA, there are papers
describing the design philosophy. All other documen-
tation is web-based. There are quick guides for the user
as well as for the programmer. Javadoc class descrip-
tions are also available. The code is for the most part
well documented.

6.1.6. Programmer Efficiency

6.1.6.1. Saphira. The great flexibility of program-
ming that Saphira offers, is both a strength and a weak-
ness. The vast amount of documentation and options
can make a novice user weary. We believe that it is the
intention of the authors that all application program-
ming should be made with Colbert. This is a practi-
cal and easy language to learn. One confusing matter
is the distinction between activities, processes, behav-
iors, tasks and routines. The learning curve is thus steep
to master the system at a reasonable level. Compi-
lation is however fast and the resulting file sizes are
small.

6.1.6.2. TeamBots. TeamBots gives the option of ei-
ther using or not using Clay. For the novice, the non-
clay examples provided are easier to understand than
the Clay ditto. It should be understood that Clay is to
be preferred since it provides a large number of classes
and a elegant behavior blending mechanism. JAVA pro-
vides a fairly fast compilation environment with mod-
erate file-sizes. No special debugging arrangements are
included.

6.1.6.3. BERRA. BERRA has the most number of fea-
tures. It is a very complex system, and is considered
a difficult system to learn. It consists of a very large
number of directories and files. This makes it hard to
grasp and to understand. Since it consists of several
concurrent processes, the system is difficult to debug.
Because of ACE, and the use of templates, compila-
tion is time consuming. File sizes tend to grow large as
well. Some provisions for debugging exists. A debug
level can be set prior to starting each process. Adding
new behaviors and sensors is though rather easy, since
templates are provided for most functionalities.

6.2. Run-Time Evaluation

6.2.1. Saphira. Starting Saphira is easy. One first
starts the robot server, followed by the Saphira client
which then connects to the server. The operator can
then start and stop behaviors and tasks directly in the
graphical interface with the built-in in Colbert inter-
preter. The syntax for the text commands are however
cumbersome. Libraries can also be dynamically loaded
in run-time. The interface updates the position of the
robot in a map of the environment, as well as other
information, see Fig. 7.



42 Orebäck and Christensen

Figure 7. The Saphira graphical user interface.

Saphira does not demand great system resources, a
little more then 10 MB is sufficient. The response time
was however quite high. It took on average 0.6 seconds
from a sensor reading until it gave a response to the
actuators. The initial control design has a frequency of
10 Hz. It turns out that packets sent from the hardware
have a limited size, so that only 8 sonar readings can
be sent in one packet. However, this is complicated by
the fact that the full update time of all the sonars takes
about 500 milliseconds.

A major problem with Saphira was the inaccuracy of
the localization system. It would inevitably loose track
of its position after approximately 10 m. Thus the sys-
tem must be augmented with methods for localization
to provide a satisfactory performance.

6.2.2. TeamBots. The interface we developed is
rather simple. After starting the system, the operator ba-
sically types in the name of the desired goal. The same
speech recognition system used for BERRA was also
ported to TeamBots, which gave an alternate method
of command. No graphical user interface is available
when running a real robot. One problem regarding the
control of our TeamBots robot, turned out to be the tun-
ing of parameters of the behaviors. These have a very
high impact on how the robot behaves, and we could
neither find a scientific, nor an intuitive way to tune
these. Since the system lacked a localization module,
the robot could not travel far before loosing its posi-

tion. This because of the very accuracy of the odometry
encoders of the Scout. The run-time system consumed
about 8 MB of memory. The loop frequency was mea-
sured to 5 Hz. Many people consider java to be inap-
propriate for a time critical system like that of a robot.
It can be easily shown that a large portion of the time
that the system spends in a control loop, consists of
calls to the hardware. This is totally irrespective of the
programming language used. There is also the possi-
bility of using JNI to embed time critical code written
in other languages.

6.2.3. BERRA. BERRA is started by a shell-script
that deploys the system processes in a cascade like
manner. This works very well, as long as everything
goes as planned. If however a process for some rea-
son would die, the system is left in an undefined state
and must be totally restarted. The latency from a sen-
sor reading to a corresponding actuator command was
measured to as low 0.17 seconds. This is very fast, but
the fact that a full update of the sonars takes 500 ms has
to be taken into account. The system demands 36 MB
of run-time memory.

The functional aspects get a very high mark. When
running BERRA, the scout can traverse the department
for hours fulfilling navigation requests. Unfortunately,
BERRA lacks a graphical user interface.

7. Conclusion on Evaluation

Although the compared systems are quite different,
some conclusions can be drawn.

Hardware abstraction was handled well in all sys-
tems. It is evident that as long as the robot platforms
do not deviate too much, one should go the extra mile
in order to achieve portability. Run-time overhead is
important to the scalability factor, but is not as im-
portant today as it has been. Modern hardware is fast
and cheap. Optimization should only be done where it
really is needed.

Two of the systems are not really designed for inter-
active tasks. In Saphira, the example programs typically
perform a fixed task, for example patrolling an area.
TeamBots has an even more start and observe method-
ology. In the kind of applications applicable to service
robotics, human interaction and flexible task planning
and switching is of great importance. However, the high
level scripting language present in Saphira (Colbert) is
an asset that greatly enhances productivity. The conclu-
sion is that the deliberate layer should be formed in the



Evaluation of Architectures for Mobile Robotics 43

spirit of BERRA, with the addition of a task scripting
language.

Granularity is an important aspect of a system. The
BERRA design features very large building blocks, es-
sentially on the behavioral process level. TeamBots
offers a very fine-grained system. This fine-grained
scheme promotes flexibility, but it is at the expense
of the novice or casual user. Saphira is somewhere in
between, thanks again to the Colbert language. The
conclusion here is that the medium level of granularity
is a reasonable approach.

A graphical user interface, as the one Saphira in-
cludes, offers a valuable view of the system as well as
a more joyful experience. This interface also lets the op-
erator inspect some of the internal states and variables
of the system, and this is a very convenient feature.
A new system that wants to be widely adopted has to
appeal to users of different skill levels, and a flexible
graphical user interfaces is here essential.

Distributing processes over several hosts is a pow-
erful way to provide scalability, extendibility and load
balancing. Sensors could for instance be used that are
situated in the environment or other agents. On the
flip side, debugging becomes a difficult task (com-
pare BERRA), as the overall system complexity grows.
This course needs to be pursued, but careful selection
of tools are here of utmost importance. As mentioned
earlier, we think that the component technologies such
as CORBA is interesting in this context. By replacing
components, different actuator control models can also
be deployed.

Only one of the architectures provides support for
multi-agent systems. Obviously this area is getting
more and more popular, and a unified architecture must
cater for this very early in the design phase.

Saphira is the only architecture that mentions bind-
ings for different languages. We think that this is an
important feature as well.

In Table 1, a table outlining the findings in this chap-
ter, as well as more information, is presented.

8. Discussion and Future Work

An initial question in this study was “why are archi-
tectures not shared across laboratories?” Our study of
three architectures clearly demonstrates that the port-
ing of different architectures in most cases is a major
undertaking due to lack of adequate abstraction over
the hardware platform. It would be desirable to have
a Hardware Description Language (and associated ab-

straction model) that would allow easy interfacing to
a variety of platforms. Initially this might be limited
to the mobility part and sensors for the systems, but in
due course such a facility should be extended to other
parts as well. As seen in the evaluation, it is also a ma-
jor task to provide similar facilities for behaviors and
higher level functionalities due to lack of a common
framework for specification of behaviors, supervisory
system and task decomposition. Consequently, there is
a need to define a common framework to provide the
needed functionalities for porting of systems across
platforms and laboratories. Below is a discussion of
some of the issues to be considered in the design of
such a basis.

8.1. Component Technology

As stated earlier, a highly modular design is desir-
able. Component technologies address many of the is-
sues considered in this paper. One definition of com-
ponents is software components are binary units of
independent production, acquisition, and deployment
that interact to form a functioning system (Szyperski,
1998).

A component based solution would simplify the
following:

– exchange of software parts between labs, allowing
specialists to focus on their particular field.

– comparison of different solutions.
– startup in robot research.

The concept of interfaces as opposed to multiple lev-
els of inheritance help to resolve problems known to
object-oriented programmers.

Component based approaches have been initialized
elsewhere within robotics. The National Institute of
Standards and Technology (NIST), has been devel-
oping specifications of software components for in-
telligent control, a domain that includes robotics. In
Messina et al. (1999), a three-stage component speci-
fication approach is proposed.

Step 1 (Generic categories for the specifications). Ini-
tially, a set of appropriate questions are defined that
are relevant to the particular class of components.
These questions might include:

– What problem is this component intended to
solve?

– What is the input data?



44 Orebäck and Christensen

Table 1. Evaluation table.

Saphira 6.2 TeamBots 2.0 ISR BERRA 2.0

OS

Linux Yes Yes Yes

MS windows Yes Yes No

Solaris Yes Yes Yes

MacOS No Yes No

IRIX Yes Java 1.2 No

FreeBSD Yes Java 1.2 No

NetBSD Yes Java 1.2 No

DEC OSF Yes Java 1.2 No

Supported platforms

Nomadics Yes (now) Yes Yes

Pioneer Yes No No

Cye No Yes No

Main prog. language C Java C++
High-level language Colbert (C-like) Java API C++ API

Software tools requirements gcc, Motif Java 1.2 gcc 2.95, ACE 5

Distribution

Binary Yes Yes No

Source Limited Yes Yes

Installation

Installation program No No No

User friendliness Good Good Poor

License

Free No Yes Yes

Open development No Yes Yes

Free of charge Limited Yes Yes

Graphics

GUI Yes Yes (simulation) Yes

Graphics programming Yes (limited) Yes No

HRI

Text Yes Yes Yes

Speech No No Yes

GUI Yes No Yes

Palm No No Yes

Multi agent support No Yes No

Multi host (distributed) No No Yes

Multi process Threads Threads Multi-process

Data flow paradigm

Push Yes No Yes

Pull Yes Yes Yes

Platform portability

Hardware abstraction Good Very good Very good

HW deps. in one file Yes Yes Yes

Sensor extension cap. No Good (JNI) Very good

(Continued on next page.)



Evaluation of Architectures for Mobile Robotics 45

Table 1. (Continued ).

Saphira 6.2 TeamBots 2.0 ISR BERRA 2.0

Functions

Route planning No (yes?) No Yes

Localization/accuracy Yes/poor No Yes/very good

Sensor support

Sonar Yes Yes Yes

Laser Yes No Yes

IR No No Yes

Camera Yes Yes (newton) Yes

Bumper Yes Yes Yes

Documentation

Manual Yes No No

Webpages No Yes Yes

Class diagrams No Yes Yes

Book No Yes No

Articles Yes No Yes

Learning curve Difficult Easy Difficult

Simulation Yes Yes Limited

Behavior coordination Fuzzy logic Various Vector/histogram addition

Stability Very good Very good Very good

Timing aspects

Realtime support No No No

Sensor Actuator latency 0.6 0.40 0.17

Frequency 2 2.5 6

Bandwidth

Sensor to behavior 4 KB/s OS limitation OS limitation

CodeSize

Filesize, dummy behavior 200 B 100 B 1.7 MB

Runtime memory size

Dummy behavior 24 B 40 B 3.5 MB

Complete system 11 MB 45 MB 36 MB

Harddisk footprint 8.5 MB 12 MB 250 MB

– What is the output data?
– How robust is the component?
– What kind of computing hardware is required?
– How does the component perform against avail-

able benchmarks? etc.

Step 2 (Natural language instantiation of the specifi-
cation). In this step, the questions from step one
are answered for the particular component. The nat-
ural language description can then be made public.
Search engines can locate candidate components and

users can browse through the descriptions as they
would through a hardware components catalog.

Step 3 (Formal language instantiation of the speci-
fication). At the final stage, the component is
described in a formal language in order to provide
an unambiguous specification and to support simu-
lation and verification.

OPEN-R (Fujita and Kageyama, 1997) is an
acronym for Open architecture for Robot entertain-
ment. It is a proposed standard for interfaces of
hardware and software components in entertainment



46 Orebäck and Christensen

robotics. Researchers at SONY have developed
this in order to promote research in intelligent
robotics by providing off-the-shelf components and
basic robot systems. The aim for the standard is

Figure 8. A proposed generic design.

to achieve system extension and reconfiguration
capabilities for mechanical, electrical, and soft-
ware components. The following features are
suggested:



Evaluation of Architectures for Mobile Robotics 47

1. common interfaces for various components such
as sensors and actuators.

2. mechanisms for obtaining information on func-
tions of components and their configurations.

3. a three-layered architecture for hardware adap-
tion, system services, and applications.

The software platform is based on Apertos, an
object-oriented real-time distributed operating
system. In Fujita et al. (1999), a reconfigurable
robot platform is presented. By using configurable
physical components, reconfiguration of the robot
style (e.g., legs or wheels), as well as hot plug-ins,
are enabled.

8.2. Deliberate Components

One common mistake we wish to avoid is the one
to combine the functions of a user interface, a mis-
sion planner, and a route planner (BERRA and partly
Saphira). All these are kept separate in the new ar-
chitecture. In the case we have more than one mode of
operator input, we make sure that we isolate even those
components.

Another important part of a mobile robot is that of lo-
calization. Algorithms used for finding the current pose
and for tracking the pose are usually not related. There-
fore, those functions should be divided into different
modules. Apart from that, one simple server should
be available that can supply clients with the current
pose.

Representations of data are often overlooked in the
architecture literature. A new system must put equal
emphasis on this as on the traditional “boxes and
arrows”. Two examples of representations are map data
and sensor data.

The new system will also support multiple agents.
Basically all modules should be addressable from
the outside. Some people argue that a component
such as a sensor, should only be reached from out-
side the robot by going through a central deliber-
ate component. However, we have seen that specially
constructed chains of command introduce unwanted
complexity.

8.3. Reactive Components

Another common mistake is to integrate the ac-
tuator controllers with the fusing mechanisms
(BERRA, Saphira). We will not repeat this mis-

take. The hardware abstraction is based on the rec-
ommendations from Section 3.1. All sensors have
the same interfaces and the same goes for all
actuators.

8.4. Future Work

The first step of the design phase is to construct an
object model. The next step is to identify a set of in-
terfaces. These interfaces should be reused wherever
possible throughout the system. The design of these
interfaces should stabilize quite quickly, as an inter-
face can never be changed.

The high-level functional building-blocks necessary
in a robot architecture have been identified in Fig. 8. Al-
though this is an UML-diagram showing classes, base-
classes and inheritance, it should not be regarded as
a blueprint for a new system. The class diagram was
chosen in lack of better ways to visualize the different
modules.

The base-class DataServer in Fig. 8 should really be
an interface described in IDL.

One great risk when designing a component frame-
work is that it will be hard to maintain layers and levels
of competence. The system may well grow into a com-
plex soup of components.

9. Summary

We started in this paper by discussing basic require-
ments for a software architecture for mobile intel-
ligent robots. In order to gather comparative data,
a reference application was programmed by using
three different available architectures. The require-
ments were checked against the three implementa-
tions. In the end, conclusions were drawn that reflect
upon the results of the study. A number of principles
are formulated that will guide in the design of a new
architecture.

Acknowledgments

This research has been sponsored by the Swedish
Foundation for Strategic Research through its
Centre for Autonomous Systems and the EU
through the “Open Robot Control Systems—
OROCOS” IST-2000-31064. This support is gratefully
acknowledged.



48 Orebäck and Christensen

References

Albus, J., McCain, H., and Lumi, R. 1987. NBS standard reference
model for telerobot control system architecture (NASREM). Tech-
nical Report 1235, National Bureau of Standards, Gaithersburg,
MD.

Andersson, M., Orebäck, A., Lindström, M., and Christensen, H.
1999. ISR: An intelligent service robot. In Intelligent Sensor Based
Robotics, Springer Verlag: Heidelberg.

Arkin, R.C. 1986. Path planning for a vision-based autonomous
robot. In Proceedings of the SPIE Conference on Mobile Robots.

Arkin, R.C. 1987. Towards cosmopolitan robots: Intelligent nav-
igation in extended man-made environments. Technical Report
COINS 87-80, also Ph.D. Dissertation, Department of Computer
and Information Science.

Arkin, R.C. 1990. Integrating behavioral, perceptual, and world
knowledge in reactive navigation. In Robotics and Autonomous
Systems, Vol. 6, pp. 105–122.

Balch, T. 2000. TeamBots. Available at world wide web,
www.teambots.org.

Barbera, A., Albus, J., Fitzgerald, M., and Haynes, L. 1984. RCS:
The NBS real-time control system. In Robots 8 Conference and
Exposition, Detroit, MI.

Black, A. and Taylor, P. 1997. Festival speech synthesis system:
System Documentation. Human Communication Research Cen-
tre, University of Edinburgh, 1.1 edition.

Bonasso, R.P. et al. 1997. Experiences with an architecture for intel-
ligent, reactive agents. Journal of Experimental and Theoretical
Artificiall Intelligence, 9(2): 237–256.

Booch, G., Rumnaugh, J., and Jacobsen, I. 1999. The Unified Mod-
eling Language User Guide, Object Technology Series, Addison-
Wesley: Reading, MA.

Brooks, R. 1987. A hardware retargetable distributed layered ar-
chitecture for mobile robot control. In Proceedings of the IEEE
International Conference on Robotics and Automation.

Fedor, C. 1993. TCX—An interprocess communication system
for building robotic architectures. Carnegie Mellon University,
Pittsburg, Pennsylvania.

Fink, G.A. 1999. Developing HMM-based recognizers with
ESMERALDA. In Lecture Notes in Artificial Intelligence,
Vol. 1692, Springer: Berlin, pp. 229–234.

Firby, R.J. 1989. Adaptive execution in complex dynamic worlds.
Ph.D. Thesis, Yale University.

Fujita, M. and Kageyama, K. 1997. An open architecture for robot
entertainment. In Proceedings of the First International Confer-
ence on Autonomous Agents, pp. 435–442.

Fujita, M., Kitano, H., and Kageyama, K. 1999. A reconfigurable
robot platform. Robotics and Autonomous Systems, 29(2/3):
119–132.

Gabriel, R.P. 1993. Lisp: Good news bad news. Available at world
wide web, http://www.ai.mit.edu/docs/articles/good-news/good-
news.html.

Konolidge, K. 1997. COLBERT: A language for reactive control in
Saphira. In German Conference on Artificial Intellgence, Freiburg.

Konolige, K. and Myers, K. 1996. The Saphira Architecture for
Autonomous Mobile Robots, SRI International.

Lindström, M., Orebäck, A., and Christensen, H. 2000. Berra:
A research architecture for service robots. In International
Conference on Robotics and Automation.

Messina et al. 1999. Component specifications for robotics

integration. Autonomous Robots, 6(3): 247–264.
Nomadic. 2000. Nomadic Technlogies Inc. Available at world wide

web, www.robots.com.
OMG. 2001. CORBA. Available at world wide web, www.corba.org.
O’Sullivan, J., Haigh, K.Z., and Armstrong, G.D. 1997. Xavier

Manual, internal manual.
Real World Interface. 1999. Mobility robot integration. Available at

world wide web, Tech sheet, www.isr.com/rwi/.
Saffiotti, A., Ruspini, E., and Konolige, K. 1993. Blending reactivity

and goal-directedness in a fuzzy controller. In Second Interna-
tional Conference on Fuzzy Systems, San Francisco, CA, Vol. 14,
pp. 134–139.

Schmidt, D.C. 1994. The ADAPTIVE communication environment:
Object-oriented network programming components for develop-
ing client/server applications. In 11th and 12th Sun Users Group
Conference.

Schmidt, D.C. and Suda, T. 1994. The service configurator frame-
work. In IEEE Second International Workshop on Configurable
Distributed Systems.

Simmons, R. 1994. Structured control for autonomous robots. In
IEEE Transactions on Robotics and Automation.

Szyperski, C. 1998. Component Software: Beyond Object-Oriented
Programming, Addison-Wesley: Reading, MA.

Veldhuizen, T.L. 1998. Arrays in Blitz++. In Proceedings of the 2nd
International Scientific Computing in Object-Oriented Parallel
Environments (ISCOPE’98), Springer-Verlag: Berlin.

Anders Orebäck is carrying out his Ph.D. studies at the Centre for
Autonomous Systems (CAS) at the Royal Institute of Technology
(KTH), Stockholm, Sweden. He has primarily been working with
architectural and integration issues within the field of service
robotics. He was one of the lead designers of the ISR (a.k.a
BERRA) system developed at CAS. He earned his M.S. in Electrical
Engineering at KTH. Before pursuing his Ph.D. studies, he worked
with VR and other emerging technologies in a small startup in the
entertainment industry.

Henrik I. Christensen is a professor of computer science special-
izing in autonomous systems at the Royal Institute of Technology



Evaluation of Architectures for Mobile Robotics 49

(KTH), Stockholm Sweden. In addition he is the director of the
Centre for Autonomous Systems (CAS) at KTH. He also serves as the
founding chairman of the European Robotics Network—EURON.
He received M.Sc. and Ph.D. degrees from Aalborg University in

1987 and 1989, respectively. His has published more than 120 con-
tribution on robotics and computational vision. In addition he serves
on the editorial board of several journals incl. IJRR, IEEE PAMI,
IJPRAI and AI magazine.


