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Methods for Detecting an Island?
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Introduction

• Rationale for Anti-Islanding
Requirements

• Standards and Code Activities
• Overview of Anti-Islanding Detection

Methods:
• Rationale for Test Methods
• Test Methods and Standards
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Introduction

• Active and Passive Descriptions
• Strengths & Weaknesses of Methods
• Non-detection Zone (NDZ)

Descriptions
• Testing Methods
• Summary
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Rationale for Anti-islanding
Detection
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Rationale for Anti-islanding
Requirements

• 1. The Utility Cannot Control Voltage and
Frequency in the Island, Creating the
Possibility of Damage to Customer
Equipment in a Situation Over Which the
Utility Has No Control.

• 2. Utilities, Along With the PV Distributed
Resource Owner, Can Be Found Liable for
Electrical Damage to Customer Equipment
Connected to Their Lines That Results
From Voltage or Frequency Excursions
Outside of the Acceptable Ranges.
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Rationale for Anti-islanding
Requirements

•  3. Islanding May Create a Hazard for Utility Line-
workers by Causing a Line to Remain Energized
That May Be Assumed to Be Disconnected From
All Energy Sources.

• 4. Reclosing Into an Island May Result in Re-
tripping the Line or Damaging the Distributed
Resource Equipment, or Other Connected
Equipment, Because of Out-of-phase Closure.

• 5. Islanding May Interfere With the Manual or
Automatic Restoration of Normal Service by the
Utility.
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PV Inverters Must Not Island
When Connected to the Utility
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Anti-Islanding in Action
Sample Voltage Surge Test
Vrms during surge is 163 
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Methods for
Detection of Islanding

• Passive Inverter Resident
• Active Inverter Resident
• Active Non-resident (Utility)
• Passive Non-resident (Utility Control)
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Passive Methods
Resident in the Inverter

• Under/over Voltage and Under/over
Frequency

• Voltage Phase Jump Detection
• Detection of Voltage Harmonics and

Detection of Harmonics
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Active Methods
 Resident in the Inverter

• Impedance Measurement
• Detection of Impedance at Specific

Frequency
• Detection of Voltage Harmonics and

Detection of Harmonics
• Slip Mode Frequency Shift
• Frequency Bias
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Active Methods
 Resident in the Inverter

• Sandia Frequency Shift
• Sandia Voltage Shift
• Frequency Jump
• Mains Monitoring Units with

Allocated All-pole Switching Devices
Connected in Series (MSD). Also
(ENS).
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Methods at the Utility Level

• Impedance
Insertion (Active)

• Protection
Relaying (Passive)



1/24/02 15
SandiaSandia
NationalNational
LaboratoriesLaboratories

Methods Using Communications
Between the Utility and PV System

• Power Line Carrier Communications
• Signal Produced by Disconnect
• Supervisory Control and Data

Acquisition (SCADA)
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Rationale for Anti-island
Test Methods

• Verify Anti-island Detection Works
– Tests Must be Low Cost
– Number of Inverters Tested Minimized
– Anti-Island For Multiple Inverters Must

be Verified
– Tests Must be Repeatable

• Noise Levels and Test Circuit Specified
• Utility, Simulated Utility Impedance Specified
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Multiple-inverter Tests

• Tests Must
Consider Active
Anti-island
Synchronization

• Tests Must
Consider Utility
Impedance Values

• Noise May be
Required!
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Standards and Codes Activities

• Photovoltaic Interconnect Standards
and Requirements are Being Written.
Standards Organizations Include:
– IEC
– IEEE
– Underwriters Laboratories

• IEA PVPS Member Countries
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USA (IEEE 929-2000) and
(UL1741) Standards Methods

• Test Procedures to Verify Islanding
Detection Works.
– Required for
– Interconnection

• Requirements for
Anti-islanding and Interconnection Are

Spelled Out
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Anti-Island Test Circuit (929/1741)
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Draft International Standard
 IEC 62116
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End Of Part 1
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Definitions of System
Configuration, Power

Flows and Terms

PV array Inverter

Utility
breaker
(recloser)

Grid

Node a
(PCC)

RR LL CC

PPV + jQPV

Pload + jQload

∆P + j∆QTra
nsf

orm
er

PV System/Utility Feeder Configuration Showing Definitions of Power Flows and
Terms.
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Passive Inverter Resident
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Under/over Voltage and
Under/over Frequency

Description
• Inverter operation is only allowed within a

selected amplitude/frequency window.
• If the amplitude or frequency of the PCC voltage

leaves the window, the PV system is
disconnected from the utility.
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Under/over Voltage and
Under/over Frequency

• Also Standard Protective Relays;
Abnormal Voltage Detection
– Strengths:  Low Cost, Equivalent to Utility

Protection, Is Used in Conjunction with Other
Anti-islanding Methods

– Weaknesses: Large NDZ, Slow Reaction Times

– NDZ:   Dependent on Impedances, Power
Ratings, Operating Point
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U/O Voltage & U/O Frequency
NDZ Description

• NDZ Includes All
L and C Allowing
Conditions to Fall
Within the
Crosshatched Area

 
For  ∆ P and  ∆ Q 
in this region, 
islanding is not 
detected 
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Mapping of the NDZ within the Power
Mismatch Space (?P versus ?Q for
Over/under Voltage and Over/under
Frequency.
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Voltage Phase Jump Detection

• Also Power Factor Detection;
Transient Phase Detection
– Description: Monitor the Phase Difference Between the

Inverter and the Utility for a Sudden Jump
– Strengths: Easy to Implement, Does not Affect the

Output Power Quality or System Transient Response
– Weaknesses:  Difficult to Choose Thresholds that Detect

Islanding without False Trips
– NDZ:  Unity Power Factor Loads Produce No Phase

Error.  If Inverter is Not Unity Power Factor Then It Must
Be Bidirectional.
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Phase Jump Detection
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Diagram Showing the Operation of the Phase Jump Detection Method
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Detection of Voltage Harmonics
and Detection of Harmonics

PV array Inverter

Utility
breaker
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er



1/24/02 31
SandiaSandia
NationalNational
LaboratoriesLaboratories

Detection of Voltage
 Harmonics and PJD

Main Challenge!
Threshold Selection Can be Very

Difficult—NDZ Size vs. Frequency of False
Trips.  Not Always Possible to Select a
Threshold That Guarantees Non-islanding
Without Causing Excessive False Trips.
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Active Methods Resident in the
Inverter
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Impedance Measurement

• Also Power Shift; Current Notching,
Output Variation; Used in ENS

Amplitude (usually), Frequency, Or Phase of
the PV Output Current Is Periodically
Varied.  In The Case of Islanding, Upsets
Balance.  “Crazy Ivan”
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Impedance Method Failure:
Multiple Inverter

Demonstration of the Failure of the Impedance Measurement Method in the Multiple-inverter Case
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Detection of Impedance
 at Specific Frequency

• Also Harmonic Amplitude Jump
– Description:  Looks for an Amplitude Increase

of a Specific Harmonic (Typically Injected Into
the Utility)

– Strengths: Same as Harmonic Detection
– Weaknesses:  Thresholds Difficult to Choose,

The Utility is Not a Always Clean, Local
Resonance or Noise Can Cause False Trips

– NDZ:  Same as Harmonic Detection.
Subharmonic Injection Can Eliminate NDZ but
Is Problematic for the Utility
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Frequency Bias

• Also Active Frequency Drift,
Frequency Shift Up/Down
– Description:  Output Waveform is Slightly Distorted So

Islanding Causes a Drift in Frequency
– Strengths: Very Easy to Implement With Microprocessor

Based Inverters
– Weaknesses:  Small Degradation in Output Power

Quality,
– NDZ:  Relatively Large relative to Other Active Methods,

Depends on the Value of the Chopping Fraction Used,
Small (<1% then Same as SMS), Larger Causes NDZ to
Shift Toward Capacitive.
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Frequency Bias
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Frequency Jump

• Usually Involves a “Dithered” Freq Bias
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Positive Feedback Methods

• Slip Mode Frequency Shift (SMS):
Positive Feedback on Phase of Ipv

• Sandia Frequency Shift (SFS):
Positive Feedback on Frequency of
Ipv

• Sandia Voltage Shift (SVS):  Positive
Feedback on Amplitude of Ipv
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Slip Mode Frequency Shift

• Also Slide Mode Frequency Shift;
Phase-Lock-Loop Slip; “Follow-the-
Herd”.
– Note That There Are Also Similarities to the

SVS and SFS Except the Acceleration (Gain in
This Case) Is Nearly a  Constant Value.
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Slip Mode Frequency Shift
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Sandia Frequency Shift

• Extension of Frequency Bias:

where F Is a Gain or Function (Need
Not Be Constant—Acceleration).

( )line0 ffFcfcf a −+=
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• Similar to SFS Except Applied to
Amplitude:

Where F Is a Gain or Function.

Sandia Voltage Shift

( )00, PCC,PCCPVPV VVFII −+=
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þ Very Small NDZs—High Q Loads
þ Relatively Easy to Implement
þ Retains Effectiveness With Multiple 

Inverters, esp. With ACCELERATION
ý  Require a Reduction in Power 

Quality (but Usually Manageable)
ý Can Lead to Problems on Weak Grids

Summary of
Positive Feedback Methods
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Mains Monitoring Units with
 Allocated All-pole Switching

 Devices Connected in Series (MSD)
• Also ENS

– Description:  Looks for a Sudden Change in Impedance with
Additional Over/Under Voltage and Frequency Circuits

– Strengths:  Redundant Methods, Self Check for Reducing
Need for Periodic Retesting.

– Weaknesses:  Interference with Other Units with Multiple
Inverters, May Result in Nuisance Trips, Multiple Units
Dilute the Effectiveness. Impedance Detection Range Will
Change with Higher Rating of Inverter or the Utility Grid
Characteristics.

– NDZ:  All Voltages, Frequencies and Impedances Within the
NDZ.  NDZ Increases With Multiple Inverters.
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Methods at the Utility Level

• Typically for Large
System Interconnects

• May be The Only Anti-
islanding Protection

• Set Points Controlled
by the Utility

• Interactive
Communications
Often Involved
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Impedance Insertion

• Also Reactance Insertion, Resistance
Insertion

PV array PV PCS

Load
(R,L,C)

Grid

Pload + jQload

PPV + jQPV ∆P + j∆Q
a

b
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Methods Using Communications
Between the Utility and PV System

• Power Line Carrier Communications
• Signal Produced by Disconnect
• Supervisory Control and Data

Acquisition (SCADA)
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Summary
• The Rationale For Anti-Islanding Shows

There Is a Need to Include Detection
• Rationale For Testing and Test Methods

Shows a Need For Accuracy & Consistency
• Standards and Codes Are Being Drafted

and Implemented
• Inverter Resident and Non-Resident

Methods Presented
• Passive and Active Detection Methods

Described with Strengths & Weaknesses
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Summary

• Task V Has Positively Impacted the
Anti-islanding Understanding and
Progress Through Workshops and
Collaborative R&D




