# Demo 3 Evaluation Board User's Manual

#### **Demo 3 Evaluation Board Overview**

The Demo 3 Baseboard is used to connect to headboards and interface with a host PC in order to demonstrate the features of ON Semiconductor's image sensor products.

#### **Features**

- High-Bandwidth USB 3.0 Interface
- Altera Arria II GX FPGA
- HDMI<sup>®</sup> Transmitter
- 1 Gb Memory Buffer
- Up to 4-Lane MIPI and HiSPi Interfaces
- CCP and Parallel Interfaces
- I<sup>2</sup>C Control Unit

# **Block Diagram**



Figure 2. Block Diagram of AGB1N0CS-GEVK



ON Semiconductor®

www.onsemi.com

# **EVAL BOARD USER'S MANUAL**



Top View



Bottom View

Figure 1. AGB1N0CS Evaluation Board

Top View

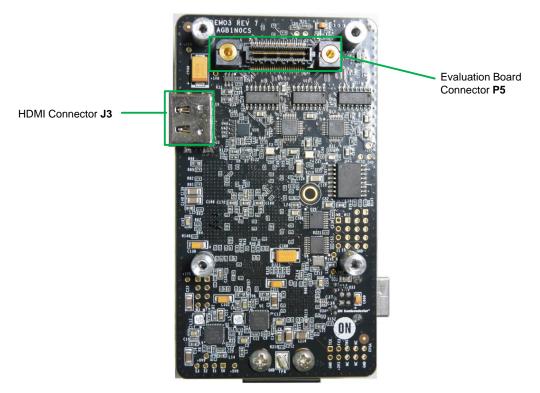



Figure 3. Top View of Demo 3 with Connectors

Bottom View



Figure 4. Bottom View of Demo 3 with Test Pins and Connectors

#### **Demo 3 Baseboard Function Overview**

The Demo 3's FPGA, Altera's EP2AGX45DF25C4N, provides an interface between ON Semiconductor imaging sensors and the Cypress FX3 USB 3.0 controller. An

external SPI EPROM contains the programming file for the FPGA. The EPROM is configurable using the FX3 SPI master interface. The FPGA has a memory controller block that controls data from the on-board DDR3 SDRAM.

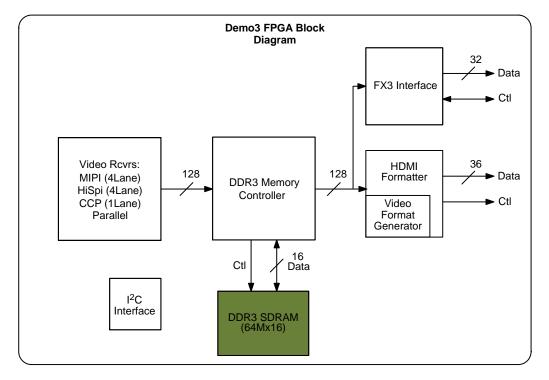



Figure 5. FPGA Block Diagram

#### FPGA Frame Buffer

The 1Gb frame buffer using a 64Mbx16 matches data rates between the sensor and FX3 interfaces. It is sized to buffer 3 frames of a 20-Megapixel sensor. There is a triple-buffer to help minimize frame loss. The frame buffer has two principal operating modes that support either self-timed operation or direct interface to the FX3 at HDMI video output of 720p 60 or 1080p 60 frame rates. The frame buffer controller runs at 150 MHz FPGA core clock with peak available bandwidth at 750-Megapixels/second, peak input bandwidth of 400-Megapixels/second, and peak output bandwidth of 200-Megapixels/second. The frame buffer can be configured to operate as a frame capture device, with the entire buffer filled prior to sending data to the FX3 interface.

#### Receivers and Data Rates

The FPGA receives data through MIPI, HiSPi, CCP, and parallel interfaces. Each of these receiver blocks has an output FIFO that moves data from the receiver clock to the 150 MHz FPGA core clock.

#### MIPI Receiver:

The MIPI receiver handles 4 lanes of data at a maximum data rate of 768 Mbps/lane. The signal pairs use both single-ended and differential signaling with accordance to the MIPI Alliance Specification for D-PHY v.1.00.00.

#### HiSPi Receiver:

The HiSPi receiver supports high-speed transmission of image sensor data, operating at 1 Gbps per data lane. It is a unidirectional differential serial interface with four data lanes and one DDR clock lane. It supports Streaming–S, Streaming–SP, and Packetized SP protocols that conform to the HiSPi protocol specification v.1.50.00.

#### CCP Receiver:

The CCP receiver is a single-lane data interface that supports 8-, 10-, or 12-bit raw data. It operates with a maximum serial data rate of at least 640 Mbps. The receiver conforms to the SMIA CCP2 1.0 specification.

## Parallel Receiver:

The parallel receiver allows asynchronous switching between driven and high-Z under pin or register control. The receiver supports 10 or 12 bits of data, running at a pixel rate of at least 125 MHz.

#### HDMI Transmitter

The HDMI transmitter utilizes the ADV7526 chip by Analog Devices to transmit HDMI 34-bit data to the output port. The HDMI interface supports the HDMI 1.4 standard with 12-bit deep color. It supports RGB and YCbCr digital video input. The I<sup>2</sup>C device address is 0x72 and accesses registers inside the HDMI transmitter block.

#### FX3 USB 3.0 Interface

The Cypress FX3 has a 32-bit data interface that is transceived to the differential I/O pins on the transmitters/receivers of the FPGA. The maximum data rate of the interface is 5 Gb/s.

#### I<sup>2</sup>C Control Bus

The I<sup>2</sup>C control bus supports 32-bit wide GPIF II data bus and supports 14 configurable control pins. The control bus supports bus frequencies of 100 kHz, 400 kHz, and 1 MHz. Operational mode control is done through software configuration using the I<sup>2</sup>C interface from the controller. The I<sup>2</sup>C HDMI chip address is 0x72, and clock generator address is 0xD2. The system EEPROM is 0xA0 and t is configurable up to 0xAX using software.

# Interfacing to Demo 3 Headboard

The headboard connector has a serial sensor data input interface, I<sup>2</sup>C control interface, power input, and parallel image data interface.

# HiSPi Interface

The High Speed Serial Pixel (HiSPi) interface uses four differential data lanes and one differential clock as output and it is unidirectional. In HiSPi mode, 12- or 14-bit compressed, or 16-bit linearized data may be output. Only linear mode is supported on this interface. The HiSPi interface supports three protocols: Streaming—S, Streaming—SP, and Packetized SP.

#### MIPI Interface

The MIPI interface implements a serial differential sub-LVDS transmitter that supports multiple formats, error checking, and custom short packets. The interface is designed to MIPI D-PHY v1.0. When the sensor is in software standby system state, the MIPI signals enter ultra low-power state according to their nominal 0 V levels.

#### Serial LVDS Interface

The serial LVDS (low-voltage differential signal) interface uses four differential data lanes and one differential clock as output and it is unidirectional. In Serial LVDS mode, 8- or 10-bit compressed, or 12-bit linearized data may be output. Only linear mode is supported on this interface.

# Parallel Interface

The parallel mode interface outputs 10- or 12-bit raw data for linear mode and 10- or 12-bit compressed data in High Dynamic Range, depending on the board. In this mode, FRAME\_VALID and LINE\_VALID signals are output on dedicated pins, along with a synchronized pixel clock two-wire serial interface.

#### Two-Wire Serial Interface

Some boards support a two-wire serial interface. The interface supports two modes of operation: 100 kHz for Standard mode, and 400 kHz for High-speed mode.

Table 1. 52-PIN CONNECTOR TO HEADBOARD FUNCTION DESCRIPTION (P5)

| Pin | Name        | Description                     | DIR | Comment                      |
|-----|-------------|---------------------------------|-----|------------------------------|
| 1   | MH_DATA1_P  | MIPI/HiSPi Data1+               | Out | MIPI/HiSPi Data1+ Signal     |
| 2   | MH_DATA2_P  | MIPI/HiSPi Data2+               | Out | MIPI/HiSPi Data2+ Signal     |
| 3   | MH_DATA1_N  | MIPI/HiSPi Data1-               | Out | MIPI/HiSPi Data1- Signal     |
| 4   | MH_DATA2_N  | MIPI/HiSPi Data2-               | Out | MIPI/HiSPi Data2- Signal     |
| 5   | S_RESERVED1 | General Reserved Signal 1       | Out | Signal @ +3.3 V Level        |
| 6   | MH_DATA3_P  | MIPI/HiSPi Data3+               | Out | MIPI/HiSPi Data3+ Signal     |
| 7   | HEAD_MOSI   | Master OOT, Slave IN Signal     | I/O | Signal @ +3.3 V Level        |
| 8   | MH_DATA3_N  | MIPI/HiSPi Data3-               | Out | MIPI/HiSPi Data3- Signal     |
| 9   | S_DATA1     | Parallel Data1                  | I/O | Parallel Interface Data Bit  |
| 10  | S_DATA0     | Parallel Data0                  | I/O | Parallel Interface Data Bit  |
| 11  | S_DATA3     | Parallel Data3                  | I/O | Parallel Interface Data Bit  |
| 12  | S_DATA2     | Parallel Data2                  | I/O | Parallel Interface Data Bit  |
| 13  | S_DATA5     | Parallel Data5                  | I/O | Parallel Interface Data Bit  |
| 14  | S_DATA4     | Parallel Data4                  | I/O | Parallel Interface Data Bit  |
| 15  | VDDIO_SENSE | Reference Input for I/O Voltage | PWR | Lets Demo3 Set Voltage Level |
| 16  | S_DATA6     | Parallel Data6                  | I/O | Parallel Interface Data Bit  |
| 17  | S_DATA7     | Parallel Data7                  | I/O | Parallel Interface Data Bit  |
| 18  | S_DATA8     | Parallel Data8                  | I/O | Parallel Interface Data Bit  |
| 19  | S_DATA9     | Parallel Data9                  | I/O | Parallel Interface Data Bit  |
| 20  | S_DATA10    | Parallel Data10                 | I/O | Parallel Interface Data Bit  |
| 21  | S_DATA11    | Parallel Data11                 | I/O | Parallel Interface Data Bit  |

Table 1. 52-PIN CONNECTOR TO HEADBOARD FUNCTION DESCRIPTION (P5) (continued)

| Pin | Name            | Description                            | DIR | Comment                        |
|-----|-----------------|----------------------------------------|-----|--------------------------------|
| 22  | S_DATA12        | Parallel Data12                        | I/O | Parallel Interface Data Bit    |
| 23  | S_DATA13        | Parallel Data13                        | I/O | Parallel Interface Data Bit    |
| 24  | S_DATA14        | Parallel Data14                        | I/O | Parallel Interface Data Bit    |
| 25  | S_DATA15        | Parallel Data15                        | I/O | Parallel Interface Data Bit    |
| 26  | S_SP5           | General Control Signal 5               | In  | Signal @ +3.3 V Level          |
| 27  | S_SP0           | General Control Signal 0               | In  | Signal @ +3.3 V Level          |
| 28  | S_SP1           | General Control Signal 1               | In  | Signal @ +3.3 V Level          |
| 29  | S_LINE_VALID    | Serial Line Valid Signal               | Out | Checks if Data has Valid Line  |
| 30  | S_SP3           | General Control Signal 3               | In  | Signal @ +3.3 V Level          |
| 31  | HEAD_RESET_L    | Reset Signal to Headboard              | Out | Resets the Headboard Sensor    |
| 32  | S_SP4           | General Control Signal 4               | In  | Signal @ +3.3 V Level          |
| 33  | S_SP2           | General Control Signal 2               | In  | Signal @ +3.3 V Level          |
| 34  | HEAD_SSN        | Headboard Slave Signal                 | In  | SPI Slave Signal to Headboard  |
| 35  | S_FRAME_VALID   | Parallel Frame Valid Signal            | Out | Checks if Data has Valid Frame |
| 36  | S_PIXCLK        | Pixel Clock                            | Out | Parallel Data Pixel Clock      |
| 37  | HEAD_SDA        | I <sup>2</sup> C Data to Sensor        | I/O | Signal @ +3.3 V Level          |
| 38  | +2V8_VAA_HEAD   | +2.8 V to V <sub>AA</sub> on Headboard | PWR | For Powering Up the Headboard  |
| 39  | +5V0_HEAD       | +5 V to Headboard                      | PWR | For Powering Up the Headboard  |
| 40  | S_RESERVED0     | General Reserved Signal 0              | In  | Signal @ +3.3 V Level          |
| 41  | HEAD_MISO       | Master IN, Slave OUT Signal            | I/O | Signal @ +3.3 V Level          |
| 42  | +1V8_HEAD       | +1.8 V to Headboard                    | PWR | For Powering Up the Headboard  |
| 43  | HEAD_SCL        | I <sup>2</sup> C Clock to Sensor       | Out | Signal @ +3.3 V Level          |
| 44  | MCLK            | Master Clock                           | In  | Signal @ +3.3 V Level          |
| 45  | HEAD_DCLK       | Differential Clock Signal              | In  | Signal @ +3.3 V Level          |
| 46  | +1V2_HEAD       | +1.2 V to Headboard                    | PWR | For Powering Up the Headboard  |
| 47  | +3V3_HEAD       | +3.3 V to Headboard                    | PWR | For Powering Up the Headboard  |
| 48  | +2V8_VDDIO_HEAD | +2.8 V to Headboard                    | PWR | For Powering Up the Headboard  |
| 49  | MH_DATA0_P      | MIPI/HiSPi Data0+                      | Out | MIPI/HiSPi Data0+ Signal       |
| 50  | MH_CLK_N        | MIPI/HiSPi Clock-                      | Out | MIPI/HiSPi Clock- Signal       |
| 51  | MH_DATA0_N      | MIPI/HiSPi Data0-                      | Out | MIPI/HiSPi Data0- Signal       |
| 52  | MH_CLK_P        | MIPI/HiSPi Clock+                      | Out | MIPI/HiSPi Clock+ Signal       |

FPGA, HDMI Chip, USB 3.0 Chip:

FPGA: Altera Arria II GX (EP2AGX45DF25C4N)

HDMI Chip: Analog Device Low-Power HDMI Transmitter (ADV7526)

USB 3.0 Chip: Cypress FX3 (CYUSB3014–BZX)

onsemi, ONSEMi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

THE BOARD IS PROVIDED BY ONSEMI TO YOU "AS IS" AND WITHOUT ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER. WITHOUT LIMITING THE FOREGOING, ONSEMI (AND ITS LICENSORS/SUPPLIERS) HEREBY DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES IN RELATION TO THE BOARD, ANY MODIFICATIONS, OR THIS AGREEMENT, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY AND ALL REPRESENTATIONS AND WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, AND THOSE ARISING FROM A COURSE OF DEALING, TRADE USAGE, TRADE CUSTOM OR TRADE PRACTICE.

onsemi reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by **onsemi** shall not constitute any representation or warranty by **onsemi**, and no additional obligations or liabilities shall arise from **onsemi** having provided such information or services.

onsemi products including the boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. You agree to indemnify, defend and hold harmless onsemi, its directors, officers, employees, representatives, agents, subsidiaries, affiliates, distributors, and assigns, against any and all liabilities, losses, costs, damages, judgments, and expenses, arising out of any claim, demand, investigation, lawsuit, regulatory action or cause of action arising out of or associated with any unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of any products and/or the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING – This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by **onsemi** to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

onsemi does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: **onsemi** shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if **onsemi** is advised of the possibility of such damages. In no event shall **onsemi**'s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

The board is provided to you subject to the license and other terms per **onsemi**'s standard terms and conditions of sale. For more information and documentation, please visit www.onsemi.com.

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

.com North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910

TECHNICAL SUPPORT

**Europe, Middle East and Africa Technical Support:** Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative