
Event-based Formalization of Safety-critical Operating System
Standards: An Experience Report on ARINC 653 using Event-B

Yongwang Zhao∗,†, Zhibin Yang‡, David Sanán† and Yang Liu†
∗School of Computer Science and Engineering, Beihang Univerisity, Beijing, China
†School of Computer Engineering, Nanyang Technological University, Singapore

‡College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Email: zhaoyw@buaa.edu.cn

Abstract—Standards play the key role in safety-critical sys-
tems. Errors in standards could mislead system developer’s
understanding and introduce bugs into system implementations.
In this paper, we present an Event-B formalization and verification
for the ARINC 653 standard, which provides a standardized
interface between safety-critical real-time operating systems and
application software, as well as a set of functionalities aimed to
improve the safety and certification process of such safety-critical
systems. The formalization is a complete model of ARINC 653,
and provides a necessary foundation for the formal development
and verification of ARINC 653 compliant operating systems and
applications. Three hidden errors and three cases of incomplete
specification were discovered from the verification using the
Event-B formal reasoning approach.

I. INTRODUCTION

In recent years, safety-critical systems have paved the
way for the integration on one single platform of different
criticality level application subsystems developed by different
vendors, like the Integrated Modular Avionics (IMA) [1] in
avionics domain. IMA aims Partitioning Operating Systems
(POS) implementation, supporting spatial and temporal par-
titioning [2]. Partitioning [1] provides independent execution
of one or more applications, which procures temporal and
spatial separation and fault containment to prevent propagation
of application failures. In this way, partitioning is equivalent
to an idealized system in which each partition allocates an
independent processor and associated peripherals for the exe-
cution of applications, where all inter-partition communications
are carried out on dedicated lines, giving applications with an
environment which is undistinguishable from that provided by
a physically distributed system.

In avionics industry, ARINC 653 [2] was first published in
1996 as a set of specifications to guide manufacturers in avionic
application software towards maximum standardization. It aims
to provide a standardized interface between a given POS
and application software, as well as a set of functionalities
to improve safety and certification process of safety-critical
systems. ARINC 653 compliant POSs have been widely ap-
plied in safety-critical domains. Typical POSs are VxWorks
653 platform, INTEGRITY-178B, LynxOS-178, PikeOS, and
open source software, e.g. POK [3] and Xtratum [4]. The
ARINC 653 standard can be considered as a requirement
for POSs under construction and a base for compliance tests
on their implementation. However, hidden inconsistencies or
incorrectness in standards could mislead system developers’
understanding, causing failures or malfunction in POSs, and
hence a breakdown of applications, which is not allowed in
safety critical systems. For this reason, ensuring standards

correctness, and in particular ARINC 653 correctness, w.r.t.
a set of functional, safety, and security properties, is neces-
sary in ensuring absence of failures on safety-critical systems
development.

Due to POSs’ complexity, traditional test-based techniques
are not enough to warrant their correctness, as it is not possible
to generate all necessary test cases to fully cover all behaviours
of POSs, and hence to ascertain their correctness. During last
decades, formal methods based techniques have been widely
applied on the verification of both software and hardware
[5]. In the field of real-time operating systems for safety-
critical systems, most of related work has been concentrated on
specifying or verifying the operating system [6]. Nevertheless,
as the interface of the fundamental execution environment of
IMA applications, a formal model of ARINC 653 is strongly
necessary for formal development and verification of ARINC
653 compliant operating systems and ARINC 653 based ap-
plications. Although some research efforts have been paid
off in the formal modelling and verification of ARINC 653
based systems ([7], [8], [9], [10], [11]), to our knowledge the
formalization introduced in this work is the most complete
model of the ARINC 653. We provide a detailed comparison
with related work at Section II.

This paper presents the formalization of ARINC 653 Part
1 (the latest version, Version 3) [2], its verification using a
deductive verification approach [12], and the errors in the
standard found out during the verification. An ARINC 653 for-
mal model is constructed using Event-B [13], a mathematical
approach based on a model-driven design methodology used
for specifying and reasoning about complex systems, including
concurrent and reactive systems. Event-B uses the set theory
as a modelling notation, refinement to represent systems at
different abstraction levels, and mathematical proofs to verify
consistency between refinement levels [13]. We choose Event-
B due to the following reasons: (1) a specification in Event-B is
easy to understand and has a strong development environment-
Rodin, for which there exists many plugins to translate Event-B
specifications into other formalization and source code, and
for model visualization and simulation, among other func-
tionalities; (2) its high degree of automatic reasoning eases
the verification, and the inductive approach avoids state space
explosion when verifying complicated systems; (3) events are
very suitable for modelling operating systems, where hardware
components, e.g. interrupters like clock and timers, need to be
well managed.

We have modelled the system functionality of POS and
all of 57 services specified in ARINC 653 Part 1, including
partition and process management, time management, inter-

and intra- partition communication, and health monitoring. We
use the deductive verification approach supported in Event-
B and its Rodin platform [14] as a means for consistency
checking. The description of the system functionality in ARINC
653 is manually formalized as the top level specification and
safety properties (invariants), and the service requirements are
translated into the low level specifications. Safety properties
on the specifications and refinement between the top level
and low level specifications are proven by discharging proof
obligations. Finally, we found three errors in ARINC 653 Part
1, amongst which, one in service of process management, and
two in services of inter- and intra-partition communication.
Additionally we detected three cases where the specification
of process state transitions is incomplete.

The rest of this paper is organized as follows. In Section II,
we introduce the background and related work. Our framework
approach is presented in Section III. The formalization of
ARINC 653 is presented in Section IV. Section V presents the
formalization and verification result, and a discussion. Finally,
Section VI gives the conclusion and future work.

II. BACKGROUND AND RELATED WORK

A. Event-B

Here, we provide a brief overview of Event-B. Full details
are provided in [15]. The Event-B method [13] is used to
build reliably systems using discrete system models and aims
at obtaining systems which can be considered to be correct by
construction, in the sense that the systems produced are guar-
anteed to implement the corresponding functional specification.

Event-B models are described in terms of contexts and
machines. Contexts specify the static part of a model whereas
machines specify the dynamic part. Suppose a machine M ,
seeing a context C with sets s and constants c. An event of
this machine is represented as

E =̂ any x where G(s, c, v, x)

then v :| BA(s, c, v, x, v′) end (1)

E is the event name, G(s, c, v, x) is the guard of the event
that states the necessary condition for the event to occur, and
v :| BA(s, c, v, x, v′) is the action that defines how the state
variables evolve when the event occurs. Actions use a before-
after predicate, which relates the values v (before the action)
and v′ (afterwards). In a machine, the execution of an event
is considered to take no time and no two events can occur
simultaneously. When the guards of one or more events are
true, one of these events necessarily occurs and the state is
modified accordingly. Then, the guards are checked again, and
so on.

Refinement in Event-B provides a means for introducing
details about the dynamic properties of a model. A machine
RM can refine another machine M and we call M to the
abstract machine (or refined machine), which specifies RM ,
and RM the concrete machine (or refinement machine), which
implements M .

Event-B defines proof obligations, which must be proven
to show that machines hold the properties specified over them.
For space reasons, we only describe here some of the most

Hardware

Partitioning Operating System

Software
Component

Partition1 Partition nPartition3Partition2

Software
Component

Software
Component Software

Component

Software
Component

Software
Component

Software
Component......

Hardware Interface Software

APEX

Fig. 1. System architecture based on partitioning operating systems

significant proof obligations. Formal definitions of all proof
obligations are given in [15]. (1) Invariant preservation states
that invariants are maintained whenever variables change their
values. It ensures events preserves invariants specified over a
machine. (2) Guard strengthening makes sure that the concrete
guards in a concrete event are stronger than the abstract
ones in the abstract event. This ensures that when a concrete
event is enabled, so is the corresponding abstract one. (3)
Simulation makes sure that each action in an abstract event
is correctly simulated in the corresponding refinement. This
ensures that when a concrete event is executed its actions are
not contradictory with the actions in the corresponding abstract
event.

Finally, the Rodin tool [14] is an Eclipse-based IDE sup-
porting the application of the Event-B method. This is an
industrial-strength tool for creating and analyzing Event-B
models. It includes a proof-obligation generator and support
for interactive and automated theorem proving.

B. ARINC 653

The current version of ARINC 653 defines a partitioning
architecture for safety-critical systems on single-core as shown
in Fig. 1. A POS is in fact a small partitioning kernel that
provides operating system services according to the safety
features required by the safety integrity level. The latest version
of ARINC 653 published in 2010 is organized in six parts.
Part 1, currently in Version 3, defines the standard APplication
EXecutive (APEX) interface between the application software
and the POS, and the list of services which allow the appli-
cation software to control the scheduling, communication, and
status information of its internal processing elements [2]. We
focus our work in formalizing and verifying Part 1, since it
specifies the baseline operating environment for application
software used within IMA, and most of industrial and open
source POSs implementing ARINC 653 are compliant with
this part. ARINC 653 Part 1 concentrates on specifying the
system functionality, which is described in natural language,
and service requirements, which is presented by a type of
pseudo-code: the APEX service specification grammar.

The required services specified in ARINC 653 Part 1
are grouped into the following major categories: partition
management, defining partitions services, attributes, and the
partition operating modes, the set of states a partition can
be in and the transitions among them; process management,
defining processes services, attributes, and the process operat-
ing modes; time management, defining time services for par-
titions and attributes; inter-partition communication, defining

p r o c e d u r e STOP
(PROCESS ID : i n PROCESS ID TYPE ;
RETURN CODE : o u t RETURN CODE TYPE) i s

e r r o r
when (PROCESS ID does n o t i d e n t i f y an e x i s t i n g p r o c e s s o r i d e n t i f i e s t h e c u r r e n t

p r o c e s s) =>
RETURN CODE := INVALID PARAM ;

when (t h e s t a t e o f t h e s p e c i f i e d p r o c e s s i s DORMANT) =>
RETURN CODE := NO ACTION ;

normal
s e t t h e s p e c i f i e d p r o c e s s s t a t e t o DORMANT;
i f (c u r r e n t p r o c e s s i s e r r o r h a n d l e r and PROCESS ID i s p r o c e s s which t h e e r r o r

h a n d l e r p reempted) t h e n
r e s e t t h e p a r t i t i o n ’ s LOCK LEVEL c o u n t e r (i . e . , e n a b l e p r e e m p t i o n) ;

end i f ;
i f (s p e c i f i e d p r o c e s s i s w a i t i n g i n a p r o c e s s queue) t h e n

remove t h e p r o c e s s from t h e p r o c e s s queue ;
end i f ;
s t o p any t ime c o u n t e r s a s s o c i a t e d wi th t h e s p e c i f i e d p r o c e s s ;
RETURN CODE := NO ERROR;

end STOP ;

Fig. 2. The service requirement of STOP service in process management

communication modes between partitions, services provided,
and attributes; intra-partition communication, similar to inter-
partition communication, but oriented to processes instead of
partitions; and health monitoring, which defines actuation rules
under system, partition, and application failures. Note that since
partitions, and therefore their associated memory spaces, are
defined during system configuration and initialization, there is
no memory allocation service defined in APEX. All required
services are specified in detail by pseudo-code in the service
specification grammar. For instance, the STOP service from
process management is illustrated in Fig. 2. For a detailed
description of partitions, processes, and services provided by
ARINC 653 we refer the reader to the ARINC 653 Stan-
dard [2].

C. Related work

A formal specification of the ARINC 653 architecture
using the Circus language is presented in [9]. Its specification
focuses on the whole ARINC 653 architecture and interac-
tions between IMA components. However, the formal model
only covers a small part of ARINC 653 services and no
verification is carried out. Also focussing only in modelling,
ARINC 653 components and their constraints are modelled
using AADL (Architecture Analysis and Design Language) that
can be used for model-driven development of IMA application
([10], [11]), but not all APEX services are covered in these
works. In [8], only an ARINC 653 hierarchical scheduler is
modelled with AADL. Works in [7], [16] target not only the
ARINC specification but also its verification, where ARINC
653 services are modelled in PROMELA and verified used
the SPIN model checker to ensure the correctness of avionics
software constructed on top of ARINC 653. Here, the ARINC
and the application models, which are extracted from the
application’s C source code, comprise the complete formal
model for verification. However, the verification is focused
only on process and time management, not covering any other
ARINC 653 service or functionality.

The specification and verification of RTOSs and separation
kernels are also related to our work, as we overview in our
technical report [6]. It is worth noting that formal methods have
been largely used in the specification of separation kernels, a
generalization of POSs, like [17], [18], separation-partitioning
micro-kernels [19], or OSEK/VDX ([20], [21]), an international
standard for automotive operating systems. In general, formal

verification has been used on RTOSs for safety/security certifi-
cation in industry, like in the AAMP7G microprocessor, which
is a hardware implementation of partitioning in Rockwell
Collins [22]; in PikeOS, which is an ARINC 653 compliant
POS in SYSGO AG ([23], [24]); in INTEGRITY-178B which
is also an ARINC 653 compliant POS in Green Hills [25]; and
in an Embedded Devices kernel in Naval Research Laboratory
[26]. It is worth to highlight the work in [27], where the
sel4 microkernel has been fully verified from the top level
specification down to the machine code.

The B-Method (predecessor of Event-B), has been also
applied to operating systems. It has been used for the (partial)
formal development of a secure partitioning kernel in the
Critical Software company [28]. A real-time operating system,
FreeRTOS, has also been formally specified using B method
[29]. The L4 microkernel, a kernel of general purpose OSs,
has also been formally modelled in B ([30], [31]). Event-B
extends B-Method with events, procedures that are activated
when a guard is enabled, and it is suitable for modelling
systems based on events. Both Event-B and B-Method share
the same foundation, the main difference between them is
that refinement in Event-B requires the guards of events of
a concrete implementation to be stronger than the guards of
the events in the abstract machine.

Formal verification on standards has attracted considerable
attentions for a long time, such as communication standard-
s/protocols ([32], [33], [34], [35]). It has also been taken into
account in safety-critical systems. Typical verification about
standards in this domain is the verification of compliance to
safety standards, such as in [36].

III. FRAMEWORK APPROACH

We first present our framework approach in this section.

Modeling consideration. The first aspect to be considered
is what to be modelled. The complete document structure and
the number of pages of each section of ARINC 653 Part 1
are as shown in the left part of Fig. 3. The content of ARINC
653 standard is divided into five parts: overview, system func-
tionality, service requirements, configuration, and verification.
Our work formalizes the system functionality (including health
monitoring) and service requirements, which are the main parts
of the standard. Chapters 1, 2.1, 2.2 and 3.1 give an overview of
ARINC 653 from different perspectives, which are a high level
description for easy understanding and therefore need not to be
modelled. The configurations described in 2.5 and 5 define the
information and data format of the system configuration for
integration and deployment, and are eliminated in our model.
Notice that the chapter of memory management in ARINC 653
does not define any service, and therefore is also eliminated in
our model. Also, we omit other sections not mentioned here
and not providing enough details/information to construct a
formal model of them.

The second aspect into consideration is how to model. The
system functionality is informally defined in natural language
and can only be modelled manually. From this informal de-
scription, we extract components and their attributes, actions on
components and their effects, and constraints. These elements
are all represented in Event-B as sets, constants, variables,
events, and invariants. Service requirements are presented by

1 Introduction (10 pages)
2 System overview
 2.1 System Architecture (1.5)
 2.2 Hardware (0.5)
 2.3 System Functionality
 2.3.1 Partition Management (8)
 2.3.2 Process Management (9)
 2.3.3 Time Management (3)
 2.3.4 Memory Management (0.1)
 2.3.5 Interpartition Communication (10)
 2.3.6 Intraparition Communication (4)
 2.4 Health Monitor (6)
 2.5 Configuration Considerations (2)
 2.6 Verification (0.1)
3 Service Requirements
 3.1 Service Request Categories (1.5)
 3.2 Partition Management (4)
 3.3 Process Management (14)
 3.4 Time Management (4)
 3.5 Memory Management (0.2)
 3.6 Interpartition Communication (12)
 3.7 Intrapartition Communication (21)
 3.8 Health Monitoring (6)
4 Compliance to APEX interface (1)
5 XML Configuration (3)
Appendices

Mach_Part_Trans

Mach_PartProc_Trans

Mach_PartProc_Trans_
withEvents

Mach_PartProc_Manage

Mach_IPC_Conds

Mach_IPC

Mach_HM

Ctx_PartProc_Trans

Ctx_PartProc_Trans_
withEvents

Ctx_PartProc_Manage

Ctx_IPC

Ctx_HM

see

refine

formalize

ARINC653 Part 1 - Table of Content

Machine

Context

Fig. 3. ARINC 653 Part 1 and the Event-B model

the APEX service specification grammar, which is a structured
language. It provides the possibility of semi-automatically
translating these requirements to Event-B model. We design
an algorithm to guide manual translation which is discussed in
the next section.

Model structure. According to the document struc-
ture, we design our model formalization as shown in the
right part of Fig. 3. We firstly formalize the system func-
tionality of partition, process, and time management. The
Event-B machine Mach Part Trans models the partition
operating modes. Mach Part Proc Trans refines the par-
tition operating modes, and adds process state transitions.
Mach Part Proc Trans withEvents defines all events of
partition, process, and time management according to the
system functionality. Mach PartProc Manage formalizes the
service requirements of the partition, process, and time man-
agement. Then, we add the system functionality and ser-
vice requirements of the communication: Mach IPC Conds
specifies the functionality and events of inter-partition and
intra-partition communication, and Mach IPC formalizes their
service requirement. Finally, the system functionality and ser-
vice requirements of the health monitor are formalized in
Mach HM.

Verification. The main verification approach in Event-
B is deductive reasoning of proof obligations. Invari-
ants should be preserved on machines and refinemen-
t between a refined machine and its refinement (we
mainly use guard strengthening and simulation). Accord-
ing to the model structure, the consistency of the sys-
tem functionality and the service requirements is proven
by refinements between Mach Part Proc Trans withEvents
and Mach PartProc Manage, and Mach IPC Conds and
Mach IPC. ARINC 653 defines the safety functionalities and
variable’s data type. Beside that, it does not explicitly define
any property. The data type of each variable is defined as
an invariant on each variable in Event-B machines. We have
also extracted all possible properties from the ARINC 653
standard, which are safety properties [37] as shown in Table I.
As explained in Section V, other extractable properties, such
as liveness, are not covered.

TABLE I. SAFETY PROPERTIES FROM ARINC 653

No. Functionality / Invariant description

Partition and process management
(1) each process is in one partition
(2) if a partition is not in NORMAL mode, its processes should not in the state

of Ready, or Running or Suspend
(3) if there are processes of a partition in state of Ready, or Running or

Suspend, the partition’s mode should be NORMAL
(4) if a partition’s mode is NORMAL, it should have processes
(5) if a partition’s mode is IDLE, it should not have any process
(6) there is at most one Running process in a single core system
(7) when a partition is in the COLD START or WARM START mode,

the lock level should be larger than zero
(8) if the lock level of a partition is larger than zero, there should be a process in

this partition disabled the preemption
(9) if there is a process that disabled the preemption of this partition, the lock level

of the partition should be larger than zero
(10) if the lock level of a partition is zero, the partition should be in the NORMAL

mode
(11) if the current process and current partition are valid, the process should be in

the partition
(12) the validation of current partition implies that the partition’s mode is not IDLE
(13) the validation of current process implies that the process is running and its

partition is in NORMAL
(14) if a process was delayed started, it has a delay time
(15) the aperiodic process has the special (infinite) value of period
(16) the periodic process has a finite value of period

Inter- / Intra- partition communication
(17) the message queue size of the queuing port is finite
(18) the message number in the queue of queuing port is not larger than the maximum

number of messages
(19) the message queue size of the buffer is finite
(20) the message number in the queue of buffer is not larger than the maximum

number of messages
(21) if the empty indicator of a blackboard is OCCUPIED, there must be a

message on it
(22) the value of the semaphore is not larger then the maximum value
(23) if a process is waiting for a buffer, the partition that it belongs to is also the

partition that the buffer belongs to. And the same as the blackboard, semaphore,
and event

(24) if a process is in the waiting queue of a queuing port, the process state should
be Waiting. And the same as the buffer, blackboard, semaphore, and event

Health monitoring
(25) the error handler has maximum priority
(26) the error handler is in its partition where the handler was created
(27) the error handler and the process which created the handler are in the same

partition

From the informal description of ARINC 653, we use
manual modelling of the system functionality and manual trans-
lation of the service requirements. Hence, we have to manually
validate the errors found in our Event-B formalization. After
finding an error in the Event-B model, we check corresponding
description in the ARINC 653 standard to confirm and locate
the error.

IV. FORMALIZING ARINC 653

This section presents a formalization of ARINC 653 in
Event-B. We first discuss our formalization criteria, then the
Event-B model of the key system functionalities1, and finally
how service requirements are formalized by translating the
service specification grammar into Event-B.

A. Formalization criteria

The criteria of modeling Event-B based systems are how to
represent the system components, their attributes, safety prop-

1The complete Event-B model can be downloaded from GitHub, http-
s://github.com/ywzh/arinc653model

erties, and actions by Event-B components such as constants,
sets, variables, and events.

Components and types. The main components in ARINC
653 are: partition, process, communicating components (port,
channel, buffer, blackboard, semaphore, and event), waiting
queue, and error handler. These components can be classified
as statically configured components and dynamic components.
Partitions are static components configured at build time and
initialized during the POS booting. Any other component is
a dynamic component, which is only created during parti-
tion initialization, using services ARINC 653 CREATE *. In
particular, ARINC 653 does not allow creating components
during partition run-time. We use sets in Event-B to represent
partitions. Process and communicating components are repre-
sented by sets and variables. Sets specify the valid domain
of a component, whilst variables are used to keep track of
the created components during initialization. For instance, set
PROCESSES defines the domain of all processes in a sys-
tem and variable processes stores already created processes,
and is a subset of PROCESSES. Waiting queues and error
handlers are associated with communicating components and
partitions respectively, and are represented as variables.

Component attributes. ARINC 653 defines the attributes
of each component including fixed attributes and variable
attributes. Fixed attributes can not be changed during run-
time and are defined as constants in Event-B, and variable
attributes are defined as variables. These constants and vari-
ables are functions mapping from a component’s set to the
data type of the attribute. Event-B supports functions with
different properties, such as partial functions, total functions,
and partial injections. For instance, the Period of Partition
constant is a partition attribute, and represents a total function
Period of Partition ∈ PARTITIONS → N, to indicate
that all partitions have a period attribute of type natural. Whilst,
the deadlinetime of process process attribute is a partial
function deadlinetime of process ∈ processes 7→ N, since
deadline time is undefined when a process is stopped, and
defined when the process is in any other state.

Component relations. Due to spatial separation of ARINC
653, each component is created in one partition and it is bound
to that partition. These relations may be one-to-one or one-
to-many, which are represented with different types of func-
tions in Event-B. For instance, errorhandler of partition ∈
PARTITIONS 7�processes is a partial injection since each
partition has at most one error handler process.

Control and actions. ARINC 653 defines control and
actions on components, such as the partition control, the
process control, and the port control. Each action on these
components are formalized with one or more events in Event-
B. Due to the semantic gap between sequential description of
service requirements and the guard-action style event model in
Event-B, we carefully considered the design principle of events
and used semi-automatic translation from service requirements
to Event-B as discussed in Subsection IV-C.

B. Event-B model of key system functionality

This subsection introduces the Event-B model for some of
the key system functionalities in ARINC 653.

1) Partition and process: Partitions and processes function-
ality mainly considers partition control (operating modes and
transition), process control (process states and transitions), and
the scheduling principle. Since time management considers the
timing aspect on control of process execution, we also model
this functionality in this part.

Process state transitions are complex since process s-
tates are dependent on partition operating modes. Process
states and transitions are encoded in Event-B in machine
Mach PartProc Trans as it follows. From the guard of the
process state transition event (grd20 and grd21), we can
analyze the nesting between partition operating modes and
process states. This event models most of the state transitions,
however some state transitions are modelled separately in other
events because they are a consequence of other systems events.
For instance, transiting from state Ready to state Running is
triggered by the process scheduling, therefore this transition
is modelled in event scheduling; the state transitions from
process states in the COLD START or WARM START
partition modes to states in the NORMAL mode are modelled
in event partition modetransition to normal; the creation
of a process is modelled in event create process, hence the
transition from state Dormant to Ready is carried out in that
event. In ARINC 653, state Waiting implies three situations,
a process was suspended, waiting for a resource, or suspended
when waiting for a resource. To explicitly distinguish these
situations, we define three states to represent them Suspend,
Waiting and WaitandSuspend respectively.

process state transition =̂ any part proc newstate where
@grd01 part ∈ PARTITIONS;
@grd02 proc ∈ processes;
@grd03 newstate ∈ PROCESS STATES;
@grd06 processes of partition(proc) = part;
@grd07 partition mode(part) 6= PM IDLE;

@grd20

((partition mode(part) = PM COLD START ∨
partition mode(part) = PM WARM START) ∧
process state(proc) = PS Dormant)⇒
newstate = PS Waiting;

@grd21

((partition mode(part) = PM COLD START ∨
partition mode(part) = PM WARM START) ∧
process state(proc) = PS Waiting)⇒
(newstate = PS Dormant ∨
newstate = PS WaitandSuspend);

. //here we omit other detailed guards
then

@act01 process state(proc) := newstate;
end

Process state transitions in Event-B only model
the possible transition path, not the actions executed
during the transitions. These are modelled in machine
Mach PartProc Trans withEvents, which models the
process control, and defines the actions triggered by state
transitions by means of the events suspend, suspend self ,
resume, stop, stop self , start, delayed start,
timed wait, period wait, time out, req busy resouce,
resource become available, among others, for the concrete
process control. In these events, we strengthen the guards
of process state transition and those events defined in
machine Mach PartProc Trans withEvents, in such a way
that it is refined by Mach PartProc Trans withEvents.

2) Timing and scheduling: Timing and scheduling func-
tionalities are important features of safety-critical real-time
systems. Timing is not explicitly specified in ARINC 653 as
a system functionality, except time management for processes.

We provide a simple model of timing and a two-level schedul-
ing, to schedule IMA partitions and processes.

Scheduling. In POSs, all actions are initiated whenever
a significant event occurs but scheduling, which is initiated
by the regular event of a clock tick. The tick-tock has been
considered as a way to model discrete time in Event-B [38].
We use event ticktock to represent the regular event of a
clock tick, which increases variable clock tick in one unit and
variable need reschedule is set to TRUE when appropriate
to trigger the scheduling. The scheduling specified in ARINC
653 is a two-level scheduling. Partition scheduling is a fixed,
cycle based scheduling and is strictly deterministic over time.
The cyclic scheduling consists of a major time frame (MTF)
that is split into partition time windows (PTW), each PTW
having starting and ending time relatives to the starting time
of the MTF. Each PTW of a MTF is associated to a given
partition, which is executed when the system time reaches the
starting point of the PTW and a new partition scheduling is
performed when the system time reaches the end of the PTW.
Process scheduling is priority preemptive and carried out by
the partition.

The scheduling process chooses the current partition and
process under execution according to the current PTW and
the process priority. The partition scheduling is enabled when
variable need reschedule is TRUE, and the current time is
in a PTW different than the current one. Note that the IDLE
partition can not be scheduled. Variable need reschedule is
enabled by event ticktock or by the events in which the running
process is blocked. We also define variable need procresch
to indicate process scheduling after partition scheduling. If
the partition mode is NORMAL, an ARINC process should
be chosen to be executed. Otherwise, the partition is at the
START mode and the main process of this partition occupies
the processor time.

There are two special types of ARINC processes that need
to be carefully considered during process scheduling: the error
handler and processes locking the process preemption of its
partition. A process can lock the process preemption of its
partition to prevent process rescheduling when accessing a
critical section or a resource shared by multiple processes of the
same partition. The error handler is a special aperiodic process
with the highest priority, without deadline, and is invoked by
the POS when a process level error is detected. It preempts any
running process regardless of its priority and even if preemption
is locked.

The abstract meaning of process scheduling for a partition
in the NORMAL mode is to choose a process to run. The
current running process is placed into the Ready state and the
chosen process into the Running state. If the chosen process
is the current running process, it remains in the Running state.
The abstract event of process scheduling is shown as it follows.

The process schedule abstract event is extended in ma-
chine Mach PartProc Manage by events process schedule
and run errorhandler preempter. The first event represents
the normal process scheduling in a partition, whilst the second
one represents the situation where the error handler of the par-
tition has been started or a process has locked the preemption
process of this partition.

release
point

time capacity

deadline
time

executing
time

start()

process period

next
release
point

delayed
start(t)

t

Fig. 4. Timing model of the periodic process

process schedule =̂ any part proc where
@grd01 part ∈ PARTITIONS;

@grd02 proc ∈ processes;

@grd03 processes of partition(proc) = part;

@grd04 partition mode(part) = PM NORMAL;

@grd05
process state(proc) = PS Ready ∨
process state(proc) = PS Running;

then

@act1
process state := (process stateC−
(process state−1[{PS Running}]× {PS Ready})) C−
{proc 7→ PS Running};

end

Timing model for processes. ARINC 653 distinguishes
between periodic and aperiodic processes for the reason that
they have different timing models. Whilst timing model for
aperiodic processes is relatively simple, the timing model for
periodic processes is more complex, as shown in Fig. 4.
Periodic processes have a release point time, a time capacity, a
period, and a deadline time. When a periodic process is started,
it is placed into the Waiting state to wait for its release point,
which is the first periodic process start in the next MTF. The
process deadline time is its release point plus its time capacity,
i.e. the maximum allowed time for that process to be under
execution. When a process reaches its release point, its next
release point is calculated as the current release point plus its
period. If a periodic process is started with a delay t, its release
point and deadline time are calculated based on the starting
time plus the delay t.

Periodic processes can also be timed waited for a delay time
t. The timed waited process is placed into the Waiting state and
waken up after time t, remaining unchanged the deadline time
of the process. The periodic wait event suspends the execution
of a periodic process until its next release point, so the new
release point is its current release point plus the process period.
Similarly, the deadline time of the process is also recalculated
based on the new release point. The replenish event updates
the deadline time of a periodic process with a specified budget
time. If a periodic process finishes before the deadline time,
it is placed into the Waiting state to wait for the next release
point and the POS asks for process rescheduling. Otherwise, its
deadline time is missed and an exception is arisen that is han-
dled by the health monitor. Since the deadline time of a process
is in absolute time, it is easy to determine a deadline time miss
when the current time exceeds the deadline time: clock tick ∗
ONE TICK TIME > deadlinetime of process(proc).
When a periodic process waiting for its next release point
reaches it, event periodicproc reach releasepoint is trig-
gered and new release point and deadline times are recalcu-
lated. Note that Suspend and resume can not be carried out on
periodic processes.

Time-out trigger. Another timing functionality in ARINC
653 is the time-out trigger. When a process is delayed started, is
suspended by itself, or sends a message to a buffer with a time-

Partition1

Partition3Partition2

processes

...

......

receive send

source
port

destination
port

channel

...

...

Fig. 5. The message based interpartition communication (queuing mode)

out, the POS initiates a time counter for that time-out. After the
time elapses, the POS responds to the expiration of the time-out
by starting the process or sending a time-out message.

We define variable timeout trigger ∈ processes 7→
(PROCESS STATES × N1) to store the time counter for
processes. (proc 7→ (PS Ready 7→ t)) ∈ timeout trigger
means that a process proc is blocked waiting for some resource
until time t, moment at which the blocked process is placed
into state Ready. In the model, a tuple (ps× t) is inserted into
timeout trigger when the POS initiates a time counter with
a duration t, and it blocks the process. Then when t arrives,
the event time out triggers a blocked process to state ps.

3) Interpartition communication: Interpartition communi-
cation is conducted via messages in ARINC 653. A partition
is allowed to exchange messages through multiple channels
via their respective source and destination ports. Ports can be
configured into two different modes which determine the com-
munication mode: queueing and sampling modes. Interpartion
communication related actions and events are modelled in the
machine Mach IPC Conds.

Messages are atomic entities in ARINC 653. For this
reason, we define set MESSAGES to represent all abstract
messages in the system, and variable used messages to rep-
resent the set of already sent messages (used). In interpartition
communication sending services, messages to be sent should
be in set MESSAGES \ used messages, and stored into
used messages after being sent.

Each port has a message space to store the mes-
sage(s) to be sent/received via this port. On the one hand,
sampling ports have a single message storage, which is
modelled using variable msgspace of samplingports ∈
SamplingPorts 7→ (MESSAGES × N1). On the other,
queueing ports keep a message queue, which is represented
by variable queue of queueingports ∈ QueuingPorts →
P(MESSAGES×N1). A pair in MESSAGES×N1 means
a message sent/received at a specific time. For instance, if the
service of writing sampling message m has been invoked on
port p at time t, then the ordered pair p 7→ (m 7→ t) ∈
msgspace of samplingports.

“The communication between partitions is done by pro-
cesses which are sending or receiving messages. In queuing
mode, processes may wait on a full message queue (send-
ing direction) or on an empty message queue (receiving
direction). Processes waiting for a port in queuing mode

are queued in FIFO or priority order.” [2] We use variable
processes waitingfor queuingports ∈ (processes × N1 ×
MESSAGES) 7→QueuingPorts to store waiting processes
of a queuing port. An ordered pair (proc 7→ t 7→ m) 7→
port ∈ processes waitingfor queuingports means that
process proc invoked the service of sending/receiving a mes-
sage m to/from port on the time t and was blocked. AR-
INC 653 specifies two different policies to unblock processes
blocked in a queuing port: based on the highest waiting time,
where the unblocked process is that one which has been
blocked in the queue for a longer time, or based on the process
priority, where the unblocked process is that one with a higher
priority among those blocked in the queuing port. This policy
is statically specified for each queuing port. The message based
communication in the queuing mode among partitions is shown
in Fig. 5.

The port control system functionality in interpartition com-
munication describes the communicating actions including
creating ports, and sending/receiving message(s) to/from a
sampling or queuing port. These actions are specified as
events indicating the guards and the result of the port control
action, which is proven to be strengthened and simulated by
machine MACH IPC, which encodes the service require-
ments, hence refining machine MACH IPC Conds. The
event send queuing message is modelled as it follows.

send queuing message =̂ any port msg where
@grd01 part ∈ PARTITIONS;

@grd01 port ∈ ports;

@grd02 port ∈ QueuingPorts;

@grd03 Direction of Ports(port) = PORT SOURCE;

@grd04 msg ∈MESSAGES ∧msg /∈ used messages;

@grd05
card(queue of queueingports(port)) <
MaxMsgNum of QueuingPorts(port);

@grd06 processes waitingfor queuingports−1[{port}] = ∅;
then

@act01
queue of queueingports : |∃t·(t ∈ N ∧ (msg 7→ t) ∈
queue of queueingports′(port));

@act02 used messages := used messages ∪ {msg};
end

This event encodes the action of sending a message msg
via a queuing port port when the port is not full and there is
no other process waiting to send a message through this port.
Guard grd05 ensures that the current number of messages of
the queue is less than the queue size. Guard grd06 ensures
that there is not any other process waiting for sending messages
via this port. Otherwise, the process invoking the event needs
to be blocked. The actions state that message msg is in the
queue of port (act01) and has been used (act02) after the
execution of this event.

4) Intrapartition communication: Intrapartition communi-
cation mechanisms are buffers, blackboards, semaphores, and
events. For space reasons we only introduce the blackboard
model.

A blackboard allows to send/receive messages to/from
processes belonging to the same partition. Any message
written on it remains there until the message is either
cleared or overwritten by a new instance of the message.
When a process attempts to read a message from an empty
blackboard, it is queued for a specified amount of time.
When a message is displayed on the blackboard, the POS
removes from the process queue all the processes wait-
ing for that blackboard and puts them in state Ready.

Variables msgspace of blackboards ∈ blackboards 7→
MESSAGES and emptyindicator of blackboards ∈
blackboards→BLACKBOARD INDICATORTY PE s-
tore the message that has been displayed on a black-
board and respectively indicate whether a blackboard is
empty or not. If emptyindicator of blackboards is not
false then msgspace of blackboards is different from the
empty set, therefore indicating that the blackboard contain-
s at least one message. Events display blackboard and
display blackboard needwakeuprdprocs encode the func-
tionality of displaying a message in the blackboard when there
are not any waiting process for that blackboard and when there
are any waiting process that have to be awaken. Similarly,
events read blackboard and read blackboard whenempty
respectively encode the reading functionality when the black-
board is not empty or it is empty and the process
has to be enqueued in the waiting process queue. Event
display blackboard needwakeuprdprocs extends the event
resource become available2 that wakes up all processes
waiting for a resource, and is enabled when the waiting process
queue is not empty (grd505). Actions act501 ∼ act504
represent the result of this event. The Event-B model is shown
below.

display blackboard needwakeuprdprocs extends resource become available2 =̂
any bb msg where

@grd500 bb ∈ blackboards;

@grd504msg ∈MESSAGES ∧msg /∈ used messages;

@grd505 processes waitingfor blackboards−1[{bb}] 6= ∅;
then

@act501 msgspace of blackboards(bb) := msg;

@act502
processes waitingfor blackboards := procsC−
processes waitingfor blackboards;

@act503 used messages := used messages ∪ {msg};

@act504
emptyindicator of blackboards(bb) :=
BB OCCUPIED;

end

5) Health monitoring: In ARINC 653, HM is responsible
for responding to and reporting hardware, application and POS
software faults and failures. ARINC 653 supports HM by
providing HM configuration tables and an application level
error handler process. These tables are the Module HM table,
the Multi-Partition HM tables, and the Partition HM tables.
The error handler is a special process of the partition with the
highest priority and no process identifier.

The HM is modelled in machine Mach HM. It defines
variable module shutdown ∈ BOOL to control the mod-
ule, and each event in machine Mach IPC are extended in
Mach HM by adding a guard module shutdown = FALSE.
This means that if the module is shut down, no event can be
triggered.

The HM decision logic is implemented in the guards of
the events encoding recovery actions. Recovery actions at
the module level are only triggered when the error is inside
a partition time window (PTW) and the error is a module
level error of the partition executed during the current PTW.
Recovery actions at the partition level are triggered when
the error is a partition level error and the error handler has
not been created in that partition, or the error was caused
by the error handler of the partition. For instance, the even-
t hm recoveryaction shutdown module is specified as it
follows.

hm recoveryaction shutdown module =̂ any errcode where
@grd700module shutdown = FALSE;

@grd701 errcode ∈ SY STEM ERRORS;

@grd702 errcode ∈ dom(MultiPart HM Table(part));

@grd703
errcode 7→MLA SHUTDOWN ∈
MultiPart HM Table(part);

then
@act701 module shutdown := TRUE;

end

Finally, if the error level is process, the error handler of this
partition has been created, and the error was not caused by the
error handler, the error handler is activated to deal with this
error. How to handle an error is application dependent. Event
hm recoveryaction errorhandler is specified as it follows.
The guard grd703 means that a Deadline Missed error occurs
when some process in this partition missed its deadline time.

hm recoveryaction errorhandler extends start aperiodprocess innormal =̂ any
errcode where

@grd700module shutdown = FALSE;

@grd701 errcode ∈ SY STEM ERRORS;

@grd702

(errcode ∈ dom(Partition HM Table(part)) ∧
∃a·(a ∈ PARTITION RECOV ERY ACTIONS ∧
ERROR LEV EL PROCESS 7→ a ∈
dom(Partition HM Table(part)(errcode))));

@grd703

DEADLINE MISSED ∈ ran(Partition HM Table
(part)(errcode))⇒ (∃proc·(proc ∈
processes of partition−1[{part}] ∧
clock tick ∗ONE TICK TIME >
deadlinetime of process(proc)));

@grd704 part ∈ dom(errorhandler of partition);

@grd705 current process 6= errorhandler of partition(part);

@grd706 proc = errorhandler of partition(part);
end

C. Translating service requirements into Event-B

A service definition in the APEX specification contains the
name of the service and a list of formal parameters (p1...pn)
with their types. The description of a service consists of a
short definition of its functionality and a full description of its
semantics. The semantic description gives the algorithm of the
service behavior, which is composed of two parts: an error
part which describes error handling due to incorrect values
of actual input or input-output parameters, and a normal part
which describes the treatment to be performed when no error
is detected by the service.

Although ARINC 653 defines a structured language to
describe the functional requirements of APEX services, we find
that ARINC 653 Part 1 only uses compound statements “IF”
and “SEQUENCE” to describe complex structures. Moreover,
due to the natural language description of simple statements,
it is difficult to implement automatic translation from APEX
specification to Event-B model. Hence, we concentrate on
translating the structure of APEX services to events, and
the detailed behavior of each service represented by simple
statements needs to be modelled by hand. The specification
grammar for APEX services is illustrated in the left part of
Fig. 6, and the generated events are shown in the right part.

Event-B does not have compound statements such as “IF”,
“CASE”, and “LOOP”, therefore the description of an APEX
service should be decomposed into events with non-intersect
guards. That is, if one event is enabled by its guard, then all of
other events are disabled. For the “IF” statement, its body (e.g.,
acts11, acts12, acts2, acts3) are behaviors under different
conditions that do not intersect. Therefore, we use an event to
represent the behavior of each body. Additionally, for each “IF”

Fig. 6. Translate APEX specification into Event-B

statement we need to add a new event representing the “ELSE”
body, even when it is and “IF” without an “ELSE”. The type of
parameters of the APEX service is encoded as guards of each
event (p1..ntype). In the error part, conditions gcond1, gcond2,
etc. indicate incorrect values of parameters, and thus their
negation are translated into Event-B as guards of each event.
The conditions of the “IF” statement are also translated as
guards. In Fig 6, the condition of acts11 is cond1∧ cond11, so
the guard of the corresponding event includes cond1∧ cond11.
Whilst, the condition of acts12 is cond1 ∧ ¬cond11 ∧ cond12.

A simple statement, such as “set the specified process
state to DORMANT; ” in Fig. 2, is translated into actions in
the event according to the meaning of the statement, which
is usually represented by a deterministic assignment, e.g.,
process state(proc) := PS DORMANT .

We have designed an algorithm to guide manual translations
from APEX service requirements into Event-B models as
shown in Algorithm 1. For convenience, we first give a simple
syntax for the APEX service specification grammar:

c ::= ACT act | c; c |IF cond THEN c | IF cond THEN c ELSE c

where ACT act is a simple statement and c; c is the sequence
statement.

The algorithm translates a service requirement presented in
this syntax into a set of events. A service requirement is a tuple
< ζ, P,E, S >, where ζ is the service name, P is a parameter
list, E is the error conditions in the error part, and S is the
normal part. In Algorithm 1, function translate translates a
statement into a set of events and translate service translates
a service requirement into the final set of events. An event in
the evts set is a tuple < ι, σ, α >, where ι is name of the event,
σ is a list of guards, and α is the list of actions of the event. We
initially put an event with empty guards and empty actions into
set evts. The actions for simple statements is immediate, but
the case of statement “IF” is not so straightforward. For each
“IF” it is necessary to create two events: one having as guards
the “IF” condition, and the other its negation. Then, their bodies
are recursively processed by the translation algorithm, adding
actions to the events when the body is a simple action, or
creating new events with non-intersect guards in case the body
contains a nested “IF”. The composition statement “;” is trivial
in the case of two simple statements or a simple statement and

Algorithm 1: Translate APEX service into Event-B
function translate(evts,stmt){

switch stmt do
case ACT act

add the action act to end of action list of each event in evts;
return evts;

case st1;st2
evts′ ← translate(evts, st1);
return translate(evts′, st2);

case IF cond THEN st1 ELSE st2
evts′ ← duplicate of evts;
add the “cond” to end of guard list of each event in evts;
evts← translate(evts, st1);
add the “¬cond” to end of guard list of each event in evts′;
evts′ ← translate(evts′, st2);
return evts ∪ evts′

case IF cond THEN st
evts′ ← duplicate of evts;
add the “cond” to end of guard list of each event in evts;
evts← translate(evts, st1);
add the “¬cond” to end of guard list of each event in evts′;
return evts ∪ evts′

}
function translate service(spec){ //spec =< ζ, P,E, S >
evts← {< ζ, φ, φ >}
evts← translate(evts, S)
add ∧i(¬Ei) to guard list of each event in evts
return {ev. ev∈ evts∧ ev.α 6= ∅}
}

an “IF” statement. However, the case of two “IF” statements is
slightly more elaborated. In this case, the first “IF” creates a set
of events evts that are passed as an argument to the translation
of the second “IF”. Then the second “IF” duplicates evts into
evts′, and adds its conditions as guards to each event in evts.
Similarly, it adds the negated condition to each event in evts′,
therefore obtaining all possible non-intersecting guards for both
“IF”. Finally, the algorithm adds the negative of the conditions
in the error part to the guard list of each event, and it removes
those events with empty actions. The event name in the final
event set is manually renamed according to their meanings.

Finally, this translation approach can be simplified when
the bodies of “IF” statements are very simple, e.g., when the
body is only a simple statement. In that case the conditions
of an “IF” statement can be represented in the guard of the
event. For instance, in the specification of the STOP service
(Fig. 2), the first “IF” (“current process is error handler and
PROCESS ID is the process which the error handler preempt-
ed”), the partition’s lock level is reset. In the event stop, we
add a new parameter newlocklevel and two guards shown as
it follows.

@grd45

current process flag = TRUE ∧
part ∈ dom(errorhandler of partition) ∧
current process = errorhandler of partition(part) ∧
proc = process call errorhandler(current process)
⇒ newlocklevel = {part 7→ 0};

@grd46

¬(current process flag = TRUE ∧
part ∈ dom(errorhandler of partition) ∧
current process = errorhandler of partition(part) ∧
proc = process call errorhandler(current process))
⇒ newlocklevel = ∅;

grd45 means that if the current process is the error handler
of the current partition and the process to be stopped is the
process which the error handler preempted, then newlocklevel
is an ordered pair part 7→ 0. Otherwise, newlocklevel is
∅ (grd46). In the actions of event stop, there is an assign-
ment locklevel of partition := locklevel of partition C−

TABLE II. STATISTICS OF MODEL AND PROOF

Machine LOC Proof
obligations

Automatically
discharged

Interactively
discharged

Mach Part Trans 39 7 6 (86%) 1(14%)
Mach PartProc Trans 236 128 118 (92%) 10(8%)
Mach PartProc Trans withEvents 495 223 219 (98%) 4(2%)
Mach PartProc Manage 900 580 504 (87%) 76(13%)
Mach IPC Conds 2022 272 169 (62%) 103(38%)
Mach IPC 2267 560 463 (83%) 97(17%)
Mach HM 2712 18 9 (50%) 9(50%)

Total 1791 1491(83%) 300(17%)

newlocklevel. Thus, the semantic of the “IF” statement is
implemented without decomposing into different events.

V. RESULTS AND DISCUSSION

A. Model and proof statistics

In Table II we give model and proof statistics of ARINC
653 Part 1 in the Rodin tool 2. These statistics measure the size
of the model, the proof obligations generated and discharged by
the Rodin tool, and those proved interactively. The LOC of the
machines increase gradually since the refinement machine is
an extension of the refined machine. Therefore, the total LOC
is not the summation of all machines and is not counted here.

Proving is a time-consuming and skilled work in Event-B.
Fortunately, the Rodin tool provides effective automatic provers
that saves much proving time on our model. In addition it
is possible to integrate third-party provers (such as Atelier B
prover) and SMT solvers (such as CVC3 and Z3) as Rodin
plugings bringing the degree of automation to a higher level
(more than 80%).

B. Errors found in ARINC 653

We found three errors in ARINC 653 Part 1, one in the
process management service, and two in the inter- and intra-
partition communication services. Additionally we detected
three cases where the specification of process state transitions
is incomplete.

1) In process state transitions: An incomplete description
of process state transitions is detected. The “process states and
state transitions” description in ARINC 653 Part 1 is very
detailed and try to list all actions triggering transitions. But
we find that some significant actions are not involved either in
the figure or in the text.

The errors are the following:

- in the COLD/WARM START mode, a suspended pro-
cess can also be resumed and its state transits from
Waiting to Waiting. This action is missed in the “Waiting
- Waiting” transition conditions in the standard.

- in the NORMAL mode, if an aperiodic process is de-
layed started (if the delay time > 0), its state transits
from Dormant to Waiting. This action is missed in the
“Dormant - Waiting” transition conditions in the NOR-
MAL mode in the standard.

2The LOC in this table is counted in the original Event-B editor of Rodin.
While for pretty printing, the Event-B model that can be downloaded from our
web page is printed from Camille editor which is a plugin of Rodin

- in the NORMAL mode, if an aperiodic process is de-
layed started (i.e., the delay time = 0), its state transits
from Dormant to Ready. This action is missed in the
“Dormant - Ready” transition conditions in the NORMAL
mode in the standard.

These incompleteness are found by verifying the
guard strengthening between machine Mach PartProc
Trans withEvents and its refinement machine
Mach PartProc Manage. The first machine models
the process state transitions and their triggering actions
according to the standard, and the refinement models the
service requirements. The guard strengthening requires
that the state transitions specified in the refinement
should not be contradictory with the transitions in
Mach PartProc Trans withEvents. After carefully checking
these errors, we find that the service requirements are correct
while the process state transitions are incomplete.

2) In requirement of process management services: The
error is in the requirements of the RESUME service. In
fact, an aperiodic process that has been delayed started is
in the Waiting state if it is suspended. When that process
is resumed, it should retain in the Waiting state if the de-
lay time has not been reached. But according to service
requirement RESUME defined in ARINC 653 partly shown
below, the aperiodic process is set into the Ready state,
because this process is not waiting on a process queue
or on a TIMED WAIT time delay. This error is found
by verifying the guard strengthening between the resume
events in the machine Mach PartProc Trans with Events
and Mach PartProc Manage.

i f (t h e s p e c i f i e d p r o c e s s i s n o t w a i t i n g on a p r o c e s s queue or TIMED WAIT t ime d e l a y
) t h e n

s e t t h e s p e c i f i e d p r o c e s s s t a t e t o READY;
i f (p r e e m p t i o n i s e n a b l e d) t h e n

ask f o r p r o c e s s s c h e d u l i n g ;
−− The c u r r e n t p r o c e s s may be preemptedby t h e resumed p r o c e s s

end i f ;
end i f ;

3) In requirements of the communication service: We find
two errors in the requirements of the communication service.

The first one is an error in inter-partition communication.
The SEND QUEUING MESSAGE service is used to
send a message via a specified queuing port. If there is
enough space in the queuing port to accept the message, the
message is inserted to the end of the port’s message queue.
If there is not, then the process is blocked and stays in the
waiting queue until the specified time-out, if finite, expires,
or space becomes free in the port to accept the message.
However, in the service specification when the time-out does
not expire and space is released, the sent message is not
inserted into the message queue. This leads to an error where
sending processes waiting for the free space within the time-
out loses their sent messages. This error is found by veri-
fying the simulation between the send queueing message
events in the machine Mach PartProc Trans with Events
and Mach PartProc Manage. The event in the first machine
requires that the message should be in the message queue
after being sent when the message queue is sufficient, or not
sufficient but the sending process does not expires. But the
second machine is contradictory with it.

The second error is in the specification of the RE-
CEIVE BUFFER service in intra-partition communication.
This service is used to receive a message from a specified
buffer. When the buffer is not empty, the receiving process
can receive a message directly, and the message should be
removed from the message queue of this buffer. But in
the service specification, we find that the received message
is not removed. This leads to an error that the message
queue of a buffer may always be full. This error is found
by verifying the simulation between the receive message
events in machines Mach PartProc Trans with Events and
Mach PartProc Manage. The event in the first machine
requires that the message should not be in the message queue
after being received, but the second machine is contradictory
with it.

C. Discussion

1) Completeness of our model: Although we have formal-
ized all of ARINC 653 services and the system functionality,
some implementation-related details are not covered in our
formalization: (1) we eliminate execution context attributes
of partitions and processes, e.g. entry point and stack size,
since ARINC 653 only defines these attributes, but do not
provide any functionality for them. (2) we omit the detailed
partition switch, that leads us to capture only the error inside
a partition time window in the HM. (3) we do not model the
booting/initialization of the POS, since ARINC 653 specifies
nothing about the POS booting process. For the purpose of
verifying the ARINC standard or ARINC based applications,
these eliminations do not affect the verification result. However,
these details should be implemented when formally developing
a POS from the ARINC 653 specification.

2) Event-B modeling of software specification: The most
notable problem when we are formalizing the ARINC 653 is
the semantic gap between sequential description of the service
requirements and guard-action style event model. ARINC 653
specifies the software, i.e. the partitioning operating system,
therefore the semantics of each service are specified by a
structural sequential language, whilst Event-B is a formalism
for developing and verifying systems using events. Sequential
programs can be generated from the Event-B model, while
to our knowledge, there is no known work on how to trans-
late structural languages into Event-B. This paper provides
a preliminary translation approach from APEX specification
grammar to Event-B, but an ideal and semantically equivalent
translation framework is needed for high assurance.

3) Deductive verification vs. model checking: Model check-
ing is an automatic and “push-down” verification approach
for system and software. As concluded in [12], verification
of complex systems is never automatic or “push-button”. This
standpoint is also confirmed in our work. In the Rodin tool,
the ProB [39] is a model checker for the Event-B models. At
first, we try to furnish properties in linear temporal logic and
model check them using ProB. We find that it is feasible on our
model on the first and second levels of abstraction, but the state
space is too large to be checked on other levels. The deductive
verification in Event-B is done by logic reasoning. Although
it needs expert skills in mathematics and logics, most of proof
obligations can be discharged automatically by provers (up to
80%).

4) Safety and liveness properties: The shortcoming of de-
ductive verification in Event-B is that properties are represented
as invariants, which are safety properties. Liveness properties
are another major class of properties [37]. In [40], the authors
collected 555 examples of property specifications, 27.2% are
invariant properties (global absence and universality prop-
erties), whilst, liveness properties cover about 45.6%(global
existence and response). We found that liveness properties
are very useful in the specification of the communication in
ARINC 653. Liveness properties can partially be expressed
by the Flow language in [41], but it is difficult to specify
possible continuation scenarios, which means that globally (G)
quantifier is not supported. Reasoning about liveness properties
directly on Event-B model is feasible [42], the absence of
supporting tools makes it difficult to be applied to complex
models that lead us to forgo the verification.

5) Reusing models for development and verification: The
Event-B model of ARINC 653 defines the abstract specification
of POSs. This model can also be used in the model-based
development and the verification of POSs.

A POS is an execution environment for applications. Com-
position of the ARINC 653 and application models enables the
simulation, analysis, and verification for IMA systems. This
requires that the application is also modelled in Event-B and
that tools in Event-B support complex analysis on the model.
Current version of the Rodin tool only supports functional
verification and simulation. In particular, time analysis needs
to be strengthened in Rodin or else it is necessary to export
the Event-B model to another analysis tools.

Second, the ARINC 653 model provides the possibility of
formally developing a new POS by refinement, and finally
generating the source code. The Rodin tool provides many
code generation plugins, such as C, C++, Java and Ada. The
difficulty of this goal may come from the hardware dependency
of POSs and the efficiency of the generated code. The source
code of POSs usually has some intrinsic patterns and contains
assembly code. These require that the Event-B model is de-
tailed enough and that the code generation in Rodin is revised
according to this target.

VI. CONCLUSIONS

In this work, we have presented the formalization and
deductive verification of the ARINC 653 standard using Event-
B. The system functionality and all of 57 services specified in
ARINC 653 Part 1 have been modelled in Event-B. The safety
properties of the system functionality and service requirements,
and the consistency between them are checked by discharging
proof obligations of invariants and refinement preservation.
Finally, we found three errors in ARINC 653 Part 1 and
detected three cases where the specification is incomplete. The
verification was significantly simplified due to the high degree
of automated reasoning in the Rodin tool.

As future work we consider to include mechanical checking
of these errors in ARINC 653 compliant OSs source code such
as XtratuM, and POK, and to extract liveness properties from
the ARINC 653 standard and discover appropriate solutions to
verify them. Since ARINC 653 is being considered to support
multicore platform, it is also an important aspect in our future
work.

ACKNOWLEDGEMENT

We much appreciate the suggestions from Prof. Jean-Paul
Bodeveix and Prof. Mamoun Filali from IRIT, Université de
Toulouse, France. This work is partially supported by the
Fundamental Research Funds for the Central Universities in
China (Grant No.YWF-15-GJSYS-083), and by the Nation-
al Research Foundation, Prime Ministers Office, Singapore
under its National Cybersecurity R&D Program (Award No.
NRF2014NCR-NCR001-30) and administered by the National
Cybersecurity R&D Directorate.

REFERENCES

[1] J. Rushby, “Partitioning in avionics architectures: Requirements, mech-
anisms, and assurance,” DTIC Document, Tech. Rep., 2000.

[2] ARINC Specification 653: Avionics Application Software Standard In-
terface, Part 1 - Required Services, Aeronautical Radio, Inc., November
2010.

[3] J. Delange and L. Lec, “Pok, an arinc653-compliant operating system
released under the bsd license,” in 13th Real-Time Linux Workshop,
vol. 10, 2011.

[4] M. Masmano, I. Ripoll, A. Crespo, and J.-J. Metge, “Xtratum: a
hypervisor for safety critical embedded systems,” in Real-Time Linux
Workshop, 2009.

[5] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal
methods: Practice and experience,” ACM Comput. Surv., vol. 41, no. 4,
pp. 1–36, October 2009.

[6] Y. Zhao, “Formal specification and verification of separation kernels:
An overview,” ArXiv e-prints, no. arXiv:1508.07066, August 2015.

[7] P. De La Cámara, M. del Mar Gallardo, and P. Merino, “Model
extraction for arinc 653 based avionics software,” in Model Checking
Software. Springer, 2007, pp. 243–262.

[8] F. Singhoff and A. Plantec, “Aadl modeling and analysis of hierarchical
schedulers,” ACM SIGAda Ada Lett., vol. 27, no. 3, pp. 41–50, 2007.

[9] A. Oliveira Gomes, “Formal specification of the arinc 653 architecture
using circus,” Master’s thesis, University of York, 2012.

[10] Y. Wang, D. Ma, Y. Zhao, L. Zou, and X. Zhao, “An aadl-based modeling
method for arinc653-based avionics software,” in COMPSAC, July 2011,
pp. 224–229.

[11] J. Delange, L. Pautet, and F. Kordon, “Modeling and validation of
arinc653 architectures,” in ERTS, May 2010.

[12] B. Beckert and R. Hahnle, “Reasoning and verification: State of the art
and current trends,” IEEE Intell. Syst., vol. 29, no. 1, pp. 20–29, 2014.

[13] J.-R. Abrial and S. Hallerstede, “Refinement, decomposition, and instan-
tiation of discrete models: Application to event-b,” Fundam. Inform.,
vol. 77, no. 1-2, pp. 1–28, Jan. 2007.

[14] J.-R. Abrial, M. Butler, S. Hallerstede, T. Hoang, F. Mehta, and
L. Voisin, “Rodin: an open toolset for modelling and reasoning in event-
b,” Int. J. on Softw. Tools for Technol. Transf., vol. 12, no. 6, pp. 447–
466, 2010.

[15] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.
New York, NY, USA: Cambridge University Press, 2013.

[16] P. de la Cmara, J. R. Castro, M. d. M. Gallardo, and P. Merino,
“Verification support for arinc-653-based avionics software,” Software
Testing, Verification and Reliability, vol. 21, no. 4, pp. 267–298, 2011.

[17] F. F. Verbeek, S. S. Tverdyshev, and etc., “Formal specification of a
generic separation kernel,” Archive of Formal Proofs, 2014.

[18] F. Verbeek, O. Havle, and etc., “Formal api specification of the pikeos
separation kernel,” in NASA Formal Methods, 2015, pp. 375–389.

[19] D. Sanán, A. Butterfield, and M. Hinchey, “Separation kernel verifica-
tion: The xtratum case study,” in VSTTE. Springer, 2014, pp. 133–149.

[20] Y. Choi, “Constraint specification and test generation for osek/vdx-
based operating systems,” in Software Engineering and Formal Methods.
Springer, 2013, pp. 305–319.

[21] D.-H. Vu and T. Aoki, “Faithfully formalizing osek/vdx operating system
specification,” in 3rd Symposium on Information and Communication
Technology. New York, NY, USA: ACM, 2012, pp. 13–20.

[22] M. M. Wilding, D. A. Greve, R. J. Richards, and D. S. Hardin, “Formal
verification of partition management for the aamp7g microprocessor,” in
Design and Verification of Microprocessor Systems for High-Assurance
Applications. Springer, 2010, pp. 175–191.

[23] C. Baumann, T. Bormer, H. Blasum, and S. Tverdyshev, “Proving
memory separation in a microkernel by code level verification,” in
ISORCW. IEEE, 2011, pp. 25–32.

[24] S. Tverdyshev, “Extending the gwv security policy and its modular
application to a separation kernel,” in NASA Formal Methods. Springer,
2011, pp. 391–405.

[25] R. J. Richards, “Modeling and security analysis of a commercial real-
time operating system kernel,” in Design and Verification of Micropro-
cessor Systems for High-Assurance Applications. Springer, 2010, pp.
301–322.

[26] C. L. Heitmeyer, M. M. Archer, E. I. Leonard, and J. D. McLean,
“Applying formal methods to a certifiably secure software system,” IEEE
Trans. on Soft. Eng., vol. 34, no. 1, pp. 82–98, 2008.

[27] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish et al., “sel4:
Formal verification of an os kernel,” in SOSP. ACM, 2009, pp. 207–
220.

[28] P. André, “Assessing the formal development of a secure partitioning
kernel with the b method,” in ADCSS, 2009.

[29] D. Déharbe, S. Galvão, and A. M. Moreira, “Formalizing freertos: First
steps,” in Formal Methods: Foundations and Applications. Springer,
2009, pp. 101–117.

[30] S. Hoffmann, G. Haugou, S. Gabriele, and L. Burdy, “The b-method
for the construction of microkernel-based systems,” in B 2007: Formal
Specification and Development in B. Springer, 2006, pp. 257–259.

[31] R. Kolanski and G. Klein, “Formalising the l4 microkernel api,” in 12th
Computing: The Australasian Theroy Symposium. Australian Computer
Society, Inc., 2006, pp. 53–68.

[32] M. Devillers, D. Griffioen, J. Romijn, and F. Vaandrager, “Verification
of a leader election protocol: Formal methods applied to ieee 1394,”
Form. Methods in Syst. Des., vol. 16, no. 3, pp. 307–320, 2000.

[33] K. Bhargavan, D. Obradovic, and C. A. Gunter, “Formal verification of
standards for distance vector routing protocols,” J. ACM, vol. 49, no. 4,
pp. 538–576, Jul. 2002.

[34] S. Elankayer, Z. Saad, and M. Vallipuram, “Formal verification of
the ieee 802.11i wlan security protocol,” in 17th Australian Software
Engineering Conference, 2006, pp. 181–190.

[35] M. Eian and S. Mjolsnes, “A formal analysis of ieee 802.11w deadlock
vulnerabilities,” in INFOCOM, March 2012, pp. 918–926.

[36] R. Panesar-Walawege, M. Sabetzadeh, and L. Briand, “A model-driven
engineering approach to support the verification of compliance to safety
standards,” in ISSRE, Nov 2011, pp. 30–39.

[37] F. B. Schneider, “Decomposing properties into safety and liveness,”
Cornell University, Ithaca, NY, USA, Tech. Rep., 1987.

[38] S. Mohammad Reza and B. Michael, “Specification and refinement of
discrete timing properties in event-b,” in AVoCS, 2011.

[39] M. Leuschel and M. Butler, “Prob: A model checker for b,” in FME.
Springer, 2003, pp. 855–874.

[40] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in ICSE. New York, NY,
USA: ACM, 1999, pp. 411–420.

[41] A. Iliasov, “Use case scenarios as verification conditions: Event-b/flow
approach,” in Software Engineering for Resilient Systems, ser. Lecture
Notes in Computer Science, E. Troubitsyna, Ed. Springer Berlin
Heidelberg, 2011, vol. 6968, pp. 9–23.

[42] T. S. Hoang and J.-R. Abrial, “Reasoning about liveness properties in
event-b,” in ICFEM. Berlin, Heidelberg: Springer-Verlag, 2011, pp.
456–471.

