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Correction of echo planar imaging (EPI)-induced distortions (called “unwarping”)
improves anatomical fidelity for diffusion magnetic resonance imaging (MRI) and
functional imaging investigations. Commonly used unwarping methods require the
acquisition of supplementary images during the scanning session. Alternatively,
distortions can be corrected by nonlinear registration to a non-EPI acquired structural
image. In this study, we compared reliability using two methods of unwarping:
(1) nonlinear registration to a structural image using symmetric normalization (SyN)
implemented in Advanced Normalization Tools (ANTs); and (2) unwarping using an
acquired field map. We performed this comparison in two different test-retest data sets
acquired at differing sites (N = 39 and N = 32). In both data sets, nonlinear registration
provided higher test-retest reliability of the output fractional anisotropy (FA) maps than
field map-based unwarping, even when accounting for the effect of interpolation on the
smoothness of the images. In general, field map-based unwarping was preferable if and
only if the field maps were acquired optimally.

Keywords: EPI distortion correction, B0 field mapping, symmetric normalization registration, diffusion tensor
imaging (DTI), reliability

INTRODUCTION

Diffusion imaging is a widely-used technique to examine white matter microstructure in vivo. Echo
planar imaging (EPI), introduced by Mansfield (1977), has become the dominant method for the
acquisition of diffusion-weighted images, which are commonly fit to a tensor model as Diffusion
Tensor Imaging (DTI). However, EPI causes geometric distortions (Jones and Cercignani, 2010)
that stem from the inhomogeneity of the underlying B0 field, which is in turn due to the varying
magnetic susceptibilities of air, bone and tissue. Susceptibility-induced EPI distortions alter
anatomical fidelity of the images, making anatomically accurate measurements more difficult,
and complicate multimodal investigations that integrate data from EPI and non-EPI images.
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B0 Field mapping techniques (Jezzard and Balaban, 1995;
Wan et al., 1997) can be used to reduce EPI distortion
by ‘‘unwarping’’ the images. Unwarping using field mapping
requires that we obtain phase images at two different echo times
(Reber et al., 1998). Using these two-phase images, one can
calculate the degree of EPI distortion present along the phase-
encode direction of the EPI images, and then apply an equal
and opposite pixel-shift, thereby unwarping the distortions in the
original images.

Another approach to correcting EPI distortions at acquisition
is the ‘‘blip-up blip-down’’ method introduced by Chang
and Fitzpatrick (1992), which requires the acquisition
of the same image twice, with reversed phase-encoding
gradients. The distortions in each image are identical, but
in opposite directions. By applying a specialized symmetric
registration with transformations only allowed along the
phase-encode direction, we can warp these images to
each other to ‘‘meet in the middle’’, and thereby obtain
distortion-corrected images with no signal loss. This method
is implemented in FSL’s ‘‘topup’’ program (Andersson et al.,
2003).

These two methods must be implemented at the time
of acquisition. However, many valuable data sets have been
collected and released to the community that have not been
acquired with field maps nor with reversed phase-encoding
gradients (Zuo et al., 2014).

For this reason, researchers have been motivated to
examine correction of distortions using non-linear registration
techniques (Andersson et al., 2003; Wu et al., 2008). Non-linear
co-registration with the Advanced Normalization Tools
(ANTs; Avants et al., 2008) has been used to correct EPI
distortions by calculating a nonlinear warp to a non-EPI
acquired structural image. The authors found that nonlinear
registration increased measures of functional connectivity
in a way that suggested the presence of meaningful signal,
but the results were different than correction using a field
map.

In this article, we examined the question of how well
nonlinear co-registration with ANTs corrects distortions as
compared to a field map in two different data sets acquired at
different sites. While this investigation was conducted in the
context of DTI, the results might generalize to fMRI studies that
employ unwarping of EPI distortions.

Accurate unwarping is especially important considering that
it is an early processing step that may interact with subsequent
analytical steps in unexpected ways that may have a large impact
on the results of an investigation (Madhyastha et al., 2014).
One way of examining whether the distortion correction is
accurate or not is to examine the similarity of the fractional
anisotropy (FA) map obtained after tensor fitting (assessed
using mutual information (MI)) to the structural T1 image.
Another is to quantify within- and between-session scan-rescan
reliability of distortion correction methods in the context of a
complete analysis pipeline, exploiting the idea that in the ideal
acquisition scenario, with no variability due to distortion, we
would obtain the same DTI statistics in repeated scans. In this
article, we compared the reliability of field map-corrected images

to nonlinear registration-corrected images after processing using
Tract-Based Spatial Statistics (TBSS; Smith et al., 2006), a
popular DTI analysis method. We also visualized the difference
between FA values acquired at both time points across the entire
brain.

MATERIALS AND METHODS

Participants
Our study data came from two data sets, which we label
Udall and Boekel. Udall: DTI data were acquired as part of a
larger study of Parkinson’s disease (Madhyastha et al., 2015).
For this study, 23 Parkinson’s patients and 16 controls (mean
age = 64.59, SD = 10.53; 16 females) had acceptable quality
DTI data for two acquisitions. Boekel: The Boekel data set
includes data from 32 undergraduate psychology students (mean
age = 22.50, SD = 3.22; 17 females) who were recruited from
a previous 43-participant magnetic resonance imaging (MRI)
study (Boekel et al., 2015). Two subjects from the original data
release were omitted from this study because the face shearing
used to de-identify subjects caused significant data loss in the
T1 and/or field map magnitude images. These data are available
for download at NITRC (David, 2006; Boekel et al., 2017). For the
Udall data set, the data was collected under a protocol approved
by the local University of Washington institutional review board
and all participants gave their written informed consent. For the
Boekel data set, the data collection protocol was approved by the
local ethics committee at the University of Amsterdam (Boekel
et al., 2015). All participants gave their written informed consent
prior to scanning. The study was approved by the University of
Washington review board.

Table 1 shows the demographic data for these subjects.
We conducted an independent-sample t-test to compare the
ages of Udall and Boekel participants. There was a significant
difference in the ages for Udall (M = 64.59, SD = 10.53) and
Boekel participants (M = 22.50, SD = 3.22); t(69) = 21.76,
p < 0.001. Participants in the Udall data set are significantly
older than the Boekel participants. We used a Chi-square test to
compare the percentage of males in each group. There was no
significant difference in the percentage of males in each group
(X2

(1,N = 71) = 1.03, p = 0.31).

MRI Data Acquisition
In the Udall study, DTI and T1 weighted images were collected
on a Philips Achieva 3T scanner at the University of Washington
with a 32-channel head coil. The Udall diffusion acquisition
was optimized for high angular resolution. The DTI pulse
sequence parameters were: 75 2 mm slices acquired with no
slice gap and in an ascending temporal slice order, matrix

TABLE 1 | Demographics of Sample.

Udall Boekel

Demographics
N 39 32
Age at Scan 64.59 (10.53) 22.50 (3.22)
Sex (number males) 23 (59%) 15 (47%)
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size = 128 × 128, FOV = 256 × 256 × 150 mm, giving a
2 × 2 × 2 mm isotropic voxel size. TR = 10.8 s, TE = 93.5 ms,
flip angle = 90◦, and a total of 64 b-vectors, distributed evenly
across a half-sphere, with b = 3000 s/mm2, and one b = 0 s/mm2

image. The parallel acceleration factor (SENSE) was 2. Total
acquisition time was 14.2 min. The B0 field map was collected
with matching geometry for use in unwarping EPI distortions
due to magnetic field inhomogeneity (Jezzard and Balaban,
1995). The field map acquisition was a 3D interleaved dual echo
gradient echo pulse sequence, with the following parameters:
matrix size = 256 × 256 × 75, FOV = 256 × 256 × 150,
TR = 10 ms, TE1 = 2.25 ms, TE2 = 3.25 ms. This bounded the
unaliased frequency offsets at ±500 Hz. A sagittal T1-weighted
3D MPRAGE was collected to allow for registration of the
DTI images, using the following parameters: 176 slices, matrix
size = 256 × 256 × 176, FOV = 256 × 256 × 176 mm,
TI = 1100ms, TE = 3.49ms, T = 7.46ms, Turbo-Field echo (TFE)
factor = 225, flip angle = 7◦, shot interval = 2530ms, and a SENSE
factor = 2.

The parameters for the Boekel DTI acquisition are described
in Boekel et al. (2015). Briefly, DTI and T1-weighted images
were collected on a 3T Philips Achieva XT at the University of
Amsterdam with a 32-channel head coil. For each subject, four
repetitions of a single shot DTI scan were obtained using the
following parameters: 60 2 mm slices acquired with no slice gap
and in an ascending temporal slice order, matrix size = 112× 112,
Field of View (FOV) = 224 × 224 × 120, giving a 2 × 2 × 2 mm
isotropic voxel size. TR = 7.5 s, TE = 86 ms, flip angle = 90◦,
and a total of 32 non-colinear b-vectors, distributed evenly across
a half-sphere, with b = 3000 s/mm2, and one b = 0 s/mm2

image. The parallel acceleration factor (SENSE) of 2. The
field map acquisition was a 3D interleaved dual echo gradient
echo pulse sequence, with the following parameters: matrix
size = 128× 104× 128, FOV= 256× 208× 256mm, TR = 11ms,
TE1 = 3 ms, ∆TE = 5 ms. This bounded the unaliased frequency
offsets at ±200 Hz. An axial 3D T1-weighted anatomical scan
was also acquired with a 3D gradient echo scan with using
the following parameters: matrix size = 240 × 188 × 220,
FOV = 240 × 188 × 220 mm, TE = 3.8 ms, TR = 7.46 ms, TFE
factor = 154, flip angle = 8◦, shot interval = 2375 ms, and SENSE
factors = 2.5 LR, 2 FH.

We used only the first of the four repetitions of the DTI
scan for each session in this analysis. Because the second
T1 measurements were dropped for a subset of the Boekel
subjects to optimize the total scan duration, we used the first
T1 scan for both time points for the Boekel data set.

In the Udall data set, the time between the two DTI
acquisitions was 2–3 weeks. In contrast, in the Boekel scanning
was completed within a single day; the time between the two scan
sessions was 2–4 h.

MRI Processing
Diffusion data were processed using in-house bash scripts written
by DP that invoked FMRIB (Oxford Center for Functional MRI
of the Brain) Software Library (FSL) version 5.0.9 programs and
produced quality assurance images. These scripts are available
at https://github.com/danjonpeterson/dti_preproc. The specific

FIGURE 1 | Diffusion Tensor Imaging (DTI) preprocessing workflow.

version of the scripts used for this article is version 1.0. Detailed
descriptions of the parameters used by all processing steps are
given in Supplemental Materials.

The first step was to correct the diffusion data for motion and
eddy-current induced distortions (Figure 1). The unweighted
diffusion image was extracted and skull stripped using FSL BET
(Brain Extraction Tool) to create a DTI mask. Then, diffusion
data were corrected for motion and eddy-current induced
distortions using FSL’s ‘‘eddy’’. Motion estimates, produced
using FSL’s rmsdiff command, were used to compute the
mean absolute root mean squared (RMS) displacement and
mean relative RMS displacement. We analyzed these motion
parameters using paired and unpaired t-tests, because motion
can have a significant impact on the quality and reliability of
diffusion MRI data (Yendiki et al., 2014).

We compared two methods of performing DTI unwarping.
The first used a B0 field map (Jezzard and Balaban, 1995)
to compensate for the distortions (field map unwarping),
and the second used nonlinear registration (large deformation
diffeomorphic metric mapping) implemented as Symmetric
Normalization (SyN) by ANTs (Avants et al., 2011) version
2.1.0 release candidate 3 (nonlinear registration unwarping).
Field map unwarping (Figure 2) was performed using FMRIB’s
Utility for Geometrically Unwarping EPIs (FUGUE). First, the
B0 field map was converted to radians per second by multiplying
by 2∗π. FUGUE uses the field map values to determine the pixel
shift of the motion-corrected diffusion data in the phase-encode
direction, correcting for distortion.

To evaluate the scenario where no field map was acquired
(Figure 3) we used ANTs SyN nonlinear registration of the
unweighted diffusion image to a bias corrected (using FSL FAST)
and skull-stripped (using ROBEX, a robust, machine learning-
based brain extraction system (Iglesias et al., 2011)) T1 image.
We found that ROBEXworked well across both data sets to create
an accurate skull stripped image for registration. We performed
this registration using two methods. The first method, modeled
after EPI motion correction (Huntenburg et al., 2014) was to
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FIGURE 2 | DTI field map unwarping workflow.

invert the contrast on the bias corrected and skull stripped
T1 image and use the antsRegistrationSynN.sh script to register
the B0 image to the inverted T1 image [Method 1]. The second
approach was to use the antsIntermodalityIntrasubject.sh script
to register the B0 image to the original bias corrected and
skull stripped T1 image [Method 2]. Both ANTs approaches
use the MI criterion to align the unweighted diffusion
image to the T1 image (Huntenburg, 2014; Huntenburg
et al., 2014). Method 1 tunes the underlying registration
parameters for images that are from different subjects but
with similar contrast characteristics. Method 2 tunes the
underlying registration parameters for images collected on
the same subject, but across image modalities with different
contrast characteristics. See ‘‘Supplemental Materials’’ for more
details on this pipeline. After visually checking the registrations,
we applied the transformation to all volumes of the DTI
images.

After unwarping using either the field map or nonlinear
registration implemented by SyN in ANTs, we fit the DTI tensor
using FSL’s DTIFIT (Basser et al., 1994). We used weighted least-
squares fitting to fit the tensor and output DTI scalar images.
FA maps obtained using nonlinear registration unwarping were
down-sampled to 2 mm.

FA maps obtained using nonlinear registration unwarping
were smoother than those obtained using field map unwarping
because of resampling in the registration steps. To separate the
effects of smoothing from the effects of unwarping technique,
we created a smoothed field map unwarped FA data set
as follows. We estimated the smoothness of the nonlinear
registration unwarped images using the Analysis of Functional
Neuroimaging (AFNI; Cox, 1996) 3dFWHMx utility, which

estimates smoothness of the image, or the autocorrelation of
neighboring voxels. This is measured as the Full Width at Half
Maximum (FWHM) of a Gaussian approximation to the spatial
autocorrelation function. We next measured the smoothness of
the field map unwarped images to that FWHM estimate using
AFNI 3dBlurToFWHM, which iteratively re-smooths a data set
until it has the given FWHM in the specified dimensions. After
unwarping using ANTs, the estimated mean FWHM smoothness
across all dimensions was 10.27 mm for the Boekel data set, and
10.48 mm for the Udall data set. Figure 4 shows an example axial
slice of a single subject’s FA map using field map unwarping (A),
after nonlinear registration unwarping (B), and after matching
the smoothing of the field map unwarping to the nonlinear
registration unwarping (C).

This processing pipeline was written in GNUMake, using the
approach described in Askren et al. (2016). Makefiles describing
the workflow are available from the corresponding author.

Evaluation of Unwarping
We evaluated unwarping using two different techniques. One
way to quantify unwarping is to compare the unwarped image
to an undistorted image. To operationalize this approach, we
quantified the MI between the computed FA map and the skull-
stripped T1 image. MI, or the statistical dependence between
the intensities of corresponding voxels in two images, is an
important measure of image similarity that is often used to
evaluate registration methods. MI should be maximized when
images are aligned (Maes et al., 1997). MI is calculated using
marginal distributions derived from a joint histograms of the two
images (Avants et al., 2011) using the MeasureImageSimilarity
program from ANTs. MI is by definition a positive value, but
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FIGURE 3 | Nonlinear registration unwarping, implemented using Advanced Normalization Tools (ANTs).

FIGURE 4 | Differences in smoothing. (A) Fractional anisotropy (FA) images unwarped according to an acquired field map (smoothness is 4.64). (B) FA images
unwarped according to nonlinear registration to a structural image (smoothness is 6.76). (C) FA images unwarped according to an acquired field map and smoothed
to match the smoothness of the nonlinearly warped image (smoothness is 6.73).

the metric output by ANTs is sign-inverted so that it can be
minimized; therefore, the method that has the lowest value of
this metric (the highest MI) can be interpreted as having the
least distortion in the FA map relative to the T1. We used this
metric to choose the ANTs registration that best aligned the
FA map to the T1 (of the two methods that we tried shown
in Figure 3) for each individual. We report the negative of
the ANTs reported metric, the MI metric, where higher MI is
better.

Another way to evaluate the effect of unwarping methods
is to consider how different unwarping techniques affect

subsequent analytic power. We operationalize this by evaluating
the reliability of DTI scalar statistics in a realistic analysis setting
using TBSS. TBSS projects all subjects’ FA data onto a mean FA
tract skeleton that represents the centers of all tracts common
to the group. TBSS has gained popularity for its ease of use
and improved alignment of white matter as compared to other
voxel-wise analysis methods (Jones and Cercignani, 2010). We
assessed reliability by running TBSS (using default parameters
(Jenkinson, 2013)) on the FA maps at each session computed
using no unwarping, field map unwarping and nonlinear
registration unwarping. We calculated voxel-wise statistics on
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the final TBSS skeleton using Pearson’s correlation coefficient
(r) and the Intra class Correlation (ICC) coefficient to assess
the reliability of FA statistics across sessions as in prior work
(Madhyastha et al., 2014). To compute the ICC, we used a
two-way mixed effects model with absolute agreement (McGraw
and Wong, 1996). We determined whether there was an overall
significant difference in reliability between voxels in a skeleton
by using a Mann-Whitney U-test, a nonparametric test of the
null hypothesis that the distributions of the reliability coefficients
in the skeleton are identical using data unwarped using different
techniques.

We also examined a measure of reliability across the entire
brain, including areas where we expect signal dropout, by
calculating the absolute value of the difference in FA maps
for each subject at each time point after registering to the
structural image obtained at the first-time point using rigid-body
registration. We then used ANTs SyN registration to transform
the structural image to standard space, and applied this nonlinear
transform to the FA difference maps. In this way we computed
a ‘‘mean FA difference map’’ for each study and each method.
We used random permutation testing to conduct a paired t-test
to determine where the difference in longitudinal measurements
using field map unwarping was smaller or larger than
the measurements using ANTs unwarping. We implemented
this t-test using FSL randomize, with threshold-free cluster
enhancement (Smith and Nichols, 2009) to identify clusters
without specifying an arbitrary threshold and correction for
multiple comparisons by controlling the family-wise error (FWE)
rate. This allowed us to partially separate effects of registration
from the effects of unwarping to visualize spatial differences
in the reproducibility of measures using the two unwarping
methods.

RESULTS

We compared the mean absolute RMS displacement and mean
relative RMS displacement across time points and studies
using paired sample t-tests. For Udall, the mean absolute
RMS displacement was 0.51 mm and the mean relative RMS
displacement was 0.89 mm. There was no significant difference
between the mean absolute RMS motion (t(38) = 0.20, p = 0.84)
and mean relative RMS motion (t(38) = 0.82, p = 0.42)
between the two-time points. For Boekel, the mean absolute
RMS displacement was 0.20 mm and the mean relative RMS
displacement was 0.55 mm. There was no significant effect for
the mean absolute RMS displacement (t(31) = 0.78, p = 0.44) and
mean relative RMS displacement (t(31) = 0.45, p = 0.66) between
the two-time points. But the mean absolute RMS displacement
and mean relative RMS displacement are both higher in Udall
than in Boekel (t(140) = 11.61, p < 0.001) and mean relative RMS
motion (t(140) = 4.93, p < 0.001).

Table 2 shows the MI of the FA maps resulting from
field map unwarping and nonlinear registration unwarping
to the bias corrected and skull stripped T1. Estimates across
different sessions are quite stable (they are the same to within
two significant digits, and not shown). For Udall, field map
unwarping is the best. No unwarping is better than nonlinear

registration unwarping (t(77) = 17.14, p < 0.001) and field
map unwarping is better than no unwarping (t(77) = −4.15,
p < 0.001) and nonlinear registration unwarping (t(77) =−15.89,
p < 0.001). For Boekel, however, we saw that nonlinear
registration unwarping is the best. Nonlinear registration is better
than no unwarping (t(63) = −25.38, p < 0.001) and field map
unwarping (t(63) = 26.16, p< 0.001). No unwarping is better than
field map unwarping (t(63) = 2.88, p = 0.005).

Table 3 shows the Pearson correlation and ICC
values calculated without unwarping, using field map
unwarping, nonlinear registration unwarping, and field map
unwarping after smoothing to match the field map unwarping.
In general, nonlinear registration unwarping produced the
highest reliability of voxels in the TBSS skeleton. Some form of
unwarping improved reliability over no unwarping, despite the
fact that TBSS uses nonlinear registration implemented by fnirt
and skeleton projection to align white matter. For both Boekel
and Udall, there was a significant improvement in reliability
from simply smoothing the field map unwarped image. The
magnitude of this improvement was, in general, larger than the
magnitude of the improvements from unwarping. Consistent
with differences in quality of unwarping using the field map for
the two acquisitions asmeasured usingMI, nonlinear registration
unwarping for Boekel resulted in a similar percentage of voxels
with a significant correlation or ICC value, and a higher mean,
than field map unwarping with smoothing. In contrast, the
Udall results show a somewhat lower percentage of voxels with
a significant correlation or ICC value for nonlinear registration
unwarping than field map unwarping with smoothing, and
a resulting smaller improvement in reliability with nonlinear
registration unwarping. Mann-Whitney U tests showed that the
mean ICC values were significantly different for all methods and
data sets at p < 0.001.

Figure 5 shows the mean difference in FA calculated between
time 1 and time 2 for Udall and Boekel. Red-yellow shades show
areas where FA maps obtained using registration unwarping are
more similar between time points, and blue shades show areas
where FA maps obtained using field map unwarping are more
similar between time points. All results are FWE-corrected at
p < 0.05. In most areas of the brain, the registration unwarping

TABLE 2 | Mean mutual information (higher is better) of FA and T1 images
across all subjects using different unwarping techniques.

Udall time 11 Boekel time 1

M SD M SD

No unwarping 0.47 0.03 0.39 0.02
ANTs (method 1) 0.45 0.03 0.43 0.03
ANTs (method 2) 0.44 0.03 0.41 0.03
ANTs (best of method 1 and 2)2 0.45 0.03 0.43 0.03
Field map unwarping 0.48 0.04 0.39 0.02

Method 1 uses antsRegistrationSynN.sh and Method 2 uses

antsIntermodalityIntrasubject.sh. Note: 1Results for time 1 are identical to

within two significant digits to results from time 2, indicating that methods worked

similarly across both samples. 2The highest MI is computed on a per-subject level,

so it is theoretically possible for this value to be larger than the mean for either

method.
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TABLE 3 | Reliability of different methods for unwarping (in the TBSS pipeline).

Pearson correlation ICC

Mean in
the

skeleton

Percentage of
voxels (p < 0.05)
in the skeleton

Mean among
voxels (p < 0.05)
in the skeleton

Mean in
the

skeleton

Percentage of
voxels (p < 0.05)
in the skeleton

Mean among
voxels (p < 0.05)
in the skeleton

Udall No unwarping 0.66 0.81 0.69 0.66 0.82 0.67
Field map unwarping unsmoothed 0.70 0.79 0.72 0.70 0.80 0.71
Field map unwarping smoothed 0.77 0.82 0.76 0.76 0.82 0.75
Nonlinear registration unwarping 0.80 0.79 0.78 0.80 0.78 0.78

Boekel No unwarping 0.62 0.80 0.66 0.61 0.83 0.65
Field map unwarping unsmoothed 0.64 0.82 0.68 0.64 0.85 0.67
Field map unwarping smoothed 0.68 0.86 0.72 0.67 0.88 0.70
Nonlinear registration unwarping 0.77 0.87 0.79 0.77 0.87 0.77

FIGURE 5 | Difference maps for the (A) Udall and (B) Boekel data sets, as measured by the difference in FA at two time points. Red-yellow voxels
show where nonlinear registration to a structural image produces smaller differences between time points, and blue-light blue voxels indicate that the field
map-based unwarping produces smaller differences between time points. All highlighted voxels are family-wise error (FWE)-corrected for multiple
comparisons (p < 0.05).

shows greater similarity between time points than field map
unwarping.

DISCUSSION

In this study, we found that distortion correction of diffusion
data using the SyN algorithm implemented in ANTs resulted
in higher reliability, both as measured after processing using
TBSS and by examining mean difference scores (Figure 5), than
using a field map for unwarping. This suggests that unwarping
using nonlinear registration may be a reasonable choice,
especially when no explicit method of distortion correction is
available.

In contrast, results obtained simply by comparing MI scores
were equivocal. Using MI scores themselves we would conclude

that unwarping using nonlinear registration using ANTs could
potentially be worse than doing no unwarping. However, in real
analyses MI is not normally an outcome metric, and because the
downstream effects of processing steps can be profound, it is
important to consider each step in the context of the analysis one
plans to conduct.

Specifically, we note that ‘‘secondary’’ processing effects on
the data, such as smoothing due to resampling, can have a
larger impact on downstream measures than the quality of the
correction itself. For example, smoothing increases the reliability
of TBSS results, in many cases more than the effect of distortion
correction. Although the MI of the structural image and the FA
map is larger with field map unwarping than with nonlinear
registration unwarping, nonlinear registration unwarping still
has the highest reliability in the TBSS pipeline and according
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to the mean difference in FA statistics across time points. This
occurs because the mean FA maps at each time point end
up being more similar to each other than to the structural
image. Although smoothing increases the reliability of the data
and decreases noise, it may also decrease sensitivity to detect
important differences. This tradeoff must be considered when
developing an analytic pipeline.

The difference in results obtained using the same unwarping
pipeline on two different field map and diffusion data
acquisitions reminds us that the quality of field map unwarping
is only as good as the quality of the field map. The static magnetic
field within a scanner can be easily measured using standard
pulse sequences. One commonly used sequence acquires two
gradient echoes with slightly differing TEs: for any collection
of spins within a voxel, its phase difference between the two
echoes is linearly proportional to its field offset. However, a
certain amount of care is needed when setting up a field-mapping
sequence. Firstly, the acquisition volume should be set to be the
same FOV in all three directions as the DTI scans. Secondly, the
shimming method should be the same for the field-map. These
two settings are important as usually a scanner performs a field
shimming step as part of its pre-scan procedure, which optimizes
the shim over the requested FOV (or a manually defined region).
If this region for the field-map is different from the region for
the DTI scans, or the shimming method is different, then the
actual shim will be different, and hence the field-map will not
be measuring the field that exists for the DTI scans. Thus, of
course, any subsequent use of this different field-map to correct
the distortion in the DTI scans will be invalid.

The differences between the Boekel and Udall field maps are
that the Boekel field map has a large ∆TE, and that there is
a field of view difference between the diffusion scan and the
field map in the Boekel dataset. The parameter difference is a
suboptimal design, and this is reflected in the lower reliability
after unwarping.

To summarize, our recommendations for best practices for
addressing susceptibility artifact correction using field maps are
as follows:

At Acquisition: To obtain a useful field map (i.e., one that
measures the same magnetic field that is experienced by the
diffusion weighted image, with the highest fidelity):

1. The Field of View, number of slices, slice thickness (and slice
gap if using a 2D sequence), and angulation must be the same
as the diffusionMRI sequence.We prefer a 3D scan for greater
signal to noise ratio (SNR), taking care to ensure that the
3D slice thickness is equal to the DTI slice thickness plus
any slice gap. This ensures that the shimming process for the
field map is over the same volume as the diffusion weighted
image.

2. The first echo should be set to the shortest possible time, with
the delta TE to 1 ms—which allows for a ±500 Hz range
before phase-wrapping occurs, while still providing sufficient
‘‘dynamic range’’ for the observed frequency offsets.

3. The TR can be set to the shortest available, or lengthened, if a
magnitude image with some T1 contrast is desired for use in
an image registration pipeline is desired (see point 6).

4. The shimming method should be the same as the diffusion
weighted scan(s), and preferably based on a pencil-beam
and/or volume shimming method.

5. The field map should ideally be acquired after the diffusion-
weighted scan(s), and any pre-scan steps set to a mode in
which the shim values are taken from the previous diffusion
scan, and not recalculated (points 1 and 4 help assure that no
re-shimming is performed for the field map).

6. The acquired matrix should be set to the same resolution as
the diffusion-weighted scan, or an integer multiple thereof.
We have found that using a 256 × 256 matrix for the field
map, compared with 128 × 128 matrix for the diffusion
weighted scan, allows for the magnitude images from the
field map to be used as a helpful intermediate step in
registration from the DTI scans to high-resolution structural
scans.

For pre-existing data sets:

1. If a field map exists and conforms to the specifications above,
it can be used to correct distortions. This approach should
give the best correspondence of the unwarped diffusion image
to anatomical images independent of subsequent processing
steps.

2. If there is no field map, or if it is suboptimal, use nonlinear
registration with ANTs to correct distortion.

Note that other acquisition-based methods for distortion
correction, such as blip-up blip-down acquisition methods
(Chang and Fitzpatrick, 1992), may be superior to field map
unwarping, but this comparison is beyond the scope of this
article.

There are some limitations to our study. We used reliability
data sets collected for purposes other than for this study. If we
were designing a study with the sole purpose of exploring the
efficacy of different unwarping techniques, we would subject
the same individuals to different acquisition techniques designed
to correct EPI distortions. We would also collect non-EPI
acquired T2 contrast images to optimize registration. We
would ensure that field maps were optimal with respect to
the diffusion MRI scan. There are also other pipelines that we
could have evaluated for unwarping and other parameters for
nonlinear registration unwarping, which may be more effective
for different data sets. Our evaluation focused on MI and
reliability of FA maps. Different analyses may result in different
conclusions.

However, our findings with these two data sets show that there
is a clear benefit to distortion correction, and that correction with
nonlinear registration using ANTs is a reasonable technique,
which can be used with some confidence in the absence of field
maps or field-reversed DTI acquisition.
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