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Abstract:

With the popularity of complex hydrologic models, the time taken to run these models is increasing substantially. Comparing
and evaluating the efficacy of different optimization algorithms for calibrating computationally intensive hydrologic models
is becoming a nontrivial issue. In this study, five global optimization algorithms (genetic algorithms, shuffled complex
evolution, particle swarm optimization, differential evolution, and artificial immune system) were tested for automatic parameter
calibration of a complex hydrologic model, Soil and Water Assessment Tool (SWAT), in four watersheds. The results show
that genetic algorithms (GA) outperform the other four algorithms given model evaluation numbers larger than 2000, while
particle swarm optimization (PSO) can obtain better parameter solutions than other algorithms given fewer number of model
runs (less than 2000). Given limited computational time, the PSO algorithm is preferred, while GA should be chosen given
plenty of computational resources. When applying GA and PSO for parameter optimization of SWAT, small population size
should be chosen. Copyright  2008 John Wiley & Sons, Ltd.
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INTRODUCTION

Hydrologic models are more and more widely applied
by hydrologists and resources managers as a tool to
understand and manage natural and human activities that
affect watershed systems. The successful application of
a hydrologic model depends on how well the model is
calibrated (Duan et al., 1992). Hydrologic models, even
those physically-based models, often contain parameters
that cannot be measured directly due to measurement
limits and scale issues (Beven, 2000). These parameters
need to be estimated through an inverse method by
calibration so that observed and predicted output values
are in agreement. Before the widespread availability of
high speed computers, hydrologic practitioners utilized
knowledge of the watershed and experience with the
model to adjust the parameters through a manual trial
and error procedure (Gupta et al., 1999). This approach to
calibration is subjective and labour intensive. Automatic
calibration methods, which are objective and relatively
easy to implement with high speed computers, have
become more popular in recent years (Vrugt et al.,
2003). Global optimization algorithms can efficiently
and effectively search optimum parameter solutions that
can minimize (or maximize) objective functions which
represent the agreement between observations and model
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simulations. They have been successively applied in
the research field of automatic calibration of hydrologic
methods. For example, Duan et al. (1992) developed
the shuffled complex evolution algorithm (SCE-UA),
which has been widely used in hydrologic modelling
(Sorooshian et al., 1993) and proved to be consistent
and efficient for searching global optimum parameter
values of hydrologic models (Vrugt et al., 2003). Other
optimization algorithms (i.e. genetic algorithms (GA),
simulated annealing (SA), and Levenberg–Marquardt)
are also popular methods for automatic calibration of
parameters in hydrologic models.

With the popularity of sophisticated physically-based
watershed models, the complexity of the calibration prob-
lem has increased substantially (Gupta et al., 1998).
Although the speed and capacity of computers have
increased multi-fold in the past several decades, the
time consumed running hydrologic models (especially
those complex, physically based, distributed hydrologic
models) is still a concern for hydrologic practition-
ers. As to which of the available optimization methods
can effectively and efficiently identify good parameter
sets is a topic of considerable interest. Several stud-
ies have been conducted to evaluate the performance
of different algorithms. For example, Cooper et al.,
(1997) evaluated SCE-UA, GA and SA methods for opti-
mization of the Tank model; Kuczera (1997) compared
four search algorithms, SCE-UA, GA, and multiple ran-
dom start using either simplex or quasi-Newton local
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searches for parameter optimization of catchment mod-
els; Chen et al. (2005) compared the performance of
multi-start Powell and SCE-UA methods for calibrat-
ing the Tank model; Jha et al., (2006) compared the
traditional (Levenberg–Marquardt and Gauss–Newton)
and nontraditional (GA) techniques for determining well
parameters. The results obtained by the above comparison
studies showed that the evolutionary algorithms (SCE-
UA and GA) could provide equal or better performance
than other methods (Cooper et al., 1997; Kuczera, 1997;
Chen et al., 2005; Jha et al., 2006). With the robustness
for searching global optimum and ease of implementa-
tion, evolutionary algorithms have been widely used in
hydrologic modeling. Besides the SCE-UA and GA, the
particle swarm optimization (PSO) has also been used
to optimize the arrangement of hydraulic devices in a
pipeline system (Jung and Karney, 2006), and train arti-
ficial neural networks for river stage prediction (Chau,
2006). Other evolutionary algorithms, such as differen-
tial evaluation (DE) (Storn and Price, 1997) and artificial
immune systems (AIS) (de Castro and Von Zuben, 2002a,
2002b), although rarely used in hydrologic model calibra-
tion, showed promising ability for global optimization of
complex systems.

There are many physically-based watershed models
that have been successfully applied in practical hydro-
logic modelling problems. However, since running these
models is time intensive, it is nearly impossible to test the
optimization algorithms for the complex models. In this
study one complex distributed hydrologic model—Soil
and Water Assessment Tool (SWAT) (Arnold et al.,
1998)—was selected to test the effectiveness and effi-
ciency of different optimization algorithms. The SWAT
model has been applied worldwide for hydrologic and
water quality modelling. For example, the SWAT model
has been incorporated into the US Environmental Protec-
tion Agency (USEPA) Better Assessment Science Inte-
grating Point & Nonpoint Sources (BASINS) software
package (Di Luzio et al., 2004), and is being applied
by the United States Department of Agriculture (USDA)
for the Conservation Effects Assessment Project (CEAP)
(Gassman et al., 2007). Over 250 peer-reviewed pub-
lished articles have reported SWAT applications, reviews
of SWAT components, or other research that includes
SWAT (Gassman et al., 2007). The objective of this paper

was therefore to evaluate the efficacy of five evolution-
ary algorithms (SCE-UA, GA, PSO, DE, and AIS) for
parameter optimization of SWAT. As the time and com-
putational resources did not allow for a vast number of
model runs with SWAT, the performance of the five opti-
mization algorithms were only tested for a limited number
of evaluations of the model. The results of this paper
should provide hydrologic practitioners with valuable
information for assessing the efficiency and effectiveness
of automatic algorithms for calibrating SWAT.

MATERIALS AND METHODS

Study area description

The efficacy of optimization algorithms is dependent
on the characteristics of the objective function response
surface of the hydrologic model (Duan et al., 1992),
which is related to the watershed characteristics. In order
to evaluate the general performance of different optimiza-
tion algorithms, the SWAT model was applied to four
watersheds with different climatic and hydrologic charac-
teristics. The four watersheds included the Yellow River
headwaters watershed (YRHW), Reynolds Creek Exper-
imental Watershed (RCEW), Little River Experimental
Watershed (LREW), and Mahantango Creek Experimen-
tal Watershed (MCEW). The locations of the four water-
sheds are shown in Figures 1 and 2. Among the four
watersheds, the YRHW is located in China, and the
other three watersheds are located in the USA. The three
watersheds in USA are US Department of Agriculture
Agricultural Research Service (USDA ARS) experimen-
tal watersheds, and have been used by Van Liew et al.
(2007) for testing the suitability of SWAT for the CEAP.
In YRHW and RCEW, the streamflows are significantly
affected by snow fall and snow melt processes, while the
LREW and MCEW are located in temperate and subtrop-
ical regions respectively, where snow related processes
are not significant. The basic characteristics of the four
test watersheds are described below.

YR headwaters watershed. The YRHW is an
114 345 km2 mountainous river basin, which is located
in the north-east part of the Tibetan plateau. This area is
the important source of water generation for the Yellow
River Basin (Liu, 2004). The average elevation is about

Figure 1. Location of the headwaters region of the Yellow River
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Figure 2. Locations of three USDA ARS experimental watersheds (modified from Van Liew et al., 2007)

4217 m, and ranges between 2600 and 6266 m. The area
slopes downward from west to east, ranging from a com-
bined landform of low-mountains and wide valleys with
lakes to smooth plateaus (Wang et al., 2003). The head-
waters area has a typical continental alpine cold and dry
climate. The annual precipitation is around 600 mm and
the average annual temperature for the YR headwater is
near 0 °C. In winter the average temperature is below 0 °C
at most of the weather stations, while in summer the aver-
age temperature is above 0 °C. This seasonal temperature
variation makes snowmelt a significant process in this
area (Zhang et al., 2008). This watershed is character-
ized by gently sloping upland and river bed, and swamp
and wetland. The major types of soils in this area are
clay and loam with relatively low infiltration rate. The
major land cover in the study area is grassland, which
accounts for approximately 90% of the total area. Other
land use/land cover (forest land, rangeland, agriculture
land, and bare area) account for the remaining 10% of
the area.

Mahantango Creek Experimental Watershed. The
MCEW is a tributary of the Susquehanna River in Cen-
tral Pennsylvania. The MCEW is typical of upland agri-
cultural watersheds within the nonglaciated, folded and
faulted, Appalachian Valley and Ridge Physiographic
Province (Veith et al., 2005). Climate in the region is
temperate and humid, with a long-term average annual
precipitation of 1100 mm. The watershed is character-
ized by shallow, fragipan soils in near-stream areas, and
deep, well-drained soils in the uplands (Van Liew et al.,
2007). Land use types consist of pasture (38%), forest
(34%), mixed croplands (26%), and farmsteads (2%).

Little River Experimental Watershed. The LREW is
the upper 334 km2 of the USDA-ARS and cooperators

(Sheridan, 1997). The LREW is located in the Tifton
Upland physiographic region, which is characterized by
intensive agriculture in relatively small fields in upland
areas and riparian forests along stream channels. The
region has low topographic relief and is characterized by
broad, flat alluvial floodplains, river terraces, and gently
sloping uplands (Sheridan, 1997).

Climate in this region is characterized as humid
subtropical with an average annual precipitation of about
1167 mm based on data collected by USDA ARS from
1971 to 2000. Soils on the watershed are predominantly
sands and sandy loams with high infiltration rates.
Since surface soils are underlain by shallow, relatively
impermeable subsurface horizons, deep seepage and
recharge to regional ground water systems are impeded
(Sheridan, 1997). Land use types include forest (65%),
cropland (30%), rangeland and pasture (2%), wetland
(2%), and miscellaneous (1%).

Reynolds Creek Experimental Watershed. The RCEW,
with drainage area of 239 km2, is located about 80 km
south-west of Boise, Idaho and exhibits a considerable
degree of spatial heterogeneity. The topography of the
watershed ranges from a broad, flat alluvial valley to
steep, rugged mountain slopes, with a range in elevation
from 1101 to 2241 m (Seyfried et al., 2000). Because
of orographic effects, the average annual precipitation
ranges from about 250 mm at the outlet to more than
1100 mm at the upper end of the watershed. Perennial
streamflow is generated at the highest elevations in the
southern part of Reynolds Creek where deep, late-lying
snowpacks are the source for most water (Seyfried et al.,
2000). Although much of the watershed has steep, shal-
low, rocky soils, there are areas of deep, loamy rock-free
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soils. Land cover on Reynolds Creek consists of range-
land and forest communities of sagebrush, greasewood,
aspen, and conifers (94%) and irrigated cropland (6%).

SWAT model description

SWAT is a continuous-time, long-term, distributed-
parameter model (Arnold et al., 1998). SWAT subdivides
a watershed into subbasins connected by a stream net-
work, and further delineates hydrologic response units
(HRUs) consisting of unique combinations of land cover
and soils in each subbasin. It is assumed that there is
no interaction between HRUs, that is, the HRUs are
non-spatially distributed. HRU delineation can minimize
computational costs of simulations by lumping similar
soil and land use areas into a single unit (Neitsch et al.,
2002a). SWAT is able to simulate surface and subsur-
face flow, sediment generation and deposit, and nutrient
fate and movement through the watershed system. For
this study, only the components of SWAT concerned with
runoff simulation were considered. The hydrologic rou-
tines within SWAT account for snow fall and melt, vadose
zone processes (i.e. infiltration, evaporation, plant uptake,
lateral flows, and percolation), and groundwater flows.
Surface runoff volume is estimated using a modified
version of the Soil Conservation Service (SCS) Curve
Number (CN) method (Kannan et al., 2008). A kinematic
storage model (Sloan et al., 1983) is used to predict lat-
eral flow, whereas return flow is simulated by creating
a shallow aquifer (Arnold et al., 1998). The Muskingum
method is used for channel flood routing. Outflow from a
channel is adjusted for transmission losses, evaporation,
diversions, and return flow.

Global optimization algorithms

Five global optimization algorithms (GA, SCE, PSO,
AIS, and DE) were investigated in this study. The
parameter solution is referred to as ‘Chromosome’ in GA,
‘point’ in SCE, ‘particle’ in PSO, ‘Antibody’ in AIS, and
‘Individual’ in DE. All the five algorithms are population
based; the Latin Hypercube algorithm is used to initialize
the first population of parameter solutions in this study.

Genetic algorithms. Genetic algorithms are stochas-
tic search procedures inspired by evolutionary biology
of natural selection and genetics (Holland, 1975; Gold-
berg, 1989), such as inheritance, mutation, selection, and
crossover. The implementation of GA starts with initial-
izing a population of candidate solutions (called chro-
mosomes) which are randomly sampled from the feasi-
ble parameter space. In each generation, the individual
chromosomes are selected through a fitness-based pro-
cess, where the more fit chromosomes in the population
are preferentially selected to reproduce new promising
offspring. Next, a new generation population of chro-
mosomes is generated from these selected ones using
crossover and mutation operations. The crossover oper-
ator chooses ‘parent’ solutions and exchange important
building blocks of the two parent chromosomes to gener-
ate new ‘offspring’ solutions. The ‘offspring’ solutions

are then randomly muted to increase the diversity of
the new population. Through a steady-state-delete-worst
plan (Reca and Martinez, 2006), the fitter chromosomes
among the old and new population are input into the
next generation for evolution. This generational evolution
of the parameter solutions is repeated until a maximum
number of model evaluations are reached. With flexibil-
ity and robustness, GA has been successfully applied to
solve complex nonlinear programming problems in many
science and engineering branches (Reca and Martinez,
2006), including hydrologic modelling. For example, Kuo
and Liu (2003) applied GAs for optimizing a model for
irrigation planning and management; Chang et al. (2005)
showed that the GA provided an adequate, effective and
robust way for searching the reservoir operating rule
curves. Srivastava (2002) and Arabi et al. (2006) used
GAs for optimizing allocation watershed management
practices. The parameters that control the GA’s evolu-
tion were determined according to Schaffer et al. (1989)
and Reca and Martinez (2006).

Shuffled complex evolution (SCE)

The SCE algorithm developed by Duan et al. (1992)
merges the strengths of the downhill simplex procedure
(Nelder and Mead, 1965) with the concepts of controlled
random search, competitive evolution (Holland, 1975),
and complex shuffling. In a first step of implementation
of SCE, an initial population of parameter solutions is
randomly sampled for ‘p’ parameters to be optimized.
The population is partitioned into several communities,
each consisting ‘2p C 1’ points. Each community is made
to evolve based on a statistical ‘reproduction process’ that
uses the simplex method, an algorithm that evaluates the
objective function in a systematic way with regard to
the progress of the search in previous iterations (Nelder
and Mead, 1965). At periodic stages in the evolution,
the entire population is shuffled and parameter solutions
are reassigned to communities to ensure information
sharing. As the search progresses, the entire population
tends to converge towards the neighbourhood of global
optimization. SCE searches the entire parameter space
and finds the global optimum efficiently and effectively
(Sorooshian et al., 1993). SCE has been successfully used
for calibration of SWAT (van Griensven and Bauwens,
2003; Eckhardt et al., 2005; Van Liew et al., 2005; van
Griensven and Bauwens 2005; Zhang et al., 2007). In
order to apply SCE efficiently, the control parameters,
except for population size, were selected according to
Duan et al. (1994). For further information on SCE, refer
to Duan et al. (1992).

Particle swarm optimization

Particle swarm optimization is a population based
stochastic optimization technique inspired by social
behaviour of bird flocking or fish schooling (Kennedy
and Eberhart, 2001). During the optimization process, in
order to find the global optimum, each particle in the
population adjusts its ‘flying’ according to its own flying
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experience and its companions’ flying experience (Eber-
hart and Shi, 1998). The basic PSO algorithm consists of
three steps: (1) generate the positions of particles (coordi-
nate in the parameter space) and their velocities (‘flying’
direction and speed); (2) update the velocity of each par-
ticle using the information from the best solution it has
achieved so far (personal best) and another particle with
the best fitness value that has been obtained so far by all
the particles in the population (global best); (3) finally,
the new position of each particle is calculated by adding
the updated velocity to the current position. PSO has been
successfully applied to optimize artificial neural networks
for river stage prediction (Chau, 2006) and parameter
estimation of hydrologic models (Gill et al., 2006). The
control parameters for implementing PSO were selected
based on previous studies (Shi and Eberhart, 1998; Par-
sopoulos and Vrahatis, 2002).

Differential evolution. The differential evolution algo-
rithm is a simple and powerful evolutionary algorithm
developed by Storn and Price (1997) for global opti-
mization. The basic procedure of DE is very similar to
that of GA. DE also uses three operators (i.e. muta-
tion, crossover, and selection) to evolve the population
of parameter solutions towards the global optimum. But
the actual implementation of the three operators is dif-
ferent from that of GA. First, the mutation operator is
implemented. For each individual (target vector) in the
population, three other individuals in the same popula-
tion are randomly selected, and the weighted difference
of two of the vectors is added to the third to gener-
ate a new individual (called the donor vector). Second,
the crossover operator is then used to generate a trial
vector from the elements of the target vector and the
donor vector. Finally, the target vector and trial vector
are compared and the fitter one is selected into the next
generation. There are several variants of DE (Storn and
Price, 1997; Krishna, 2007). One variant of DE, noted
as DE/rand/1/bin according to Storn and Price (1997),
was applied in this study. This variant of DE has been
most often used in practice (Brest et al., 2006; Krishna,
2007). The control parameters for DE were set following
suggestions from Storn and Price (1997) and Brest et al.
(2006).

Artificial immune system. Artificial immune system is
a type of optimization algorithm inspired by the princi-
ples and processes of the vertebrate immune system. In
this study, the CLONALG (de Castro and Von Zuben,
2002a), a classical AIS algorithm was introduced and
applied for parameter optimization of SWAT. In CLON-
ALG, the antibodies with higher objective function value
and lower similarity (expressed as a parameter solution’s
Euclidean distance to other parameter solutions in the
population) are selected to reproduce the next genera-
tion of candidate antibodies using Gaussian mutations,
while the parameter solutions with lower objective func-
tion value and higher similarity are replaced with new
randomly generated parameter solutions. Although AIS

has seldom been used for optimizing hydrologic mod-
els, it has been successfully applied for optimizing com-
plex systems, like the radial basis function (de Castro
and Von Zuben, 2002b), neural networks (Byrski and
Kisiel-Dorohinicki, 2005), economic dispatch in power
systems (Rahman et al., 2006), and several constrained
global optimization problems (Cruz-Cortés et al., 2005).
The control parameters were selected following de Cas-
tro and Von Zuben (2002a), which provides a detailed
discussion on the application of CLONALG algorithms
for parameter optimization.

Optimization test cases design

Two important factors that affect the complexity of
the optimization problem are the parameter dimension
that needs to be adjusted and the parameter ranges.
van Griensven et al. (2006) conducted detailed global
sensitivity analysis of the parameters in SWAT, and
results showed that ten parameters are sensitive to the
hydrologic simulation of SWAT. Van Liew et al. (2007)
tested the suitability of SWAT for the CEAP in USDA
agricultural research service watersheds. In their study 16
parameters, which include the ten parameters identified
by van Griensven et al. (2006), were adjusted to calibrate
the SWAT model for hydrologic simulation. The 16
parameters identified by Van Liew et al. (2007) were
applied in this study. A general description of the 16
parameters is shown in Table I. The parameter ranges
were determined according to van Griensven et al. (2006)
and Neitsch et al. (2002b). Among these 16 parameters,
nine govern surface and subsurface water response in
SWAT, and the other seven parameters govern basin
response.

The performance of the five optimization algorithms
is related with the control parameters. For most of the
control parameters, previous literature provides sugges-
tions on how to choose appropriate settings. Among the
control parameters, population size is an important factor
that determines the performance of different algorithms.
In this study, most of the control parameters of the five
optimization algorithms were set according to recom-
mendations from previous studies, while the effect of
population size on the performance of different algo-
rithms was further examined with one relatively small
population size and one relatively large population size
for each optimization algorithm. There are no common
criteria for evaluating whether a population size is large
or small for different algorithms. Small and large popula-
tion sizes are different for the five algorithms, and were
chosen according to population sizes that have been tested
in previous empirical studies that applied these optimiza-
tion techniques. The small population sizes were 66 (two
complexes), 50, 30, 10, and 50 for SCE, GA, PSO, AIS
and DE, respectively. The large population sizes were 165
(five complexes), 200, 100, 50, and 160 for SCE, GA,
PSO, AIS and DE, respectively. There are two optimiza-
tion cases that were defined for each watershed: (1) small
population size scenario; and (2) large population size
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Table I. Parameters for calibration in SWAT model

Parameter Description Range

Parameters governing surface water response

1 CN2 Curve number š20%
2 ESCO Soil evaporation compensation factor 0–1
3 SOL AWC Available soil water capacity š20%
Parameters governing subsurface water response

4 GW REVAP Ground water re-evaporation coefficient 0Ð02–0Ð2
5 REVAPMN Threshold depth of water in the shallow aquifer for re-evaporation to occur (mm). 0–500
6 GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur (mm) 0–5000
7 GW DELAY Groundwater delay (days) 0–50
8 ALPHA BF Base flow recession constant 0–1
9 RCHRG DP Deep aquifer percolation fraction 0–1
Parameters governing basin response

10 CH K2 Effective hydraulic conductivity in main channel alluvium (mm h�1) �0Ð01–150
11 TIMP Snow pack temperature lag factor 0–1
12 SURLAG Surface runoff lag coefficient (day) 0–10
13 SFTMP Snow melt base temperature (°C) 0–5
14 SMTMP Snowfall temperature (°C) 0–5
15 SMFMX Maximum snowmelt factor for 21 June (mm H2O °C�1day�1) 0–10
16 SMFMN Minimum snowmelt factor for 21 Dec (mm H2O °C�1-day�1) 0–10

scenario. Hence, there were a total of eight optimization
cases for each optimization algorithm that were applied
in this study. The definition of the optimization case was
denoted using the combination of watershed name and
population size, i.e. ‘watershed name C population size’.
For example, ‘RCEW C Small’ denotes that the optimiza-
tion algorithms were tested on the RCEW with small
population size. In this study, the SWAT model was set
up for daily flow simulation at the outlets at different
watersheds. The calibration periods consists of 10 years
(1976–1985) in the YR headwater watershed, 6 years
(1995–2000) in MCEW, 4 years (1995–1998) in LREW,
and 7 years (1966–1972) in RCEW.

Evaluating performance of different algorithms

The optimization objective functions are indicators of
agreement between the measured and simulated series of
the variable of interest. The sum of squares of residuals
(SSR) is an often-applied objective function in calibrating
hydrologic models (Van Liew et al., 2007). In this study,
the Nash–Sutcliffe efficiency (Ens), a normalized form of
SSR, was selected. The formula to calculate Ens is (Nash
and Sutcliffe, 1970):

Ens D 1Ð0 �

N∑

iD1

�Oi � Pi�
2

N∑

iD1

�Oi � O�2

�1�

where P is the model simulated value, O is the observed
data, the overbar is the mean for the entire time period
of the evaluation, and i D 1, 2, . . . , N, where N is the
total number of pairs of simulated and observed data.
Ens indicates how well the plot of the observed value
versus the simulated value fits the 1 : 1 line, and ranges
from �1 to 1.

The five algorithms involve random sampling of the
parameter values, so the results obtained by one trial
are stochastic and cannot be used to accurately evaluate
the algorithm’s performance. The average behaviour of
multiple trials of each algorithm was used to compare
the performance of different algorithms, which is a
popular performance comparison method reported in the
literature (Ali et al., 2005). Ideally, the optimization
algorithm that can find the best Ens value with the lowest
number of model runs is preferred. In Duan et al.’s
(1994) work, the number of successes (NS) and the
average number of function evaluations (AFE) of the
successful runs were used to evaluate the efficacy of SCE
algorithms. As our test is to evaluate the efficacy of the
optimization algorithms with a limited number of runs of
the computationally intensive model, two other similar
coefficients were applied in this study. The average Ens

values are used to evaluate the ability of each algorithm to
find good objective values at different numbers of model
evaluations. A new variable, REns, which was defined
as the ratio between the Ens value obtained for different
numbers of model evaluations and the best Ens value
obtained at the maximum number of model evaluations
for each algorithm, was adopted here. In this study, it
was assumed that a REns value of 0Ð99 represents a close
approximation of the objective values obtained after the
maximum number of model evaluations.

On a computer with Pentium IV 3 GHZ and 1GB
RAM, the time consumed by one SWAT model evaluation
was 30 s for YRHW, 18 s for MCEW, 56 s for LREW,
and 1 min and 8 s for RCEW. As time and computer
resources are limited, it was not possible to run the
SWAT model for a very long simulation period or
for an unlimited number of model evaluations. The
five algorithms were compared based on the average
performance of 10 trials within a limited and affordable
number of model evaluations. According to previous
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calibration studies of SWAT, usually less than 10 000
model evaluations were implemented (van Griensven
and Bauwens, 2003; Tolson and Shoemaker, 2007).
Considering the time and computer resources available,
the maximum number of model evaluations was limited
to 10 000 for the four test watersheds. The time consumed
by one trial was 84 h for YRHW, 50 h for MCEW, 155 h
and 190 h for LREW and RCEW, respectively.

RESULTS AND DISCUSSION

The curves of average objective function values against
model evaluation numbers obtained by different algo-
rithms with large and small population size are shown

in Figure 3 for the four test watersheds. The average
objective values and relative performance ranks of dif-
ferent algorithms at different model evaluation numbers
are listed in Table II. Based on Figure 3 and Table II, the
performances of the different algorithms in the four test
watersheds were analysed and results are presented in the
following sections. For most cases, AIS performed worst
among the five algorithms. The analysis was focused
mainly on SCE, GA, PSO and DE.

Performance of the different algorithms in YRHW

The selected optimization algorithms exhibited various
performance levels at different model evaluation numbers
(Figure 3a and Table II). From Table II, after 10 000

Figure 3. Performances of the different optimization algorithms versus number of evaluations in the four test watersheds (x axis represents the number
of model evaluations ð 200, y axis represents Ens value)
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Table II. Ens values obtained by different optimization algorithms at different number of model runs in the four test watersheds

YRHW MCEW

SCE GA PSO AIS DE SCE GA PSO AIS DE

500 Small 0Ð751 0Ð782 0Ð759 0Ð73 0Ð758 0Ð64 0Ð638 0Ð691 0Ð474 0Ð637
Large 0Ð718 0Ð753 0Ð768 0Ð73 0Ð726 0Ð628 0Ð595 0Ð662 0Ð576 0Ð606

1000 Small 0Ð772 0Ð799 0Ð769 0Ð752 0Ð783 0Ð673 0Ð667 0Ð694 0Ð513 0Ð676
Large 0Ð735 0Ð785 0Ð78 0Ð743 0Ð757 0Ð656 0Ð639 0Ð677 0Ð577 0Ð625

2000 Small 0Ð819 0Ð815 0Ð787 0Ð781 0Ð803 0Ð691 0Ð708 0Ð7 0Ð596 0Ð701
Large 0Ð775 0Ð806 0Ð801 0Ð758 0Ð783 0Ð687 0Ð681 0Ð68 0Ð588 0Ð671

3000 Small 0Ð826 0Ð822 0Ð808 0Ð787 0Ð81 0Ð695 0Ð718 0Ð7 0Ð616 0Ð704
Large 0Ð814 0Ð813 0Ð811 0Ð775 0Ð807 0Ð69 0Ð705 0Ð682 0Ð612 0Ð689

4000 Small 0Ð828 0Ð824 0Ð815 0Ð794 0Ð819 0Ð696 0Ð726 0Ð7 0Ð628 0Ð708
Large 0Ð828 0Ð816 0Ð814 0Ð787 0Ð811 0Ð692 0Ð717 0Ð684 0Ð619 0Ð695

5000 Small 0Ð83 0Ð826 0Ð817 0Ð799 0Ð825 0Ð701 0Ð727 0Ð7 0Ð637 0Ð709
Large 0Ð83 0Ð82 0Ð816 0Ð791 0Ð818 0Ð693 0Ð719 0Ð689 0Ð633 0Ð698

10 000 Small 0Ð833 0Ð829 0Ð819 0Ð803 0Ð829 0Ð704 0Ð735 0Ð7 0Ð671 0Ð713
Large 0Ð831 0Ð825 0Ð827 0Ð806 0Ð83 0Ð696 0Ð733 0Ð703 0Ð659 0Ð707

LREW RCEW

SCE GA PSO AIS DE SCE GA PSO AIS DE

500 Small 0Ð731 0Ð685 0Ð694 0Ð487 0Ð715 0Ð709 0Ð7 0Ð725 0Ð64 0Ð697
Large 0Ð704 0Ð673 0Ð725 0Ð569 0Ð645 0Ð698 0Ð679 0Ð698 0Ð667 0Ð681

1000 Small 0Ð757 0Ð717 0Ð713 0Ð503 0Ð759 0Ð73 0Ð725 0Ð732 0Ð655 0Ð718
Large 0Ð723 0Ð707 0Ð752 0Ð583 0Ð685 0Ð708 0Ð71 0Ð721 0Ð669 0Ð686

2000 Small 0Ð774 0Ð747 0Ð774 0Ð565 0Ð783 0Ð74 0Ð74 0Ð739 0Ð665 0Ð727
Large 0Ð775 0Ð739 0Ð771 0Ð626 0Ð733 0Ð734 0Ð73 0Ð733 0Ð673 0Ð713

3000 Small 0Ð774 0Ð766 0Ð783 0Ð609 0Ð794 0Ð741 0Ð748 0Ð743 0Ð673 0Ð733
Large 0Ð782 0Ð757 0Ð776 0Ð634 0Ð768 0Ð74 0Ð739 0Ð741 0Ð677 0Ð72

4000 Small 0Ð774 0Ð775 0Ð783 0Ð632 0Ð795 0Ð741 0Ð751 0Ð744 0Ð677 0Ð734
Large 0Ð783 0Ð764 0Ð778 0Ð637 0Ð782 0Ð744 0Ð745 0Ð744 0Ð68 0Ð724

5000 Small 0Ð775 0Ð779 0Ð784 0Ð662 0Ð797 0Ð741 0Ð753 0Ð744 0Ð682 0Ð738
Large 0Ð783 0Ð771 0Ð779 0Ð639 0Ð793 0Ð744 0Ð751 0Ð75 0Ð683 0Ð725

10 000 Small 0Ð78 0Ð782 0Ð784 0Ð707 0Ð802 0Ð746 0Ð753 0Ð747 0Ð716 0Ð746
Large 0Ð784 0Ð784 0Ð781 0Ð65 0Ð802 0Ð746 0Ð752 0Ð751 0Ð695 0Ð734

model runs, the best average Ens values obtained by
the selected algorithms were 0Ð833 (SCE with large
population), 0Ð829 (GA with small population), 0Ð827
(PSO with large population), and 0Ð830 (DE with small
population). Although the four algorithms obtained close
objective values with a large number of model runs, they
exhibited very different performance levels with small
numbers of model evaluations (Figure 3a and Table II).
One algorithm may be preferred for a small number
of model evaluations while another algorithm may be
preferred for a large number of model runs. For example,
GA found better objective values with a small number of
model runs (500 and 1000), while SCE obtained better
results given a large number of model evaluations (more
than 2000). The differences between the best average Ens

values obtained by the different algorithms at a small
number of model runs are larger than those obtained
with a larger number of model evaluations. For example,
the maximum difference between the best final average
Ens values obtained by SCE, GA, PSO and DE was
0Ð006, while this difference was 0Ð031 given 500 model
runs.

It was also found that the objective values change
relatively quickly for the initial 1000 model evaluations,

and then changed relatively slowly after that. The REns

values at small numbers of model evaluations represent
the capacity of each algorithm to approach the objective
values that can be obtained by each scheme with 10 000
model evaluations. In the YRHW, all the algorithms
reached REns values larger than 0Ð86 and 0Ð88 for
500 and 1000 model runs, respectively. Based on the
REns values obtained with limited model runs, the
objective values obtained by each algorithm with a
large number of model evaluations can be roughly
estimated. In general, each scheme needs less than
5000 model evaluations to reach a REns value of 0Ð99
and to thus approximate the best objective value that
can be obtained by each algorithm with 10 000 model
evaluations.

The effect of population size on average Ens values
obtained by the optimization algorithms was relatively
stronger for the initial 5000 model evaluations than for
the model runs after 5000. For example, the difference
between average objective values obtained by SCE with
small and large population sizes reached 0Ð044 at 2000
model evaluations, while these differences were within
0Ð008 for all optimization algorithms after 5000 model
evaluations.
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Performances of different algorithms in MCEW

Figure 3b shows that the performance of the GA is
significantly better than the other algorithms after the
initial 3000 model evaluations. The GA exhibited an
average Ens value larger than 0Ð72 with 5000 model
evaluations, while the other algorithms did not reach
Ens values of 0Ð72 even after 10 000 model evaluations.
Within 1000 model runs, PSO performed considerably
better than other algorithms (Table II). The maximum
difference between the final average Ens values obtained
by SCE, GA, PSO and DE was 0Ð032 after 10 000
model evaluations. This shows that different optimization
algorithms can obtain substantially different objective
values even after a large number of model runs. In the
MCEW, REns values reached 0Ð99 for all optimization
algorithms within 5500 model evaluations, except for
the AIS (Table II). With 500 model runs, SCE and PSO
obtained REns values larger than 0Ð9, and GA and DE
obtained REns values larger than 0Ð8. For 1000 model
runs, SCE and PSO obtained REns values larger than 0Ð95,
and GA and DE obtained REns values larger than 0Ð85.

For a smaller number of model runs, the difference
between the objective values obtained by the each
algorithm with large or small population sizes was
relatively larger than that for large numbers of model
runs. For instance, the differences between the final
average objective values obtained by SCE, GA, PSO and
DE with small and large population sizes were less than
0Ð008, while this difference obtained by GA with small
and large population sizes reached 0Ð043 at 500 model
runs.

Performance of different algorithms in LREW

With 10 000 model evaluations, the final average Ens

values obtained by the selected algorithms were 0Ð784
(SCE with large population), 0Ð784 (GA with small pop-
ulation), 0Ð784 (PSO with small population), and 0Ð802
(DE with small population), respectively (Table II). SCE
obtained better objective values than other algorithms
with 500 model runs, and DE obtained better objective
values after 1000 model runs. To reach REns values of
0Ð99, SCE and PSO need 2000 model evaluations, and
GA and DE need 5000 model evaluations. With 500
model runs, SCE and PSO obtained REns values larger
than 0Ð89, and GA and DE obtained REns values larger
than 0Ð8. For 1000 model runs, SCE, GA, and PSO
obtained REns values larger than 0Ð9, and DE obtained
REns values larger than 0Ð85.

The differences between final average Ens values
obtained by different algorithms with small or large
population sizes were within 0Ð004, which shows that the
Ens values are not sensitive to population size after a large
number of model runs in the LREW. But this difference
was 0Ð06 for DE with small and large populations at 500
model runs.

Performance of different algorithms in RCEW

After 10 000 model evaluations, the GA with small
population size exhibited the best objective function value

(0Ð753), followed by PSO with large population size
(0Ð751), SCE (0Ð746), and DE with small population size
(0Ð746), respectively (Table II). For the initial 500 or
1000 model runs, PSO obtained better results than other
algorithms. The maximum difference between the best
final average Ens values obtained by SCE, GA, PSO and
DE was 0Ð007, and this difference is 0Ð027 at 500 model
runs. In the RCEW, to reach REns values of 0Ð99, 2600
model evaluations were required for the SCE and PSO,
and 4500 for the GA and DE. All the algorithms reached
REns values larger than 0Ð90 for 500 model runs, and
0Ð93 for 1000 model evaluations.

Similar to previous results obtained in the three test
watersheds, the differences between final average Ens

values obtained by different algorithms with small or
large population sizes were relatively small (within
0Ð012), and these differences were relatively large for
the initial model runs.

Discussion

The results obtained in previous sections show that
no one optimization algorithm can consistently perform
better than the other algorithms for the selected test
watersheds. To some extent, this indicates the complexity
and difficulty of parameter optimization for the SWAT
model. Although all the test cases used SWAT as the
model for parameter calibration, it appears as though the
properties of the four optimization cases are different
from each other, which leads to evidently different
performances of the selected algorithms. The overall
performances of the five optimization algorithms, and
the influence of model evaluation number and population
size, are discussed in the following sections.

Using the best final average Ens values obtained by
each of the selected algorithms as the indicator of
performance, the performance ranks of the algorithms
in the four test watersheds are shown in Table III. The
GA performed best for the RCEW and MCEW, DE
performed best for the LREW, and SCE performed
best for the YRHW. Using the cumulative rank as the
indicator of the comprehensive performance in the four
test watersheds (Figure 4), GA performed the best in
terms of finding good objective values with a large
number of model runs, followed by DE, SCE, PSO
and AIS.

For computationally intensive models, the number of
model evaluations needed to obtain acceptable objective
values was an important factor for selecting the optimiza-
tion algorithm. The SWAT model of detailed character-
ization of a large river basin can take hours or days to
implement once. In this case, it is difficult to run a large
number of model runs. The algorithms that can find bet-
ter objective values within a limited number of model
evaluations (e.g. less than 1000) are preferred. The per-
formance ranks of the different algorithms evaluated with
the best average Ens values obtained at different numbers
of model evaluations are listed in Table III. As the AIS
cannot obtain results comparable with the other optimiza-
tion algorithms, it is not discussed here. It is apparent
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Table III. Performance ranks of different optimization algorithms for different numbers of model evaluations in the four test
watersheds

SCE GA PSO DE SCE GA PSO DE

YRHW 500 4 1 2 3 LREW 500 1 4 2 3
1000 4 1 3 2 1000 2 3 4 1
2000 1 2 4 3 2000 2 4 3 1
3000 1 2 3 4 3000 3 4 2 1
4000 1 2 4 3 4000 2 4 2 1
5000 1 2 4 3 5000 3 4 2 1

10 000 1 3 4 2 10 000 2 2 2 1

MCEW 500 2 3 1 4 RCEW 500 2 3 1 4
1000 3 4 1 2 1000 2 3 1 4
2000 4 1 3 2 2000 1 1 3 4
3000 4 1 3 2 3000 3 1 2 4
4000 4 1 3 2 4000 2 1 2 4
5000 3 1 4 2 5000 3 1 2 4

10 000 3 1 4 2 10 000 3 1 2 4

Figure 4. Cumulative performance ranks of four optimization algorithms
for different numbers of model evaluations in the four test watersheds

that the performance of the selected optimization algo-
rithms changes significantly with the number of model
evaluation and watershed characteristics. The cumulative
performance ranks of the four optimization algorithms for
different numbers of model evaluations in the four test
watersheds are shown in Figure 4. It is seen that PSO per-
formed best with 500 model runs, PSO and DE performed
best with 1000 model runs, SCE and GA performed best
with 2000 model runs, and GA performed best with more
than 2000 model runs. PSO is the preferred choice for
less than 1000 model evaluations. For most optimization
cases, PSO can obtain REns values larger than 90% with
500 or 1000 model runs, which is a fairly good approx-
imation of the best values obtained by PSO after 10 000
model runs. In general, results show that SCE and PSO
converge faster than GA and DE. The numbers of model
evaluations required by various optimization algorithms
to obtain a REns value of 0Ð99 are summarized with a
conservative consideration of the convergence numbers
of the four optimization techniques with small and large
population sizes in the four test watersheds. Overall, SCE,
GA, PSO and DE need no more than 3200, 5400, 4400,
and 4800 model runs, respectively.

It should be noted that the population size could
influence the performance of the various algorithms,

as the difference between the Ens values obtained by
each optimization technique when using small or large
population size at a small number of model evaluations
is less than that at a small number of model evaluations.
The selection of population size is based mainly on the
performances of different algorithms at a fewer number
of model evaluations (less than 5000). From Table II,
for most cases, small population size provided better
objective function values than large population size for
SCE, GA, DE, and PSO with fewer model evaluations. In
the future application of these algorithms for optimizing
SWAT, small population size is preferred.

The results discussed above, to some extent, agree
with the popular no free lunch (NFL) theorem that ‘for
any optimization algorithm, any elevated performance
over one class of problems is exactly paid for in per-
formance over another class’ (Wolpert and Macready,
1997). Meaning that GA performed better than the other
algorithms in terms of finding good average Ens val-
ues, on the other hand, PSO need less model runs to
find acceptable objective values than other algorithms.
Although AIS performed worst in terms of both find-
ing best Ens values and efficient convergence to good
objective values, it can search multiple local optimums
simultaneously. This could be an advantage for hydro-
logic model calibration and further analysis in the future
should be considered. Similar results were also obtained
by other numerical evaluations of different global opti-
mization algorithms. For instance, based on the compari-
son of five stochastic global optimization algorithms, Ali
et al. (2005) concluded ‘one algorithm may be preferred
if a small number of function evaluations is allowed but
a different algorithm may be favored if a large number
of function evaluations is permitted’. Although the GA
algorithm exhibits the best comprehensive rank in terms
of finding good average Ens values, it is not possible to
infer that this algorithm will always provide the best per-
formance on parameter calibration of the SWAT model.
The GA can be the first choice when modellers are inter-
ested in finding global optimum. The PSO may be a better
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choice when modellers are interested in obtaining accept-
able good calibration results within limited computation
budget.

CONCLUSIONS

Efficient and effective algorithms for optimization of
computationally intensive hydrologic models like SWAT
are becoming increasingly more important because of
limited time and computational resources. The purpose of
this study was to evaluate the performance of five opti-
mization algorithms for parameter calibration of SWAT
within the context of limited model evaluations. In this
study, five global optimization algorithms (SCE, GA,
PSO, AIS and DE) were tested for parameter calibra-
tion of SWAT in four watersheds. For future application
of SWAT across the USA and other watersheds world-
wide, several empirical recommendations on selecting
optimization algorithms for SWAT are provided based on
the overall performances of the optimization algorithms
in the four test watersheds. The GA outperforms the other
four algorithms given model evaluation numbers larger
than 2000, while PSO can obtain better parameter solu-
tions than other algorithms given fewer model runs (less
than 2000). Given limited computational time, the PSO
algorithm is preferred, while GA should be chosen when
sufficient computational resources are available. If GA is
chosen to optimize SWAT with a large number of model
evaluations, the performances of GA is not improved
beyond 5400 model runs. When applying PSO and GA
to calibrate SWAT parameters, a small population size is
preferred. Also, different optimization algorithms exhib-
ited various preferred properties and incorporating the
strength of different algorithms into one powerful algo-
rithm will be investigated in future studies.
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