
Evaluation of high-level synthesis tools for

generation of Verilog code from MATLAB

based environments

Carl Bäck

Engineering Physics and Electrical Engineering, master's level

2020

Luleå University of Technology

Department of Computer Science, Electrical and Space Engineering

Abstract

FPGAs are of interest in the signal processing domain as they provide the
opportunity to run algorithms at very high speed. One possible use case
is to sort incoming data in a measurement system, using e.g. a histogram
method. Developing code for FPGA applications usually requires knowl-
edge about special languages, which are not common knowledge in the signal
processing domain. High-level synthesis is an approach where high-level lan-
guages, as MATLAB or C++, can be used together with a code generation
tool, to directly generate an FPGA ready output. This thesis uses the de-
velopment of a histogram as a test case to investigate the efficiency of three
different tools, HDL Coder in MATLAB, HDL Coder in Simulink and Sys-
tem Generator for DSP in comparison to the direct development of the same
histogram in Vivado using Verilog. How to write and structure code in these
tools for proper functionality was also examined.It has been found that all
tools deliver an operation frequency comparable to a direct implementation
in Verilog, decreased resource usage, a development time which decreased by
27% (HDL Coder in MATLAB), 45% (System Generator) and 64% (HDL
Coder in Simulink) but at the cost of increased power consumption. Instruc-
tions for how to use all three tools has been collected and summarised.

Keywords: HLS, System Generator for DSP, Histogram, Xilinx Zynq Ul-
traScale+, FPGA design workflow, Hardware Description Language Coder,
HDL Coder, Field Programmable Gate Arrays, Image processing

iii

Sammanfattning

I ingångssteget på ett mätsystem är det av intresse att använda en FPGA för
att uppnå höga hastigheter på de oundvikliga datafiltrering och sorterings
algoritmer som körs. Ett problem med FPGAer är att utvecklingen ställer
höga krav på specifik kunskap gällande utvecklingsspråk och miljöer vilket
för en person specialiserad inom t.ex. signalbehandling kan saknas helt. HLS
är en metodik där högnivåspråk kan användas för digital design genom att
nyttja ett verktyg för automatgenerering av kod. I detta arbete har utveck-
ling av ett histogram använts som testfall för att utvärdera effektivitet samt
designmetodik av tre olika HLS verktyg, HDL Coder till MATLAB, HDL
Coder till Simulink och System Generator for DSP. Utvecklingen i dessa
verktyg har jämförts mot utvecklingen av samma histogram i Vivado, där
språket Verilog använts. Arbetets slutsater är att samtliga verktyg som tes-
tats leverar en arbetsfrekvens som är jämförbar med att skriva histogrammet
direkt i Verilog, en minskad resursanvändning, utvecklingstid som minskat
med 27% (HDL Coder i MATLAB), 45% (System Generator) och 64% (HDL
Coder i Simulink) men med en ökad strömförbrukning.En sammanställning
av instruktioner för utveckling med hjälp av verktygen har även gjorts.

v

List of Figures

2.1 General FPGA architecture. 5
2.2 Layout of of a CLB section. 6
2.3 DSP block in Xilinx UltraScale+ devices. 7
2.4 Typical FPGA design flow. 8
2.5 Comparison between a sequential and a pipelined workflow. . 14
2.6 Histogram calculation with bins stored in RAM. 15
2.7 Histogram calculation with bins stored in registers. 16
2.8 Schematic view of a register based counter. 16

3.1 Schematical view of SFIR. 20

4.1 General HLS tool workflow. 24
4.2 System overview. 34

vi

List of Tables

2.1 Specification of the target device. 7

4.1 Non optimized test case. 23
4.2 Data types supported by the Fixed-Point converter tool. . . . 26
4.3 Data types supported in HDL Coder. 27
4.4 Arithmetic operators supported in HDL Coder. 27
4.5 Logical operators supported in HDL Coder. 28
4.6 Relational operators supported in HDL Coder. 28
4.7 Relational operators supported in System Generator. 31
4.8 Logical operators supported in System Generator. 32
4.9 xfix-type unique functions. 32
4.10 MATLAB functions supported in System Generator. 33
4.11 Est. development time for the histograms. 34
4.12 Non and default optimized histogram - MATLAB. 35
4.13 Non and default optimized histogram - Simulink. 36
4.14 Default optimized histogram - System Generator. 36
4.15 Pipeline optimization - MATLAB. 37
4.16 Pipeline optimization - Simulink. 37
4.17 Pipeline optimization - System Generator. 38
4.18 Tool comparison of the pipelined versions. 38

6.1 HLS tool ranking. 49

vii

Acronyms

ASIC Application Specific Integrated Circuit.

BRAM Block RAM.

CE Clock Enable.

CLB Configurable Logic Block.

DRAM Dynamic RAM.

DSP Digital Signal Processing.

EDA Electronic Design Automation.

FF Flip-Flop.

FPGA Field-Programmable Gate Array.

HDL Hardware Description Language.

HLL High-Level Language.

HLS High-Level Synthesis.

I/O Input and Output.

IP Intellectual Property.

LM List Manager.

LUT Look-Up Table.

MA Memory Allocator.

MI Mutual Information.

MUX Multiplexer.

viii

RAM Random Access Memory.

SFIR Symmetric Finite Impulse Response.

TE Transfer Entropy.

WNS Worst Negative Slack.

ix

Table of Contents

1 Introduction 1
1.1 Previous studies . 2
1.2 Problem definition and delimitations 2
1.3 Ethical considerations . 4

2 Background 5
2.1 FPGA . 5

2.1.1 Configurable Logic Block 6
2.1.2 Programmable interconnects 6
2.1.3 Hard modules . 6
2.1.4 Input and Output . 7
2.1.5 Xilinx Zynq UltraScale+ target platform 7

2.2 FPGA design methodology . 8
2.2.1 Design Entry . 8
2.2.2 Synthesis and Mapping 8
2.2.3 Place and Route . 9
2.2.4 Bitstream Generation 9
2.2.5 Verification . 9

2.3 High-Level Synthesis . 10
2.3.1 Commonly used HLLs for HLS 10
2.3.2 A brief overview of a few different HLS tools 12
2.3.3 HDL Coder . 12
2.3.4 System Generator for DSP 13
2.3.5 Common optimization techniques in HLS tools 13

2.4 Histogram . 15

3 Method 19
3.1 Literature review . 19
3.2 Preliminary tool evaluation 19

3.2.1 Key points gathering 20
3.3 Verilog histogram implementations 20
3.4 HLS histogram implementations 21
3.5 Evaluation criteria . 21

4 Results 23

4.1 Preliminary investigation of the tools 23
4.2 Implementation methods and key points to be aware of 24

4.2.1 General design flow . 24
4.2.2 MATLAB method . 24
4.2.3 Simulink method . 28
4.2.4 System Generator method 30

4.3 Histogram implementations 33
4.3.1 Development time for the different systems 34
4.3.2 Non and default optimized histogram versions 34
4.3.3 Optimized histogram versions 36

5 Discussion 39
5.1 Preliminary investigation of the tools 39

5.1.1 Formula for maximum possible clock frequency 39
5.1.2 Major differences between the tools 39

5.2 Implementation methods and key points to be aware of 40
5.2.1 Fixed point conversion 40
5.2.2 Supported functionality 41
5.2.3 Timing . 42
5.2.4 Usability . 42

5.3 Histogram implementations 44
5.3.1 Development time for the different tools 44
5.3.2 Non and default optimized histogram versions 44
5.3.3 Optimized histogram versions 45

6 Conclusion 49
6.1 Future Work . 50

Chapter 1

Introduction

As soon as any measurements are taken signal conditioning is performed
to properly capture the characteristics of the given signal. Starting with
an analog low pass filter stage the signal then passes through an analog to
digital converter and a second batch of conditioning is performed through
signal conditioning algorithms. It is critical that these digital stages are
performed quickly, so that the sampling speed of the device is not reduced.
For this reason Field-Programmable Gate Arrays (FPGAs) are interesting
to use for this purpose. Running signal processing algorithms on an FPGA
instead of on a regular processor core can improve the operation frequency, as
the dedicated hardware resources in FPGAs are usually faster at processing
this type of math intensive calculation.

To implement any sort of algorithm on an FPGA requires a good understand-
ing of Hardware Description Languages (HDLs), as e.g. Verilog or VHDL,
and development in any of these languages usually takes a lot of time. For
a person working on the development of signal processing algorithms this is
probably not familiar grounds. Going from algorithm testing in e.g. MAT-
LAB to real life testing on the FPGA is usually not feasible by the same
person. A signal processing engineer would have to hand their work over to
an engineer with a digital design background, as they have the knowledge
required for further development targeting the FPGA.

To simplify progression between different parts of the development cycle,
tools called High-Level Synthesis (HLS) tools has been developed. Examples
being MathWorks “HDL Coder” and Xilinx “System Generator for DSP”
add-on for Mathworks Simulink.

Grepit AB is a high-tech development firm specialised in the development of
embedded systems. One of their projects concern the development of a pulse
detection and classification system, where a peak detection algorithm has
been developed and is currently running on an FPGA. The final output of
the system is a histogram displaying these peaks but the frequency accumu-
lation of said peaks are currently being performed on a Linux based computer

1

system. To increase throughput of this system the frequency accumulation
should be moved to the FPGA. The idea of this thesis is to use the develop-
ment of this histogram as a test case to compare different HLS tools, to find
out how effective they are in generating HDL code. Usability for someone
without a deeper understanding of the tools will also be investigated.

1.1 Previous studies
Using HLS workflows instead of traditional manual development of FPGA
code is something that has been evaluated in earlier studies and was e.g.
done by Sarge [1] who investigated the performance and viability in using
HDL Coder in Simulink (based on MATLAB version 2017a) with a polyno-
mial nonlinear equalization application as her test case. Her main conclusion
were that while performance was worse using the automatically generated
code the differences were small enough for it to be of practical use. A sim-
ilar study was performed by Shah et. al. [2] who developed the MIPI Low
Latency Interface using MATLAB 2016b and Simulink as well as Verilog for
comparison. Results show a decreased development time at the cost of de-
creased performance in area and power usage as well as operation frequency.

As there exists a lot of different HLS tools on the market studies has been
performed comparing the efficiency of some of these. In one of these studies
Baguma [3] studied the implementation of an IIR filter using HDL Coder
in Simulink and then compared this to implementation using the C based
Vivado HLS tool. He concluded that the Vivado based tool was superior as
the HDL Coder implementation did not meet his timing specifications.

The test case for this thesis is the development of a histogram and this
is a common application within the area of computer vision, more pre-
cisely used e.g. for real-time visual matching and object positioning in au-
tonomous vehicles. Geninatti and Boemo [4] has e.g. developed luminos-
ity histograms, which can be used for image comparison, using two different
hardware schemes. One utilizing embedded Random Access Memory (RAM)
blocks and one structure of parallel accumulators.

1.2 Problem definition and delimitations
This thesis aims at examining these tools in a similar manner as has previ-
ously been done, by developing the same system using several different tools
and comparing the results. To keep a clear focus in the report only one ap-
plication will be developed and that being the histogram. It aims to utilize

2

newer versions of the tools as to see if they have become more efficient as
well as to include more tools for a larger base of comparison. The following
specifies the problem definition and delimitations used during this thesis.

Problem definition

• Which of the tools gives the most optimized FPGA implementation of
the histogram algorithm?

– HDL Coder based on a MATLAB function.

– HDL Coder based on a Simulink model.

– Xilinx System Generator for DSP.

• How should a .m program be structured and written as to be able to
use it as input to HDL Coder or System Generator for DSP?

• Is it appropriate to use a HLS tool to implement HDL code based on
these results?

Delimitations

• In this thesis only HLS tool capable of taking .m files and Simulink
diagrams as input will be investigated.

• The target platform is a Xilinx Zynq UltraScale+ device but no testing
will be performed on real hardware, only Vivado simulations will be
performed.

• Methods for code implementation will only be investigated for Xilinx
FPGAs.

No hardware has been available and thus the delimitation exists that only
simulations will be used. Results should not be much affected by the fact as
the Vivado output is what would define the configuration of the output and
the amount of resources used should thus be the same. Values for estimated
maximum frequency and power usage could differ but as all implementations
should be equally affected this should not affect the results.

As the test case used in this thesis is a histogram it should be noted that as the
area of Digital Signal Processing (DSP) is very large it spans a lot of different
applications and possible use cases, some with very different requirements to
the one investigated here. As of this the results stated in this thesis are mainly
applicable to problems in the areas of image processing and computer vision,
where histograms are heavily used in a manner similar to the development
in this thesis.

3

1.3 Ethical considerations
Auto generation of code structures in the way it is performed today, as a tool
to speed up development time but where the process still requires verification
of the final results is in itself not an ethical challenge. Strict regulations exist
on verification standards for areas of interest to e.g. human life thus the
question of ethical considerations does not apply to this area of research.

4

Chapter 2

Background

2.1 FPGA
FPGAs were introduced in 1984 by a company called Xilinx [5]. FPGAs are
used to implement logic functions and they are very efficient at performing
calculations on problems which are of a parallel nature, as e.g. linear algebra
calculations or where data can be streamed through the device at a high rate
as in the case of e.g. video processing [6]. A modern FPGA consists of four
main parts, the logic blocks (called Configurable Logic Block (CLB) in the
case of a Xilinx device or Adaptive Logic Modules in the case of an Intel
device), the programmable interconnects, the hard modules and the Input
and Outputs (I/Os). A Xilinx device will be used in this thesis and the
naming used will be CLB for the logic unit. A typical FPGA layout can be
seen in Fig. 2.1.

Fig. 2.1: General FPGA architecture [7].

5

2.1.1 Configurable Logic Block
A CLB is the basic logic unit used inside an FPGA to perform its given task.
A CLB consists of eight smaller but identical pieces and this smaller group
can be seen in Fig. 2.2 [8].

LUT
Arithmetic

MUX FF

Fig. 2.2: The layout of 1
8 of a CLB. Picture adapted from Prof. D. Maskells lecture

slides [7].

2.1.2 Programmable interconnects
The interconnects are the grid of wires surrounding the CLBs as well as the
connection matrices, which can be seen as darker grey squares where the
routing lines intersect in Fig. 2.1. This network can connect any and all
parts of the FPGA in an almost endless number of ways. Certain parts have
a dedicated wiring system to increase speed even further, but for the most
parts the interconnections are configured by the design tool as needed [7].

2.1.3 Hard modules
In Fig. 2.1 blocks labeled ”Memory” and ”Multipliers” can be seen. These
constitute some of the embedded hard modules which can be found in modern
FPGAs and which can increase the processing speed of certain tasks. Dedi-
cated RAM sections, called Block RAM (BRAM), exists so that CLBs does
not need to be used to implement memory in the Dynamic RAM (DRAM)
fashion. This is done to increase speed while keeping the energy consump-
tion low [9]. The multiplier blocks are a lot more advanced than just being
multipliers and often go under the name of DSP blocks, see Fig. 2.3 for an
overview of the contents of a DSP block in Xilinx UltraScale+ devices. They
are efficient to use when implementing signal processing algorithms as they,
according to Xilinx user guide on DSPs [10], can implement ”custom par-
allel algorithms” with the help of different Multiplexer (MUX) devices and
options for the arithmetic logic unit.

6

Fig. 2.3: Layout of DSP block in Xilinx UltraScale+ devices [10].

2.1.4 Input and Output
The I/O is the part of the FPGA communicating with the outside world.
They connect internal registers and CLBs to e.g. sensors and external com-
munication channels to receive or transmit signals. The I/O of a modern
FPGA is capable of being configured for single-ended or differential commu-
nication over a wide range of different voltage standards. Picking the settings
used for the generation of I/O interfaces can allow the designer to implement
the physical layer of most communication standards available today, and to
change them with a software update if needed. An improvement over using
external devices specifically for certain types of communication standards [6].

2.1.5 Xilinx Zynq UltraScale+ target platform
Relevant specifications of the device used as a target platform in Vivado are
summarized in Table 2.1.

Table 2.1: Maximum available resources of the Xilinx FPGA, Zynq Ultra-
Scale+ xczu6eg-ffvc900-1-i, used as the target device in Vivado [11].

Resource Number of units
LUT 214604
LUTRAM 144000
DSP blocks 1973
BUFG 404
Flip-Flops 429208

7

2.2 FPGA design methodology
Implementing circuits on an FPGA is done with the help of Electronic Design
Automation (EDA) tools. These tools help the designer with transforming
the code, written using an HDL, into a netlist. The netlist is then further
processed down into the bitstream which is used to program the FPGA itself.
General flow followed when designing a circuit for an FPGA can be seen in
Fig. 2.4, starting from the design entry block.

Synthesis
and Mapping

Place & Route
Bitstream
Generation

Design Entry Functional
Verification

Timing
Verification

Synthesis
Verification

FPGA
Verification

Fig. 2.4: Typical FPGA design flow [12]. Filled lines represent work flow
and dashed are what happens when a verification step fails.

The workings of each part in Fig. 2.4 will be further described in headings
2.2.1 - 2.2.5.

2.2.1 Design Entry
The design entry stage is where the algorithm that is to be run on an FPGA
is first designed. The architecture is defined and things like timing specifica-
tions are formulated [7]. The architecture is then described in the EDA tool,
e.g. as a block diagram or HDL code [12].

2.2.2 Synthesis and Mapping
The synthesis and mapping stage of the design flow is where the implemented
design gets translated into a low level circuit description, called a netlist. The
synthesis part generates the logic translation of the circuit and in this stage

8

combinational logic sections are minimized. Hard modules are inferred as to
speed up arithmetic operations [7].

The mapping is the physical translation of the synthesis stage. In this stage
the tool infers what components need to be used on the target device to im-
plement the circuit described by the netlist from the synthesis stage. Combi-
national logic is converted into LUTs, synchronous components are mapped
to registers and the hard modules defined in the netlist are mapped to specific
types of hard modules on the target [7].

2.2.3 Place and Route
Place and route is where data from the mapping stage gets translated to the
exact locations of the target device. Blocks are mapped to specific areas on
the silicon and the routing between these parts are defined. This is the com-
putationally heaviest part of the operation and it starts from a randomized
placement, it then gets iteratively improved until an optimal placement is
found based on user constraints [7].

2.2.4 Bitstream Generation
The bitstream is the binary code which configures the FPGA so that it fulfills
the intended purpose. LUTs are given proper values and the routing matrices
are defined [12].

2.2.5 Verification
Verification are the stages where the circuits are simulated to check that
they are behaving as expected, and that they fulfill the specifications defined
before starting. The different forms of verification mentioned in Fig. 2.4 are
described below.

Functional

The functional verification checks that the circuit implemented in the design
entry stage correctly describes the algorithm it is supposed to. This is done
by testing individual components while they are being developed, as well as
testing the complete functionality of the circuit once it has all been assembled.
If it does not match a return to the design entry stage is required to fix the
bugs [7].

Synthesis

9

Synthesis verification checks that the netlist from the synthesis and mapping
stage is synthesised correctly and implementable in the hardware being tar-
geted. It also checks that no functionality has been unintentionally removed.
If something fails the designer returns to the design entry stage to fix the
error, settings in the synthesis and mapping tool stage can also address some
issues [7].

Timing

The final verification stage performed before hardware testing commences
is the timing verification. Timing verification calculates the timing charac-
teristics of the implemented circuitry so that the designer can check if the
design fulfills the timing specifications. If the specifications are not met, the
designer will return to the design entry stage and redo the implementation
with e.g. more pipeline stages as to increase the speed of the circuit [12].

FPGA

Hardware verification on the target device. Laboratory tests are performed
to verify that the behaviour matches the expected one.

2.3 High-Level Synthesis
HLS tools aim to increase the effectiveness of HDL development by allowing
the designer to work in an High-Level Language (HLL) like C++ or MAT-
LAB to implement algorithms, then to let the tool automatically generate
an implementation in the chosen HDL. This code can then be utilized in an
EDA as e.g. Vivado to complete the design flow with further simulations and
finally the bitstream generation [13].

HLS tools has a history of not being very effective at generating HDL code
and is therefore not used everywhere, but as the tools increase in performance
so will their use [5]. Hitachi has e.g. found a use for the HDL Coder tool
when combined with Mathworks Simulink model based design principles were
they have managed to collect everything from high-level specifications down
to the development and testing into one system. This has allowed them to
improve inter-team communications and decrease development time [14].

2.3.1 Commonly used HLLs for HLS
Some of the most common HLLs used in HLS are C-based, SystemC or
MATLAB [15]. Some comparative data relating to the C-based and the

10

SystemC are presented here based on findings by K. Georgopoulos et. al.
[16].

C-based

The C-based HLLs are typically C or C++. They are basic languages for
many software engineers and they also share strong similarities between orig-
inal untimed algorithms and the versions usable as input to HLS tools. These
two factors grant the C-based languages a shorter learning path until code
can be produced in comparison to SystemC. Math libraries, such as math.h,
is typically supported in full by any C-based HLS tool [16].

Using data from Table 1 in K. Georgopoulos et. al. [16], stating their develop-
ment time for different algorithm implementations, the average development
time for the C-based version of the algorithms was 9h for the Mutual Infor-
mation (MI) and Transfer Entropy (TE) algorithms, and 11h for the List
Manager (LM) and Memory Allocator (MA) algorithms.

SystemC

SystemC is a system-level modeling language typically used for performance
modeling, functional verification and HLS. Being based on C++ macros and
classes it adds an environment for simulating concurrent threads and their
interactions [17]. Whilst the learning curve on how to apply SystemC code
in an HLS environment is steeper than the C-based systems, the end product
is typically more robust and comprehensive. HLS tools using SystemC as its
input typically does not include support for the entirety of its math libraries
and these might thus have to be implemented by the designer, leading to an
increased development time [16].

Using data from Table 1 in K. Georgopoulos et. al. [16] the average devel-
opment time for the SystemC version of the algorithms was 46h for the MI
and TE algorithms (adding averages of both math and design time) and 27h
for the LM and MA algorithms.

MATLAB

MATLAB is a language commonly used in data analytics, wireless commu-
nication, deep learning, robotics and many others [18]. Its uses in the signal
processing domain makes it a suitable language to use as input to an HLS
tool, as algorithms to be used on an FPGA might very well have been devel-
oped in this language already.

11

2.3.2 A brief overview of a few different HLS tools
There exists a number of different HLS tools on the market, as well as even
more from academia. A brief summary of some notable commercial systems
are mentioned here. Tools used in this thesis will be covered more in depth
under the headings 2.3.3 and 2.3.4.

Catapult-C

Catapult-C is developed by Calypto Design Systems and was originally in-
tended to be used for Application Specific Integrated Circuit (ASIC) devel-
opment, but today it supports both this and FPGA development. It takes
as its input C, C++ or SystemC and can generate either VHDL, Verilog or
SystemVerilog as its output. Optimization options includes loop pipelininig
and unrolling [13].

VivadoHLS

VivadoHLS is developed by Xilinx and takes as its input C, C++ or SystemC
and can generate either VHDL, Verilog or SystemVerilog as its output. Opti-
mization options includes loop pipelininig, unrolling and operation chaining
[19].

Synphony C

Synphony C is developed by Synopsys and takes as its input C or C++ and
can generate either VHDL, Verilog or SystemVerilog as its output. Opti-
mization options includes loop pipelininig and unrolling [19].

2.3.3 HDL Coder
HDL Coder is a tool developed by Mathworks and takes MATLABs .m files,
Simulink models or Stateflow charts as input. It generates either Verilog or
VHDL as its output and can be used for either FPGA or ASIC development.
Optimization techniques included in the tool are e.g. pipelining and resource
sharing. Test benches for the generated HDL code can also be automatically
created and test vectors can thus be reused from the simulation stages. The
generated HLS code fulfills standard rules from industry. It is possible to
keep traceability between different levels of the design, e.g. by automatically
adding the equivalent MATLAB code as comments and to keep a connection
from high-level requirements down to the HDL code itself. This simplifies
the fulfillment of safety standards in the aviation, automotive, machinery
and industrial automation sectors [20].

12

2.3.4 System Generator for DSP
System Generator for DSP is a tool developed by Xilinx and it works as
an add-on for Simulink defining its own block library. This library includes
blocks which generate Intellectual Property (IP) optimized for the target
device. Code generation outputs a stand-alone IP for use in Vivado, an HDL
netlist to replicate the design or a synthesized checkpoint to use in Vivado.
It can generate all these options in either Verilog or VHDL. Test benches for
the generated HDL code can also be automatically created and test vectors
can thus be reused from the simulation stages [21].

2.3.5 Common optimization techniques in HLS tools
One of the features supplied by HLS tools are the automated optimization
techniques applied to generated code. Following is a brief explanation of two
of the capabilities available in the tools used in this study.

Pipelining

As described in Hennessy and Patterson [22] pipelining is ”An implemen-
tation technique in which multiple instructions are overlapped in execution,
much like an assembly line”. In an FPGA setting this corresponds to using
registers to shorten the critical path of a calculation. It results in an increased
throughput, number of samples processed per clock cycle, while also possibly
increasing latency, the delay between input and its corresponding output.
The maximum frequency of a circuit can be calculated as fmax = 1

criticalpath
,

where the critical path is given in seconds. This formula originates in that
inputs can only be supplied at a frequency matching the slowest path of the
circuit to not lose any data. Fig. 2.5 provides an example of this phenomenon
[7].

13

A

B

C

D

(a) Sequential case. Critical path is 3ns, fmax = 333MHz and
the latency is one clock cycle, latency = 1 ∗ 3ns = 3ns.

A

B

C

D

(b) Pipelined case. Critical path is 2ns, fmax = 500MHz and the
latency is now two clock cycles, latency = 2 ∗ 2ns = 4ns.

Fig. 2.5: Comparison between a sequential and a pipelined workflow [7].
Throughput and latency values based on the assumption that an adder
has a delay of 1ns to produce its results.

Resource sharing

Resource sharing is the concept of using the same hardware resources, for
instance DSP blocks, for several calculation steps of an algorithm. Resulting
in a decreased area usage of the design but at the expense of lowering the
maximum throughput. As algorithms sometimes requires more resources,
especially multipliers and other hard modules might be in short supply, than
what is available on the device used, it might become a necessity as to be

14

able and run the algorithm at all [23].

2.4 Histogram
A histogram is a statistical tool used to gather frequency data about a given
data set. It find uses in several domains, relevant to this thesis is e.g. com-
puter vision and object detection [24].

Calculation of a histogram on an FPGA typically involves the use of one
of the two methods described in Baileys book ”Design for Embedded Image
Processing on FPGAs” [25], working on data stored in RAM or in local
registers. Input data to these histograms are typically the highest data bits
of the data to be placed in the histogram, how many bits are used depends
on the amount of bins in the histogram. Fig. 2.6 shows a schematic view of
the RAM based implementation.

rAddr

wAddr

wData rData1

Input

delay

Fig. 2.6: Histogram calculation based on dual-port RAM. The data is used as
the address to read from in the RAM. The data read is increased by one
and then stored back in RAM on the same address, utilizing a delayed
version of the data as write address.

An advantage of the RAM version is that it only utilizes a small amount of
resources this is as it only requires a RAM block with some minor logic around
it for control and updating the data. On the downside it requires the delay
logic to be properly configured as to match the RAMs read/modify/write
cycle as the memory is using this update routine it will also perform at a
lower maximum speed than the register based version [25].

Fig. 2.7 shows an equivalent schematic of the register based implementation.

15

Counter0CE
RST

D
ec
od

er
n→

M
Input

RST
CE Counter1

RST
CE Counter2

.....

Histogram

Reset

RST
CE CounterM

Fig. 2.7: Histogram calculation based on register counters, the input data is
used to address and activate the Clock Enable (CE) input of the relevant
counter to increase it by one. M = 2n − 1. Picture adapted from Bailey [25].

Summarized as ”CounterM” in Fig. 2.7 is a counter using registers to store
the current count, see Fig. 2.8 for an overview of the implementation.

0

1 z−1

0

CE RST

0

1
1

0
OutM

Fig. 2.8: Schematical view of a register based counter.

The register version uses a lot of resources, especially if implementing large
design, as it uses one counter per histogram bin with each counter being
implemented as seen in Fig. 2.8. The decoder circuit is typically built by
LUTs and even if it is easy to design it grows large for big systems [25].
The main advantages of the register version is that it does not require any
complex timing logic and it is capable of reaching high speeds as the only

16

main delay in the system is the one in the decoder which would typically be
in the nanosecond range [7].

17

Chapter 3

Method

3.1 Literature review
A review of literature has been performed where the following areas were
investigated: FPGAs, HLS, HDLs, Mathworks HDL Coder software, Xil-
inx System Generator for DSP software and implementation strategies of
histograms on FPGAs. These were investigated to form a basis of under-
standing about the areas covered in the rest of the thesis as well as to find
previous studies covering the effectiveness of HLS tools to be used for com-
parison. Main sources of material were the IEEE databases, books, earlier
thesis works and datasheets from Xilinx and Mathworks.

3.2 Preliminary tool evaluation
The three tools under consideration was first tested in a preliminary testing
phase to gain an understanding on how they function, gather key points to
follow during the histogram development as well as to see if any tool over or
under performs in comparison to the rest.

The preliminary testing was performed by implementing a Symmetric Finite
Impulse Response (SFIR) filter based on Mathworks example project on the
topic [26]. The SFIR filter is implemented manually in all tools as to be as
equal as possible and thus grant a better comparison. The SFIR was chosen
as a benchmarking tool because it incorporates several different basic system
blocks: addition, multiplication (making use of DSP blocks) and delay lines
utilizing Flip-Flops (FFs). Mathworks version of this is readily available
and could directly be used in MATLAB, adapting it to run in Simulink and
System Generator was easily done based on the MATLAB version.

The example utilizes the symmetry of the FIR filter to decrease the number
of operations necessary, a block based overview of the implementation can
be seen in Fig. 3.1.

19

Input

Output

h1 h2

z−1z−1 z−1 z−1

Fig. 3.1: Schematic overview of the SFIR filter implemented for tool testing
purposes [26]. h1 and h2 are the filter constants used in the filter.

3.2.1 Key points gathering
Instruction sheets on HDL Coder and System Generator has been studied and
compared to experiences gathered during the tool evaluation phase. These
experiences has then been summarised as key points to take note of when
developing code in the given HLS tool.

3.3 Verilog histogram implementations
The implementation method followed for the histogram is as seen in Fig.
2.7. This method has been chosen as we do not want to be limited in the
maximum attainable clock speed and because we have a lot of resources
available in the chosen FPGA. Another reason for this method to be chosen
is to bypass the potential problems with the delay blocks timing logic as
theses possible errors are not directly connected to the goals of this thesis
and thus would only waste time. Implemented as 256 individual 32-bit wide
clock enabled counters, according to project requirements. The counter to
increase is activated by the use of an 8 to 256-bit decoder using the eight
most significant bits of the data packet as address bits. A separate data
conditioning function, with a basic move by offset x and scale by a factor y,
was also designed and the logic required for that will be included in the total
resource comparison.

20

3.4 HLS histogram implementations
Implementation of the hardware based algorithm was written directly in the
HLS tools, avoiding any toolbox macros or similar. It was designed in the
same way as the Verilog version as to generate an implementation that would
be comparable. The tools used were MATLAB version 2018a [27], Simulink v.
9.1 [28], HDL Coder toolbox v. 3.12 [20] and Vivado with System Generator
version 2018.1 [21].

3.5 Evaluation criteria
The HDL code generated by the HLS tools were all synthesized and imple-
mented using the ”out of context” mode in Vivado. This mode generates an
implementation that is intended to be used as part of another system and
no external I/O ports are created. Some testing of the tools optimization
options was also performed. The tools were then evaluated based on the
following five factors:

• Resource usage.

• Estimated max frequency.

• Estimated power consumption.

• Usability.

• Major differences between the tools.

21

Chapter 4

Results

4.1 Preliminary investigation of the tools

Table 4.1: Non optimized test case.

Resource/Parameter MATLAB Simulink System
Generator

WNS (ns) 4,4 8,876 8,407
Estimated max
frequency (MHz) 179 890 628

LUTs used 159 0 191
LUTRAM used 31 0 0
DSP blocks used 4 4 4
FFs used 364 96 294
Estimated Total
On-Chip Power (W) 0,628 0,624 0,627

The tools were preliminary evaluated without speed optimization routines
used and the results can be seen in Table 4.1. The optimization tools uti-
lized by Vivado tries to meet the timing constraints set in the user supplied
constraints file, set to 100MHz during simulations, and nothing more. Thus
not much can be said about any theoretical maximum speed of the design
from the Vivado simulation itself. Using the Worst Negative Slack (WNS)
value the formula fsimMax = 1

TsimulationClk−WNS
, found on the Xilinx forums

[29], is supposed to estimate this value, TsimulationClk = 10ns.

23

4.2 Implementation methods and key points
to be aware of

Code implementation methodologies are discussed in the following chapter.

4.2.1 General design flow
The general design flow followed when developing code with an HLS tool can
be seen in Fig. 4.1.

HLL
Implementation

HLL
testing

HLS
generation

Verification using
Vivado simulation

Fig. 4.1: General HLS tool workflow.

The last stage of Fig. 4.1 includes everything covered in Fig. 2.4. During
development no iteration at this stage has been necessary and these last steps
has been running smoothly.

4.2.2 MATLAB method
Writing efficient MATLAB code to be used with HDL Coder requires that
the code is formatted along the idea that it is going to be implemented in
hardware. This places requirements on the code relating to data types, vari-
able sizes, fixed vs. floating point precision, data storage and architectures
[30].

MATLAB applications developed to be used with the HDL Coder tool has
to be written utilizing a main file which in turn launches any sub-functions
used. The second component used by HDL Coder is the function test bench.
This file has to present a test bench which covers all possible input scenarios
expected of the function as it is used by both HDL Coder to define input
types, as well as by the Fixed-Point converter tool to evaluate required word
or fraction lengths of the variables in the function [30].

Test bench auto generation is an option available in the HLS tool and if this is
activated the supplied test bench is also converted to the chosen HDL. It is to
be used in a later stage, e.g. a Vivado simulation, to check the functionality

24

of the automatically generated HDL code with the same reference as was
used in MATLAB [30].

HDL Coder has an option for automatically configuring Vivado projects so
that opening the HLS output and verifying it in Vivado can easily be done
after HDL Coder is finished. This functionality did not work properly and
manual addition of any test related files was required [30].

Fixed point precision

By default a MATLAB function uses double precision floating point data
(64-bit numbers with a floating decimal point) in its calculations. This infer
problems when it is run on an FPGA as it requires a lot of resources [31].
In FPGAs fixed point precision is typically used to save on the amount of
resources required for calculations.

In MATLAB conversion from floating point to fixed point is most easily done
by the use of the Fixed-Point converter [32]. This tool automates the process
of translating a function using floating point precision, into an equivalent
function using fixed point precision. This is also a way to reduce data size
as precision can be decreased from the default 64-bits to a smaller value.

The converter tool takes the function to convert and a test bench utilizing
the function to run a simulation to determine range and precision required
to cover the variables in question. Tool settings include standard values for
word or fraction length, which one of the two to determine, how rounding and
overflow is to be handled, precision in arithmetic operators during synthesis
and if the variables proposed are to be signed, unsigned or automatically set
depending on the simulation results. After simulation the tool proposes word
or fraction length and the user can then with the press of a button convert the
entire function to use the new proposed data types. The changed function is
saved as a separate file as to retain the original for further development.

The Fixed-Point converter tool only supports the data types stated in Table
4.2 to be used for simulation and code generation.

25

Table 4.2: Data types supported by the Fixed-Point converter tool.

Type Supported Data Types
Integer unsigned data types, 1 to 128 bits

signed data types, 2 to 128 bits
Real single, double, scaled double
Logical boolean

Serial data transfers

As MATLAB is a vector based programming language, transferring large
data sets, in parallel, between functions is not uncommon. At the same time
it is something which put hardware resources under large strain. Considering
that a default variable in MATLAB is 64-bits wide every variable transferred
to a function intended for hardware implementation would need 64 binary
I/O ports. Comparing this to the available I/O units on a modern FPGA
like e.g. the Zynq Ultrascale+ xczu6eg-ffvs900-1-i, which has 208 I/O units
in total. It quickly becomes apparent that sending several variables or even
full arrays of data, in parallel, to be processed is not a feasible task [11].

Converting the large floating-point variables into smaller fixed point variables
alleviates some of this problem but when it comes to transferring large arrays
of data a different approach is required. Serial data transfers are e.g. used
to limit the I/O requirements of functions calls, as a reduced amount of
ports are needed but at the cost of increased latency. In MATLAB serial
data transfers are implemented using for loops, which calls the function in
question several times with smaller data sets instead of calling it with the
entire data set at once. If there is a need to compare several of these data
sets to each other, data will have to be registered in the function between
the calls so as to be available during following function calls.

Supported data types and functions

MATLAB functions supported while using the HDL Coder can be seen HDL
Coder Users Guide chapter 1 [30]. Data types and operators supported by
HDL Coder can be seen in Tables 4.3 - 4.6 as well as chapter 2 of the HDL
Coder Users Guide, where applicable restrictions also can be seen [30].

26

Table 4.3: Data types supported in HDL Coder.

Type Supported Data Types

Integer uint8, uint16, uint32, uint64, int8,
int16, int32, int64

Real double, single
Character char
Logical logical

Fixed point
Scaled (binary point only),
fixed point numbers, Custom
integers (zero binary point)

Vectors unordered {N}, row {1, N},
column {N, 1}

Matrices {N, M}
Structures struct
Enumerations enumeration

Table 4.4: Arithmetic operators supported in HDL Coder.

Types Operator Syntax
Binary addition A+B
Matrix multiplication A*B
Array wise multiplication A.*B
Matrix power A^B
Array wise power A.^B
Complex transpose A’
Matrix transpose A.’
Matrix concatenation [A B]
Matrix index A(r c)

27

Table 4.5: Logical operators supported in HDL Coder.

Relation Operator Syntax
Logical And A&B
Logical Or A|B
Logical Xor A xor B
Logical And (short circuiting) A&&B
Logical Or (short circuiting) A||B
Element complement ∼A

Table 4.6: Relational operators supported in HDL Coder.

Relation Operator Syntax
Less than A<B
Less than or equal to A<=B
Greater than or equal to A>=B
Greater than A>B
Equal A==B
Not equal A∼=B

Registers

Creating registers in MATLAB is done by the use of persistent variables and
the ”isempty” function to initialize the register, an example can be seen in
the box below where ud1 and ud2 are defined as registers and preallocated
with the value of zero [30].

1 p e r s i s t e n t ud1 ud2 ;
2 i f isempty (ud1)
3 ud1 = 0 ; ud2 = 0 ;
4 end

4.2.3 Simulink method
Designing Simulink code to be usable in HDL Coder follows the same notes
as stated above in the MATLAB header concerning fixed point precision,

28

supported data types and registers. Topics required for the Simulink im-
plementation, not covered in the MATLAB section above are listed in thew
following headers.

Supported functions

The HDL Coder library, in the Simulink library browser, contains all func-
tions supported by the HDL Coder tool [30].

HDL Coder usage

In a similar manner to MATLAB the code to be run through the HLS tool has
to be packaged. Simulink uses the name ”subsystems” where in MATLAB it
would have been called ”functions”. The subsystems reside in the main level
of the model but its also possible to maintain several levels of hierarchy so as
to increase readability. Outside of the HDL subsystem any sort of block can
be added as to add stimulus and other simulation capabilities to the model
[33].

Test bench auto generation is an option available in the HLS tool and if
this is activated the entire system surrounding the HDL subsystem is also
converted to the chosen HDL and utilized as a test bench in later stages,
as e.g. Vivado. It is used to verify the generated code against the same
reference as was used in Simulink during development [30].

HDL Coder has an option for automatically configuring Vivado projects so
that opening the HLS output and verifying it in Vivado can easily be done
after HDL Coder is finished. This functionality did not work properly and
manual addition of any test related files was required [30].

Sample time

Input data in Simulink is either sampled directly at the input or passed
through a rate transition block before entering the HDL subsystem to make
sure that the correct sampling rate is used during simulation and in the final
code generation.

External model interfaces

In the same way as the MATLAB method requires data to be transferred
in a serial manner it is also required here. As the simulation model works
in software it will not throw errors from transferring data packets which are
to large for the hardware implementation to handle. Instead this has to be
included in the design of the system to not encounter issues once it is running
on the FPGA.

29

MATLAB function blocks

Simulinks normal MATLAB based function blocks are available which can be
used to include MATLAB code directly as a new Simulink block. If anything
was missing in the HDL Coder library, MATLAB code could be developed to
cover this as long as this new code follows the limitations in function usage,
types etc. mentioned in section 4.2.2.

4.2.4 System Generator method
Designing with the System Generator library takes place in the Simulink
environment but it is launched as a separate application. Parts to be gen-
erated requires two specific blocks to define it. The Gateway for input and
output definition, and the System Generator token for defining the FPGA
technology. Subsystems to be generated can only utilise blocks from the Sys-
tem Generator library. The usual Simulink libraries are available and can be
used for simulation purposes outside of this subsystem.

System Generator token

The System Generator token is used to define the FPGA technology for
the targeted architecture. The token is also the main interface to the HLS
tool itself and it grants access to settings for the code generation. Settings
include FPGA version and model, what clock speed to be used on the FPGA,
Simulinks system simulation period, defining the location constraints for the
clock on the FPGA, defining target architecture, compilation goals and HDL
languages to generate. Test benches based on the entire implemented system,
performance tests, resource and timing estimates can be generated. The tool
itself outputs an IP block holding the developed functionality as well as an
example project for testing and verification purposes.

Gateways

System Generator uses a specific block, the Gateway, to define the external
I/O interfaces for the function. Simulink libraries used as stimulus during
simulations use double precision floating point data types as default but as
System Generator blocks only work on boolean, arbitrary precision fixed
point or in some cases floating point data the conversion from double pre-
cision to a suitable type is done in the input Gateway blocks. In a similar
manner conversion back to double precision is performed when data passes
through the output Gateway. Gateways are also what defines I/O during
generation and the name of the Gateway will transfer to become port names
in the generated code [34].

30

System Generator MCode blocks

System Generator can use MATLAB functions directly by using the function
blocks called MCode. MCode blocks are meant to be used to implement
functionality related to arithmetic functions, finite state machines and control
logic and it is stated in the Vivado Reference Guide for Model-Based DSP
Design Using System Generator that it ”[...] supports a limited subset of
the MATLAB language [...]” [35, p.215]. The MCode block supports the
following language constructs,

• Assignment statements.

• Simple and compound if/else/elseif statements.

• Switch statements.

• Arithmetic expressions involving only addition and subtraction.

• Addition.

• Subtraction.

• Multiplication.

• Division by a power of two [35].

Relational and logical operators supported in System Generator can be seen
in table 4.7 and 4.8 as found in chapter 1 of the reference guide [35], covering
the MCode block.

Table 4.7: Relational operators supported in System Generator.

Relation Operator Syntax
Less than A<B
Less than or equal to A<=B
Greater than or equal to A>=B
Greater than A>B
Equal A==B
Not equal A∼=B

31

Table 4.8: Logical operators supported in System Generator.

Operation Operator Syntax
And A & B
Or A | B
Not ∼A

The MCode blocks can only utilize Xilinx own data type, the xfix, which can
be either signed, unsigned or boolean. Table 4.9 states the special functions
required in the MCode environment to work on this data types [35].

Table 4.9: xfix-type unique functions.

Command Functionality
xl_nbits() Returns number of bits
xl_binpt() Returns binary point position
xl_arith() Returns arithmetic type
xl_and() Bit-wise and
xl_or Bit-wise or
xl_xor() Bit-wise xor
xl_not Bit-wise not
xl_rsh() Shift right
xl_lsh() Shift left
xl_slice() Slice
xl_concat() Concatenate
xl_force() Reinterpret
xl_state() Internal state variables

Table 4.10 displays the basic MATLAB functions which are supported in the
MCode blocks [35].

32

Table 4.10: MATLAB functions supported in System Generator.

Command Functionality
disp() Displays variable values
error() Displays message and abort func-

tion
isnan() Test whetever a number is NaN
NaN() Returns Not-a-Number
num2str() Converts a number to a string
ones(1,N) Returns 1-by-N vector of ones
pi() Returns π
zeros(1,N) Returns 1-by-N vector of zeros
for For loop

Pipelining

Pipelining or other forms of optimization routines are not readily available
in the System Generator tool for automatic usage and thus any optimization
has to be done manually. Certain blocks, like multipliers, contains a setting
to add internal pipelining stages but more generally pipelining is inserted as
registers or delay blocks in between subsystems or other components.

Xilinx Waveform viewer

The Xilinx Waveform Viewer is a tool used to manually evaluate generated
waveforms in the simulation environment. It shares its layout with the Vivado
simulation viewer and all waveforms added are shown at the same time in
the same window for ease of comparison.

4.3 Histogram implementations
Fig. 4.2 shows an overview of the implemented system, the blocks inside the
dashed lines are the ones developed as a test case for this thesis.

33

Data Conditioning 256 bin histogram
Output

Input

Histogram system

Fig. 4.2: System overview.

The HLS tools has been tested using their non optimized, default optimized
and some optimized generation settings. Data presented has been collected
from Vivados post-implementation project summary page. All histograms
has been simulated after HLS generation using Vivados behavioural simula-
tion and verified to produce equal histograms.

4.3.1 Development time for the different systems
An estimation of the total development time in the different tools has been
summarized in Table 4.11. One tool was used at a time and the development
in it was finished before moving on to the next one in the list. The tools
has been used in the following order. Development started with Verilog fol-
lowed by MATLAB, Simulink and then finally System Generator. Knowledge
gained along the way was used in the later tools. In addition to the specific
development time related to the histograms approximately another 5h has
been spent on creating a MATLAB based generator for test data, the output
of which has been utilized in the development of all histogram versions.

Table 4.11: Estimated development time for the histogram in the different
tools.

Tool Estimated
development time (h)

Verilog 33
MATLAB 24
Simulink 12
System Generator 18

4.3.2 Non and default optimized histogram versions
MATLAB

34

The non optimized data is collected by turning off all settings relating to
optimization in the HLS tools menus. Default optimized is here defined as
keeping the HLS tools settings as they were when the tools are started for
the first time in a new project. For MATLAB this means [20]:

• Always share multipliers.

• Map persistent arrays to RAM if they are larger than 256 elements.

• Loop optimizations are set to ”none”.

Table 4.12 displays the resulting data.

Table 4.12: Non and default optimized histogram - MATLAB.

Resources and
Parameters None Default

WNS (ns) 1,913 4,988
Estimated max frequency (MHz) 124 200
LUTs used 1670 2298
LUTRAM 0 0
DSP blocks used 2 2
FFs used 1563 1545
BUFG units used 0 0
Estimated Total On-Chip Power (W) 0,664 0,656

Simulink

The non optimized data is collected by turning off all settings besides the
”balance delay” setting in Simulink (as the model would not generate any-
thing without this active) settings relating to optimization in the HLS tools
menus. In Simulink default settings mean [20]:

• Balance delays.

• Transform non zero initial value decay.

• Clock-rate pipelining.

• Adaptive pipelining.

• Always share multipliers, multiply-add blocks, atomic subsystems, MAT-
LAB function blocks and Floating-point IPs.

35

Table 4.13 displays the resulting data.

Table 4.13: Non and default optimized histogram - Simulink.

Resources and
Parameters None Default

WNS (ns) 1,62 1,62
Estimated max frequency (MHz) 119 119
LUTs used 15301 15301
LUTRAM 1 1
DSP blocks used 2 2
FFs used 16448 16448
BUFG units used 0 0
Estimated Total On-Chip Power (W) 0,873 0,873

System Generator does not support settings in the same way as MATLAB
and Simulink. Stated in the User Guide for System Generator is that ”the
more complex IP blocks [...] are generated under the hood. They are provided
as highly-optimized netlists [...]” and the output from the tool will be called
default optimization [34]. Table 4.14 displays the resulting data.

Table 4.14: Default optimized histogram - System Generator.

Resources and
Parameters Default

WNS (ns) 3,088
Estimated max frequency (MHz) 145
LUTs used 583
LUTRAM 1
DSP blocks used 2
FFs used 8194
BUFG units used 1
Estimated Total On-Chip Power (W) 0,702

4.3.3 Optimized histogram versions
The optimization routines tested is the addition of input and output regis-
ters. Testing the tools capabilities of automatically inserting one stage of

36

pipelining. In the case of System Generator and HDL Coder for Simulink
the addition of input and output registers was done manually as the tools
did not have a setting for this. Tables 4.15 - 4.17 compares the tools default
parameters to its pipelined form. Table 4.18 compares the different tools to
each other as well as to the Verilog implementation.

Table 4.15: One stage pipeline optimization - MATLAB.

Resources and
Parameters Default Pipelined

WNS (ns) 4,988 3,555
Estimated max frequency (MHz) 200 155
LUTs used 2298 2315
LUTRAM 0 0
DSP blocks used 2 2
FFs used 1545 3164
BUFG units used 0 0
Estimated Total On-Chip Power (W) 0,656 0,678

The code generated by HDL Coder in the pipelined MATLAB case has been
inspected in the same way as the non and default versions. It has been
confirmed that the code has been generated in the same way as in the de-
fault version, with the only difference being the extra registers on input and
outputs.

Table 4.16: One stage pipeline optimization - Simulink.

Resources and
Parameters Default Pipelined

WNS (ns) 1,62 2,998
Estimated max frequency (MHz) 119 143
LUTs used 15301 11009
LUTRAM 1 1
DSP blocks used 2 2
FFs used 16448 8280
BUFG units used 0 0
Estimated Total On-Chip Power (W) 0,873 0,811

The code generated by HDL Coder in the pipelined Simulink case has been

37

inspected in the same way as the non and default versions. The code has
been generated in the same way as in the default version with two differences.
The two differences are the extra registers on inputs and outputs and that
the pipelined case lacks a type conversion on the output which is included in
the default version.

Table 4.17: One stage pipeline optimization - System Generator.

Resources and
Parameters Default Pipelined

WNS (ns) 3,088 3,579
Estimated max frequency (MHz) 145 156
LUTs used 583 583
LUTRAM 1 1
DSP blocks used 2 2
FFs used 8194 16436
BUFG units used 1 0
Estimated Total On-Chip Power (W) 0,702 0,751

Table 4.18: Comparison of the one stage input and output register version
of the HLS tools with the Verilog implementation.

Resources and
Parameters Verilog MATLAB Simulink System

Generator
WNS (ns) 3,301 3,555 2,998 3,579
Estimated max
frequency (MHz) 149 155 143 156

LUTs used 4683 2315 11009 583
LUTRAM 0 0 1 1
DSP blocks used 2 2 2 2
FFs used 16690 3164 8280 16436
BUFG units used 1 0 0 0
Estimated Total
On-Chip Power (W) 0,66 0,678 0,811 0,751

38

Chapter 5

Discussion

5.1 Preliminary investigation of the tools
A brief discussion about the key points of the preliminary testing will be con-
ducted before focus shifts to the implementation methods and the histogram
implementation.

5.1.1 Formula for maximum possible clock frequency
Trying to calculate the maximum possible clock frequency that an application
can run at is not an exact measure as it will depend on a number of different
things, mainly the critical path and final location on the device. Wire lengths
will differ depending on how the remainder of the system is implemented and
this is connected to how filled a certain FPGA is at the time of placement,
as this might block certain resources or paths from being utilized.

As the histograms developed within this thesis have been examined in the
”out of context” mode they do not include any I/O ports and are not placed in
a specific place on an FPGA running the full system that eventually will use
this functionality. The applications has not been tested on an real FPGA but
only in simulation. All this translates to that the estimated max frequency
values calculated for the different implementations are good approximations
in regards to comparing the different versions on an equal ground but they
should be verified before they are used in a live system.

5.1.2 Major differences between the tools
Based on the resulting data found in Table 4.1 the different tool implements
widely different circuits, but where examining the simulated Vivado outputs
shows that they behave in a similar manner. I find it safe to say that the
same task can be completed in different ways and that even though the tools
work on similar types of code internally they clearly function in different
ways.

39

MATLAB

Examining the MATLAB based HDL Coder version shows a large difference
in the estimated max frequency in comparison to the other two tools, while
using approximately the same amount of resources as the System Generator
version. A reason might be that as there is no inherent timing in MATLAB
as a tool it just implements the combinational sequence designed without any
clocks to run it at a certain speed, why this would result in worse estimated
timing performances is unknown.

Simulink

Simulink can be seen to not require any LUTs to implement its functional-
ity thus not using any logical implementations at all. This means that all
arithmetic’s are performed by the DSP units and that any intermediaries are
registered in the FFs. Evaluating the generated code confirms that this is
the case. This could explain the high estimated maximum frequency as the
DSP units are running at high speeds and as the calculations are registered
between every stage the critical path is short, and the maximum frequency
is that of one DSP stage.

5.2 Implementation methods and key points
to be aware of

Chapter 4.2 collects information about some of the key concepts to be aware
of when writing code for HLS tools, the main differences in these will be
discussed here.

5.2.1 Fixed point conversion
Fixed point conversion in MATLAB is straightforward as it is integrated into
the HDL Coder tools interface, utilizing the Fixed-Point converter tool. In
Simulink and System Generator the Fixed-Point tool is used for the conver-
sion but it is not automatically included in the interfaces for their respective
HLS tools and has to be used separately. It is used to set the input ports
of the Simulink subsystem to fixed point precision data types matching the
data used for simulation of the subsystem. As the subsystem itself has to be
built using the HDL Coder library no conversion has to be made internally
as these blocks are mostly using fixed point precision for their calculations.
System Generator follows a similar manner as its blocks also run mostly on
fixed point precision data types, just using the Xilinx Blockset library in-

40

stead, and its Gateway blocks include a setting for fixed point conversion of
data passing through them.

5.2.2 Supported functionality
Somewhat different functionality can be found and utilized based on which
tool is used.

MATLAB and Simulink tools

The MATLAB based HDL Coder covers a wide range of both data types and
operators and it is in this tool that I had the least amount of limitations when
I was working on the histogram. Functions outside of the basic toolbox are
rarely supported directly, but as most things can be manually implemented,
using basic functionality, this is not an issue in more than that it slightly
increases development time.

The Simulink based tool is powerful in that its available block library includes
a lot of functionality as well as its excellent integration with the MATLAB
function blocks.

System Generator

The System Generator environment also covers a wide range of basic building
blocks, in the same way as the Simulink one, but its integration with MAT-
LAB through the MCode blocks is very limited in comparison. It is only
meant to be used as a way to implement arithmetic functions, finite state
machines and control logic, as mentioned in section 4.2.4, and this limitation
was clearly seen when the histogram was developed. The histogram version
uses an MCode block for register addressing, storage and incrementation.

Using a for loop that spans the 256 histogram bins and an if statement
comparing the bin number to increase, which is taken as an input, to the
current loop count. Using this scheme instead of just using the bin number
as an address straight to the register, as was done in Simulink is because the
MCode block requires register addresses to be fixed. Using the bin number
input as an address raises an error as it is a non fixed input signal. Most
likely because no checking is performed to see if it is out of bounds or not.

The MCode blocks does not support register arrays as outputs which forced
me to make 256 output variables instead of one array, each variable read-
ing the value from one of the functions internal 256 register locations. All
resulting in a lot of extra manual work.

41

5.2.3 Timing
Timing is handled in different ways in the tools and this leads to some major
differences in the generated result.

MATLAB

Timing of the circuit is where the MATLAB version lacks behind the other
two. As MATLAB code is untimed inferring timing at the HLS stage required
manual intervention. Clocked registers can be added as a way of manually
inserting pipeline stages either in the MATLAB code directly, this allows
them to be placed anywhere, or using settings in HDL Coder during the
generation process which in turn limits them to be used on the inputs and
outputs of the function. Without these manual additions the generated code
will be asynchronous.

Simulink and System Generator

Simulink and System Generator are time based simulation tools which gener-
ate a synchronous output by default. Code which is synchronous is generally
safer and would typically result in a more robust output. This is preferable
here when the code is automatically generated as it should result in a less
error prone output.

5.2.4 Usability
This part covers the perceived usability of the different tools and is thus more
of a qualitative comparison then the the other parts of this thesis.

MATLAB

MATLAB is a tool which a lot of people have encountered during e.g. their
studies and MATLAB code ready to be used with HDL Coder share large
similarities with MATLAB code written for many other use cases. As of this
the initial learning path is very short and flat until one is able to produce
code for HLS purposes using MATLAB.

One downside of the MATLAB method is that it is harder to know what
functions are available to use for development than in the other tools. Finding
this information forces the developer to go through the documentation for
HDL Coder in full as compared to just opening to correct library.

Requiring manual intervention to properly run simulations in Vivado, on top
of the automatically generated projects, is not good in the sense of usability

42

and neither are the manual registers required to keep the code from being
asynchronous.

Simulink

If the MATLAB method has a short learning path the Simulink learning path
is probably even shorter as it only requires one to change which library is
being used. Most function blocks from HDL Coder library looks very similar
to its counterparts in the default Simulink libraries and changing from one
to the other is an simple task. If one has used Simulink before it is often
also in conjunction with MATLAB thus making the process of developing
MATLAB function blocks easier for specific tasks.

In the same way as with the MATLAB version requiring manual addition
of the simulation files to the automatic Vivado project lowers the usability
of this tool, especially as this is not an obvious requirement from a users
perspective.

System Generator

System Generator is the only tool not developed by Mathworks and it uses
some other systems which was found to be harder to understand. Even
though it runs on the Simulink environment and looks in the same way
as its counterpart by Mathworks it uses its own system for generating the
HDL code. The System Generator interface was found to be lacking all
optimization settings found in the Mathworks HDL Coder interfaces leaving
this to be added manually by the user. Some settings were implemented on
function blocks directly but exactly what was done was unclear and what
extra optimization could be useful was hard to understand.

A strange bug was also encountered where the System Generator token some-
how lost its connection to the underlying library leading to that the entire
project had to be remade. Problems were also encountered with one of the
tools other main settings, the connection between the Simulink simulation
time period and the corresponding time period to be used when running the
generated code on an FPGA. Not properly balancing these time periods with
the sampling times on input gateways led to critical errors in the tool. No
further examination was performed in regards to what strengths could be
found in these settings after these issues had halted work on the thesis for
some time.

43

5.3 Histogram implementations
Using the histogram as a test case has worked well as its been a rather
simple system to model and thus there has been time to solve issues that
arose during development as well as to iterate on the HLS implementations
to improve performance of the resulting system. One drawback in correlation
to using it as a test case for HLS tools tightly coupled with signal processing
is the lack of intensive calculations.

5.3.1 Development time for the different tools
Development in Verilog was the slowest option but even within the HLS tools
the time difference was large. Development time decreased by 27% while
using MATLAB, 64% while using Simulink and 45% while using System
Generator. Knowledge was gained during development and solutions found
while developing the MATLAB version could be used in Simulink and System
Generator to decrease the time spent to develop the histogram using these
tools. This is likely one of the reasons why there is a large difference in
development time between MATLAB on one hand and Simulink and System
Generator on the other. Development in System Generator took place last
but as several issues was encountered and the framework with MCode blocks
was not as allowing as was the case with Simulink, the development time in
this tool increased in comparison to Simulink.

The results are consistent with what was found by Shah et.al. [2] in that
using HLS tools decreases development time in comparison to developing
code directly in a HDL.

To also note in Table 4.11 is that the estimates include time spent to translate
the base code to Verilog for Vivado usage and then verifying the functionality
in Vivado using behavioural simulations. Time spent in Vivado to simulate
and test the generated outputs has been minimal and most of time has been
in the HLS tools which is what can be expected using these.

5.3.2 Non and default optimized histogram versions
Comparing non and default optimized HLS output, Table 4.12 - 4.14, is done
as to get a bottom line of comparison, how inefficient are the tools when no
optimizations settings are used.

Of interest is that the baseline Verilog implementation is not the worst and
not the best in either of the tables of interest which indicates that in its
basic form none of the tools tested is exceptionally better or worse than

44

direct HDL implementation. As optimizations are part of the tools they will
in most scenarios be used to improve the results.

MATLAB

Examination of the generated code has shown that using the non optimized
settings has generated code where every stage of the calculation is stored in
its own register. This leads to that the algorithm is performed in a sequential
order with one instruction at a time. Using the default settings has allowed
the tool to run some parts of the code in parallel before registering the results
of that section, a new parallel section the commences.

Table 4.12 shows that utilizing the default optimizations increases estimated
maximum frequency by 61% at the cost of an 38% increase in resource usage
while the estimated energy consumption is almost the same. Analysing the
schematic indicates that this is likely a result from the increased number of
LUTs which seems to be used as storage elements instead of the FFs.

Simulink

The code generated by HDL Coder in Simulink has also been inspected and
the resource usage is the same because the code is identical between the
two. The settings utilized by Simulink in its default mode does not affect
the generation of code for this test case.

The default optimization settings did not improve the results in comparison
to the non optimized case. This is likely as no pipelining is done internally in
the HLL function the settings related to pipelining are not relevant. It was
assumed from the start that multiplier sharing should reduce the amount of
DSP blocks used but this did not happen. Functions using the DSP blocks
are located in different subsystems which might be why Simulink has not
applied this setting to them.

5.3.3 Optimized histogram versions
To further test the tools their ability to automatically help with pipelining
was tested. No tool was able to automatically add pipeline stages within
a function or subsystem so I had to settle with trying the setting for auto-
matically adding pipeline registers to the input and outputs. HDL Coder,
both MATLAB and Simulink versions, did this with a setting in the tool
whilst System Generator lacked this functionality and a register was manu-
ally added to be able to compare the tools on an equal level.

MATLAB

45

In the MATLAB case, Table 4.15, the addition of the pipeline stage did
the opposite to what was expected, it lowered the estimated max frequency.
One possible reasons for this is that as MATLAB is not inherently clocked
this added layer of synchronization makes the compilation process imple-
ment something more complex that what is necessary. This is not the main
question of this thesis and it will not be further investigated.

Simulink

As seen in Table 4.16 adding registers on input and output increases the
estimated maximum frequency by 20% while power requirements decreases
by about 7%. It is interesting to see that these large differences are found
but it may be related to that in the default version a type conversion was
required on the output data. The addition of the output registers makes this
conversion unnecessary and the tool has omitted it in the pipelined version.
This stage was performed by a combination of LUTs and FFs and now that
it does not have to be executed these resources are free, decreasing power
requirements and increasing the estimated maximum frequency.

System Generator

Table 4.17 shows that manually adding the registers on input and output
side of the System Generator version of the histogram increases estimated
maximum frequency by about 8% while approximately doubling the required
amount of FFs, indicating that all inputs and outputs are also registered in
the default version of the code. This conclusion is drawn from the fact that
as the FFs doubles in quantity the same amount existed before, likely in the
same locations as well as that the gain in estimated maximum frequency is
not major. Power consumption increases by about 7% which likely is because
of the added FFs requiring power to operate.

Tool comparison

Looking at Table 4.18 it can be seen that by utilizing these settings all differ-
ent tools use different amount of resources but they operate at approximately
the same estimated maximum frequency of around 150MHz. In the MAT-
LAB section of the optimized discussion it can be noted that MATLABs
maximum frequency dropped when adding these registers but what it is that
gives this change is unknown and will not be investigated further here.

Resource usage to achieve these implementations vary widely between the
tools but the maximum resource usage in comparison to what is available
on the target system used in Vivado is still very small. The biggest resource
users are Simulink and Verilog. Simulink still only uses 5% of the available

46

LUTs and Verilog uses only 4% of the available FFs.

As can be seen in Table 4.18 the Verilog version utilizes a BUFG, a global
clock buffer, which none of the optimized HLS versions use. Examining
the code shows that the BUFG is used to activate the output registers of the
Verilog version when valid data is received at the histogram input. The same
control signal is implemented in the HLS tools but it is not implemented in
the same manner in the generated output as it is in the Verilog version. This
might be because that the tools handle the clock generation in such a way so
that these registers match the base clock of the system, but that this is not
the case in the manual Verilog implementation.

The histograms developed follow the same hardware scheme as the Dedicated
Registers Version implemented by Geninatti and Boemo [4] who manage to
run their 256-bin histograms at 206MHz using the Spartan 6 FPGA. How
they have worked with pipelining or what languages they are using has not
been stated in their paper but it is clear that they have not used any HLS
tool for development. As of this comparing the results is not straightforward
but it seems like they might have worked more on hand optimization of their
code and in that way reached a higher speed using equivalent resources.

The results of this thesis differs from Shah et.al. [2] in that it has been found
that resource usage and performance does not have to be negatively affected
by using HLS tools. A main reason to why different results has been found is
probably that the two studies are targeting algorithms in different parts of the
signal processing domain. Shah et.al. worked on a communication interface
which faces different challenges to the histogram that has been developed
in this thesis. Another reason might be that an updated tool set has been
utilized in this thesis (MATLAB 2018a) in comparison to what was used
by Shah’s team (MATLAB 2016a). To be noted is that Sarge [1] used the
MATLAB 2017a version and found improved results in comparison to Shah
et.al. with a problem in a similar sector as they had been working, this could
imply that the tools are the main factor and that they are quickly gaining in
performance.

47

Chapter 6

Conclusion

Instructions has been summarised on how to structure and write code using
all three different HLS tools to generate proper output with the intended
functionality.

A summary of how the different tools compared (ranked best to worst) can
be seen in Table 6.1. Numerical values are based on Table 4.18 data only as
this was deemed to be the table giving the most identical comparison.

Table 6.1: HLS tool ranking.

Evaluation Criteria Best Worst

Resource Usage MATLAB System
Generator Simulink

Estimated max
frequency

System
Generator MATLAB Simulink

Estimated power
consumption MATLAB System

Generator Simulink

Usability and
functionality Simulink MATLAB System

Generator

Development time Simulink System
Generator MATLAB

Based on this test case, a histogram implementation, the tools are judged to
work more or less equally well with Simulink faring worse as it was not as
resource, speed and power efficient. At the same time I would say that the
Simulink based tool functions way above the other two in regards of usability
and functionality, which is likely the main reason to why it was the tool with

49

the shortest development time. Simulink would be my tool of choice based on
that as well as that there are only minor differences in the other parameters.

The results of this thesis also shows that implementation utilizing any of these
HLS tools results in an output which is comparable to directly designing the
Verilog code itself in regards to operation frequency, the resource utilization
is reduced and it has been shown that development time decreases when
using a HLS tool during development. Power consumption is the one criteria
that is not positively affected by the use of HLS tools according to this study.

6.1 Future Work
Areas not investigated in this thesis but which are related to the same topic
and which could provide an approach to further studies are for example:

• Investigating ways of improving the power consumption of algorithms
developed with the help of HLS tools.

• Testing newer version of these tools when available to investigate if the
performance continues to improve.

• Implementation in resource confined environments and investigate the
possibilities of the resource optimization settings in these tools.

• Working with computationally heavy algorithms and investigate how
this affects the output.

• Comparing the efficiency of implementation of different types of algo-
rithms, using the different tools (as in Georgopoulos et.al. [16]).

• Working with several different clock regions within one system and test
the possibilities in the Simulink and System Generator tools connected
with this.

50

Bibliography

[1] V. Y. Sarge, “Evaluating simulink hdl coder as a framework for flexible
and modular hardware description,” Master’s thesis, Massachusetts of
Technology, 2018.

[2] R. K. Shah, T. Kumar, A. Fell, M. S. Dohadwala, and R. Malik, “Exe-
cutable model based design methodology for fast prototyping of mobile
network protocol: A case study on mipi lli,” in 2017 4th International
Conference on Signal Processing and Integrated Networks (SPIN), Feb
2017, pp. 346–351.

[3] G. Baguma, “High level synthesis of fpga-based digital filters,” Master’s
thesis, Uppsala University, 2014.

[4] S. Geninatti and E. Boemo, “A proposal of two histogram circuits to cal-
culate similarities between video frames using fpgas,” in 2019 X Southern
Conference on Programmable Logic (SPL), April 2019, pp. 103–108.

[5] S. M. S. Trimberger, “Three ages of fpgas: A retrospective on the first
thirty years of fpga technology,” IEEE Solid-State Circuits Magazine,
vol. 10, no. 2, pp. 16–29, Spring 2018.

[6] J. Teubner and L. Wood, Data Processing on FPGAs. Morgan &
Claypool, 2013.

[7] D. Maskell, “Ce2003: Digital systems design,” 2019, as presented dur-
ing spring term 2019 at NTU, Singapore. Request material via email,
asdouglas@ntu.edu.sg.

[8] Xilinx, “Ug574 - ultrascale architecture configurable logic block,
v1.5,” 2019, accessed on the 28/8-2019. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/user_guides/
ug574-ultrascale-clb.pdf

[9] L. M. Hiot, “Ee2004: Digital electronics,” 2019, as presented during
spring term 2019 at NTU, Singapore. Request material via email, emh-
lim@ntu.edu.sg.

[10] Xilinx, “Ug579 - ultrascale architecture dsp slice, v1.8,” 2019, accessed

51

https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf

on the 29/8-2019. [Online]. Available: https://www.xilinx.com/
support/documentation/user_guides/ug579-ultrascale-dsp.pdf

[11] ——, DS891 - Zynq UltraScale+ MPSoC Data Sheet: Overview, 2019.

[12] E. A. Bezerra and D. V. Lettnin, Sythesizable VHDL Design for FPGA.
Springer International Publishing Switzerland, 2014.

[13] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, and D. Stroobandt,
“An overview of today’s high-level synthesis tools,” Design Autom. for
Emb. Sys., vol. 16, pp. 31–51, 09 2012.

[14] N. Kosugi, K. Hori, Y. Ishida, and M. Hasegawa, “Driving the adoption
of model-based design for communications system development
at hitachi,” 2013, accessed on the 3/9-2019. [Online]. Available:
https://www.mathworks.com/company/newsletters/articles/driving-
the-adoption-of-model-based-design-for-communications-system-
development-at-hitachi.html

[15] P. Coussy and A. Morawiec, High-Level Synthesis - From Algorithm to
Digital Circuit. Springer, 2008.

[16] K. Georgopoulos, P. Malakonakis, N. Tampouratzis, A. Nikitakis,
G. Chrysos, A. Dollas, D. Pnevmatikatos, and I. Papaefstathiou, “Com-
paring c and systemc based hls methods for reconfigurable systems de-
sign,” in Applied Reconfigurable Computing. Architectures, Tools, and
Applications, N. Voros, M. Huebner, G. Keramidas, D. Goehringer,
C. Antonopoulos, and P. C. Diniz, Eds. Cham: Springer International
Publishing, 2018, pp. 459–470.

[17] Accellera Systems Initiative., “About systemc,” https://accellera.org/
community/systemc/about-systemc, 2020, [Online; accessed 20-
February-2020].

[18] MathWorks, “Matlab,” https://se.mathworks.com/products/
matlab.html?s_tid=hp_products_matlab, 2019, [Online; accessed
17-January-2020].

[19] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A survey
and evaluation of fpga high-level synthesis tools,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 10, pp. 1591–1604, Oct 2016.

[20] MathWorks, “Hdl coder v3.13,” 2018, accessed on the 27/8-

52

https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.mathworks.com/company/newsletters/articles/driving-the-adoption-of-model-based-design-for-communications-system-development-at-hitachi.html
https://www.mathworks.com/company/newsletters/articles/driving-the-adoption-of-model-based-design-for-communications-system-development-at-hitachi.html
https://www.mathworks.com/company/newsletters/articles/driving-the-adoption-of-model-based-design-for-communications-system-development-at-hitachi.html
https://accellera.org/community/systemc/about-systemc
https://accellera.org/community/systemc/about-systemc
https://se.mathworks.com/products/matlab.html?s_tid=hp_products_matlab
https://se.mathworks.com/products/matlab.html?s_tid=hp_products_matlab

2019. [Online]. Available: https://se.mathworks.com/products/hdl-
coder.html?s_tid=srchtitle

[21] Xilinx, “System generator for dsp,” 2019, accessed on the 4/9-2019.
[Online]. Available: https://www.xilinx.com/products/design-tools/
vivado/integration/sysgen.html

[22] D. A. Patterson and J. L. Hennessy, Computer Origanization and De-
sign, 4th ed. Morgan Kaufmann Publishers, 2009.

[23] B. Ronak and S. A. Fahmy, “Improved resource sharing for fpga dsp
blocks,” in 2016 26th International Conference on Field Programmable
Logic and Applications (FPL), Aug 2016, pp. 1–4.

[24] K. E. B. Ahmed, R. A. Mokhtar, and R. A. Saeed, “A new method
for fast image histogram calculation,” in 2015 International Conference
on Computing, Control, Networking, Electronics and Embedded Systems
Engineering (ICCNEEE), Sep. 2015, pp. 187–192.

[25] D. G. Bailey, Design for Embedded Image Processing on FPGAs [Elec-
tronical resource]. Hoboken: John Wiley & Sons, 2011.

[26] MathWorks, “Getting started with matlab to hdl work-
flow,” 2019, accessed on the 15/10-2019. [Online]. Avail-
able: https://se.mathworks.com/help/hdlcoder/examples/getting-
started-with-matlab-to-hdl-workflow.html

[27] ——, “Matlab 2018a,” February 2018, accessed on the 27/8-2019.
[Online]. Available: https://se.mathworks.com/products/matlab.html

[28] ——, “Simulink,” February 2018, accessed on the 21/1-2020. [Online].
Available: https://se.mathworks.com/products/simulink.html

[29] X. f. m. arpansur, “determine maximum frequency at which a
circuit can run,” 2016, accessed on the 22/10-2019. [Online].
Available: https://forums.xilinx.com/t5/Timing-Analysis/determine-
maximum-frequency-at-which-a-circuit-can-run/td-p/703734

[30] MathWorks, HDL Coder User’s Guide R2018a, 2018.

[31] ——, MATLAB Programming Fundamentals R2018a, 2018.

[32] ——, “Fixed-point converter,” 2018, accessed on the 23/10-
2019. [Online]. Available: https://se.mathworks.com/help/releases/
R2018a/fixedpoint/ref/fixedpointconverter-app.html?searchHighlight=
fixed-point%20converter&s_tid=doc_srchtitle

53

https://se.mathworks.com/products/hdl-coder.html?s_tid=srchtitle
https://se.mathworks.com/products/hdl-coder.html?s_tid=srchtitle
https://www.xilinx.com/products/design-tools/vivado/integration/sysgen.html
https://www.xilinx.com/products/design-tools/vivado/integration/sysgen.html
https://se.mathworks.com/help/hdlcoder/examples/getting-started-with-matlab-to-hdl-workflow.html
https://se.mathworks.com/help/hdlcoder/examples/getting-started-with-matlab-to-hdl-workflow.html
https://se.mathworks.com/products/matlab.html
https://se.mathworks.com/products/simulink.html
https://forums.xilinx.com/t5/Timing-Analysis/determine-maximum-frequency-at-which-a-circuit-can-run/td-p/703734
https://forums.xilinx.com/t5/Timing-Analysis/determine-maximum-frequency-at-which-a-circuit-can-run/td-p/703734
https://se.mathworks.com/help/releases/R2018a/fixedpoint/ref/fixedpointconverter-app.html?searchHighlight=fixed-point%20converter&s_tid=doc_srchtitle
https://se.mathworks.com/help/releases/R2018a/fixedpoint/ref/fixedpointconverter-app.html?searchHighlight=fixed-point%20converter&s_tid=doc_srchtitle
https://se.mathworks.com/help/releases/R2018a/fixedpoint/ref/fixedpointconverter-app.html?searchHighlight=fixed-point%20converter&s_tid=doc_srchtitle

[33] J. Erickson, “Hdl coder self-guided tutorial,” 2019, accessed on
the 30/8-2019. [Online]. Available: https://www.mathworks.com/
matlabcentral/fileexchange/69651-hdl-coder-self-guided-tutorial

[34] Xilinx, UG897 - Vivado Design Suite User Guide: Model-Based DSP
Design Using System Generator, 2018.

[35] ——, UG958 - Vivado Design Suite Reference Guide Model-Based DSP
Design Using System Generator, 2018.

54

https://www.mathworks.com/matlabcentral/fileexchange/69651-hdl-coder-self-guided-tutorial
https://www.mathworks.com/matlabcentral/fileexchange/69651-hdl-coder-self-guided-tutorial

Acknowledgement

I would like to thank my supervisor Per Lindgren for his support during this
thesis and quick responses when questions have arisen.

I would also like to thank Grepit AB for granting me access to the server
based work environment, as well as a software license for the Vivado tool,
utilized during testing and development without which this thesis would not
have been possible to conduct as has been done.

I would also like to thank my dear friend Jeffrey Duong-Boudrias for his help
with proofreading parts of the manuscript.

55

	Title Page
	Abstract
	Sammanfattning
	Table of Contents
	1 Introduction
	1.1 Previous studies
	1.2 Problem definition and delimitations
	1.3 Ethical considerations

	2 Background
	2.1 FPGA
	2.1.1 Configurable Logic Block
	2.1.2 Programmable interconnects
	2.1.3 Hard modules
	2.1.4 Input and Output
	2.1.5 Xilinx Zynq UltraScale+ target platform

	2.2 FPGA design methodology
	2.2.1 Design Entry
	2.2.2 Synthesis and Mapping
	2.2.3 Place and Route
	2.2.4 Bitstream Generation
	2.2.5 Verification

	2.3 High-Level Synthesis
	2.3.1 Commonly used HLLs for HLS
	2.3.2 A brief overview of a few different HLS tools
	2.3.3 HDL Coder
	2.3.4 System Generator for DSP
	2.3.5 Common optimization techniques in HLS tools

	2.4 Histogram

	3 Method
	3.1 Literature review
	3.2 Preliminary tool evaluation
	3.2.1 Key points gathering

	3.3 Verilog histogram implementations
	3.4 HLS histogram implementations
	3.5 Evaluation criteria

	4 Results
	4.1 Preliminary investigation of the tools
	4.2 Implementation methods and key points to be aware of
	4.2.1 General design flow
	4.2.2 MATLAB method
	4.2.3 Simulink method
	4.2.4 System Generator method

	4.3 Histogram implementations
	4.3.1 Development time for the different systems
	4.3.2 Non and default optimized histogram versions
	4.3.3 Optimized histogram versions

	5 Discussion
	5.1 Preliminary investigation of the tools
	5.1.1 Formula for maximum possible clock frequency
	5.1.2 Major differences between the tools

	5.2 Implementation methods and key points to be aware of
	5.2.1 Fixed point conversion
	5.2.2 Supported functionality
	5.2.3 Timing
	5.2.4 Usability

	5.3 Histogram implementations
	5.3.1 Development time for the different tools
	5.3.2 Non and default optimized histogram versions
	5.3.3 Optimized histogram versions

	6 Conclusion
	6.1 Future Work

	Acknowledgement

