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Abstract
Event extraction has been well studied for more than two decades, through both

the lens of document-level and sentence-level event extraction. However, event ex-
traction methods to date do not yet offer a satisfactory solution to providing concise,
structured, document-level summaries of events in news articles. Prior work on
document-level event extraction methods have focused on highly specific domains,
often with great reliance on handcrafted rules. Such approaches do not generalize
well to new domains. In contrast, sentence-level event extraction methods have ap-
plied to a much wider variety of domains, but generate output at such fine-grained
details that they cannot offer good document-level summaries of events.

In this thesis, we propose a new framework for extracting document-level event
summaries called macro-events, unifying together aspects of both information ex-
traction and text summarization. The goal of this work is to extract concise, struc-
tured representations of documents that can clearly outline the main event of interest
and all the necessary argument fillers to describe the event. Unlike work in ab-
stractive and extractive summarization, we seek to create template-based, structured
summaries, rather than plain text summaries.

We propose three novel methods to address the macro-event extraction task.
First, we introduce a structured prediction model based on the Learning to Search
framework for jointly learning argument fillers both across and within event argu-
ment slots. Second, we propose a multi-layer neural network that is trained di-
rectly on macro-event annotated data. Finally, we propose a deep learning method
that treats the problem as machine comprehension, which does not require training
with any on-domain macro-event labeled data. Our experimental results on a va-
riety of domains show that such algorithms can achieve stronger performance on
this task compared to existing baseline approaches. On average across all datasets,
neural networks can achieve a 1.76% and 3.96% improvement on micro-averaged
and macro-averaged F1 respectively over baseline approaches, while Learning to
Search achieves a 3.87% and 5.10% improvement over baseline approaches on the
same metrics. Furthermore, under scenarios of limited training data, we find that
machine comprehension models can offer very strong performance compared to di-
rectly supervised algorithms, while requiring very little human effort to adapt to new
domains.
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Chapter 1

Introduction

1.1 Thesis Statement

The problem of event extraction seeks to identify instances of events in texts, along with any
arguments corresponding to the roles in the event. Such a task has obvious real-world applicabil-
ity, as it allows users to quickly identify the who, what, where, and when of news stories without
having to manually read through the text. Moreover, it provides structured output for additional
analytic processes such as cross-document coreference, script-induction, or other higher level
text mining tasks. A key problem with current event extraction methods is that the granularity
produced by systems does not match the granularity desired by users. The first mention of an
event may identify the “what” and “when”, but the “who” and “where” (or other roles) may come
in later mentions. Ideally, a comprehensive event summary should be presented to a user in a
concise, structured form, centered around the main event described in the text. For example, the
output of event extraction on a news story about a shooting could identify the people involved, the
names of anyone who was injured or killed, where the shooting occurred, who the suspects may
be, and when the shooting occurred. Table 1.1 presents an example document-level summary of
a single news article about a shooting.

Existing frameworks for events fall under one of two different paradigms: sentence-level
event extraction and document-level extraction (for a detailed discussion, please refer to Chap-
ter 2). Most recent work follows sentence-level extraction, and in particular following the stan-
dards set by the Automatic Content Extraction (ACE) program1 [17, 43, 57, 72, 73, 75, 92, 128].
The sentence-level focus means identifying individual event mentions from potentially every sen-
tence in the document, along with any entities which fulfill argument roles in these events. While
the event types considered via sentence-level extraction are general enough to be of interest to
common users, the sentence-level granularity is too fine-grained for summarizing a document’s
content. Any particular document could have an arbitrary number of events, of varying impor-
tance to the overall document content (see Table 1.2 for an example of ACE-style output on the
same text summarized in Table 1.1). A further complication is that any meaningful downstream
processing of sentence-level output requires high-quality event coreference algorithms, as a doc-
ument may contain multiple references to the same event. Consider the following sentences:

1http://www.itl.nist.gov/iad/mig/tests/ace/
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1. John Smith was arrested yesterday for the murder of Jane Doe.

2. The Boston murder from last week had stumped police until new evidence had been found
connecting Smith to the victim.

While these two sentences both describe the same attack, each sentence provides unique in-
formation about the event arguments. The former sentence gives the full name of the perpetrator
and victim, but lacks information about where and when the attack occurred. The latter sentence
does contain the missing information, but lacks the full name of the perpetrator and provides no
information whatsoever on the identity of the victim. Recent work has attempted to solve the
event coreference problem [3, 5, 67, 81], however such methods are imperfect, and can lead to
compounding errors in an NLP pipeline.

In contrast to sentence-level extraction, document-level event templates focus on a single
template per document, and thus are able to achieve a more desirable level of granularity for
downstream consumption. Document-level event extraction dates back to FRUMP (Fast Read-
ing Understanding and Memory Program) [30], which constructed event templates from text
using handcrafted rules. This provided the right level of granularity for template-driven sum-
maries of documents, but was limited by its reliance on knowledge-engineering. Improved event
coverage could only be obtained via extensive human effort, which is not practical for real-world
deployment. More recent document-level event extraction techniques follow the definitions pro-
vided by the Message Understanding Conferences2 (MUC) [2, 4, 7, 20, 21, 41, 42, 52, 53, 54,
55, 56, 63, 69, 74, 95, 96, 97, 105, 106, 116, 117, 118, 119, 121, 129, 130]. However, work to
date on document-level extraction under the MUC definitions suffers from several limitations.
First, the set of event types studied under document-level extraction via MUC are highly spe-
cific to a small set of focused domains (e.g. terrorist events in Latin America, electronic circuit
fabrication, and launches of rockets/missiles). This limits the generalizability of document-level
extraction systems, as such topics do not provide wide enough coverage over common public
interests. A second key limitation is the lack of sophisticated machine learning techniques for
document-level extraction. Early document-level extraction methods under MUC relied strongly
on handcrafted rules (similarly to FRUMP) or pattern matching techniques. More recent work
has attempted to use machine learning, but to date such work has focused on simple machine
learning techniques, and do not take advantage of more powerful machine learning algorithms.

In this thesis, we propose a new event extraction task for extracting document-level structured
summaries, which we call macro-events. Our assumption is that for many documents the text
can be represented by a single macro-event template, which focuses on the dominating event of
the text. We constrain the set of defined argument fillers for each event type to a predefined,
but highly interdependent set of categories containing key event information. This allows for
events to be represented in a concise, yet highly informative manner to users, and to further
processing by downstream analytical methods. Finally, we seek to keep the notion of a macro-
event generalizable across a wide set of event types, which is key to developing event structures
that have broad applicability and that can be useful beyond toy examples.

In principle, perfectly solving sentence-level event extraction would help the solutions for the
macro-event task. However, it would be unrealistic to rely on near-perfect sentence-level event
extraction, near-perfect sentence-level event coreference [3, 5, 67, 81], near-perfect entity coref-

2http://www-nlpir.nist.gov/related_projects/muc/
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erence [67, 68], near-perfect aggregation of sentence-level events to a document-level template,
and near-perfect information extraction across entities, event triggers, and event arguments (all
of which are vulnerable to compounding errors in the processing pipeline). Existing sentence-
level extraction algorithms for these subtasks frequently produce outputs containing incorrect
extractions, off-topic extractions, contradictory extractions, redundancy, and empty events de-
void of argument fillers (see Table 1.2 for examples of these problems). Thus it is better to focus
directly on the macro-event task instead, without requiring near-perfectly solving each and every
subproblem.

To solve the macro-event extraction problem means addressing the following points. First,
arguments within an event have complex dependencies that must be modeled when attempt-
ing to fill up a template. For example, knowledge about the location and time of an attack
may be needed to disambiguate between the victims of two separate shootings. Second, any
approach for event extraction that jointly models such argument relationships must be able to
handle the enormous output space that results from considering all possible combinations of ar-
gument fillers. Finally, we must ensure that our techniques are able to effectively learn models
even in a data-scarce scenario, as annotated training event corpora rarely exceed more than a few
hundred documents in size. We introduce a novel approach based on Learning to Search, a gen-
eral machine learning framework for structured prediction [29] that addresses all three of these
problems, achieving high performance on the macro-event extraction task. We further introduce
two novel approaches for neural document-level event extraction: 1.) a feedforward neural net-
work trained directly on annotated data, and 2.) a neural machine reading comprehension model
that can achieve high performance over baseline methods even when little to no training data
exists for the target domain.

Outside of the MUC and ACE notions of events, other related approaches for summarizing
a text include topic models, extractive summarization, and abstractive summarization. Yet none
of these can fulfill the needs of the macro-event extraction task. Topic models like LDA (Latent
Dirichlet allocation) [6] have latent factors that are difficult to interpret, and do not offer insight
into the fillers of arguments. Both extractive [8, 9, 27, 35, 76, 77, 90, 91, 99, 125] and abstractive
summarization [38, 39, 40, 59, 79, 88, 98, 110, 111] can only be used to compress or rewrite the
text into a shorter form – neither can create a structured output of the form seen in Table 1.1 that
is useful both for human readers and down-stream analytic processes.

1.2 Thesis Contributions

The overall contributions of this thesis are as follows:
• Formulation of the task of macro-event extraction for structured summarization of doc-

uments. The macro-event structure represents the unification of event ideologies studied
in the ACE and MUC programs, focusing on single event per document summaries (like
MUC) that are generalizable enough to cover a wide range of event types (like ACE).

• Development of a novel approach for structured learning of macro-event templates using
the Learning to Search framework that jointly learns the fillers both within and across
argument roles.

3



Attack Macro-Event
Perpetrator Jason Brian Dalton
Victims – Dead Richard Smith

Tyler
Dorothy Brown
Barbara Hawthorne
Mary Lou Nye
Mary Jo Nye

Victims – Injured Tiana Carruthers
Abigail Kopf

Time Saturday
Location Kalamazoo

Table 1.1: An ideal output for summarizing documents via events. The main point of the text is
clear, and fillers for each role are easily identifiable.

• Development of multiple deep learning models for macro-event extraction, including a
model which can be trained entirely on off-domain data

• Collection and annotation of macro-event gold standard data for the attack, election, sporting-
event and criminal-trial domains. Labels have been obtained using a combination of man-
ual annotation and infobox extraction from Wikipedia articles. For the elections domain,
we have additionally collected Spanish language data to demonstrate the effectiveness of
our models on non-English texts

• Experimental results on the attack, election, sporting-event and criminal-trial domains
with baseline methods and all three of our proposed algorithms.

1.3 Thesis Outline
The remainder of this thesis is organized as follows. Chapter 2 describes related work on event
extraction, machine reading, and summarization. Chapter 3 describes the macro-event frame-
work in more detail. In Chapter 4, we introduce our structured model for filling up macro-events,
and describe connections between this approach and policy gradients. In Chapters 5 and 6, we
introduce our deep learning models, one directly trained on macro-event annotated data, and
another based on recent advances in neural machine reading techniques with zero reliance on
target domain annotated training data. Chapter 7 describes our experimental results on filling
macro-events from text on five separate macro-event datasets. We provide concluding thoughts
and ideas for future work in Chapter 8.

4



Event Type Argument Role Argument Fillers
Justice.Charge-Indict Defendant Kalamazoo shooting

suspect Jason Brian Dalton
Justice.Charge-Indict Defendant CNN)Authorities
Life.Die
Movement.Transport Argument the shooter
Conflict.Attack
Life.Die Victim six people
Conflict.Attack
Conflict.Attack Attacker the gunman

Target eight people
Conflict.Attack Target a woman
Life.Die Agent the gunman

Victim a father and son
Movement.Transport Artifact he

Destination a Cracker Barrel restaurant
Life.Die Place a Cracker Barrel restaurant

Victim four women
Victim a 14-year-old girl

Life.Injure Victim a 14-year-old girl
Conflict.Attack
Life.Die
Justice.Jail Agent police

Person Dalton, 45
Place downtown Kalamazoo

Transaction.Transfer-Ownership Buyer Police
Artifact a weapon

... ... ...
Conflict.Attack Target Tiana Carruthers
Conflict.Attack Target both

Instrument a vehicle
Life.Die Victim four women
Conflict.Attack Target a 14-year-old girl
Life.Die Victim many more victims
Life.Die Victim more people
Justice.Trial-Hearing

Table 1.2: Partial output from running a sentence-level event extraction system. The complete
version has 41 distinct events extracted from the text. Many of the extracted events are redundant
(e.g. “four women” appears repeatedly as a Life.Die argument), devoid of attached arguments,
incorrect (e.g. “CNN)Authorities” is not a trial defendant), contradictory (e.g. “a 14-year-old
girl” is a victim of both injure and kill events), or simply off-topic to the main point of the
document (e.g. Transaction.Transfer-Ownership is not important enough for a summary).
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Chapter 2

Related Work

In this chapter, we will introduce relevant literature in event extraction, machine reading com-
prehension, and summarization.

2.1 Event Extraction

In this section, we will discuss relevant related work in the field of event extraction, including
both document-level and sentence-level extraction methods.

2.1.1 Document-Level Extraction

FRUMP

The earliest event extraction system was FRUMP [30]. The goal of FRUMP was to skim input
news articles and extract events describing the most important aspects of the text. FRUMP
achieved this by using two components – a predictor and a substantiator – to collaboratively
fill up an event template. The predictor would be in charge of predicting what event frames
exist in the text, while the substantiator would find evidence to fill up frames suggested by the
predictor. Based on the evidence received from the substantiator, the predictor could then narrow
down the set of possible candidate event templates, and issue new requests to the substantiator to
fill up remaining slots in the template.

Consider the example text in Figure 2.1. FRUMP begins by scanning the text for a word that
triggers the creation of an event template. Upon finding the word “crashed”, FRUMP starts to ex-
plore possible “crash”-related event templates. The predictor makes a request to the substantiator
to identify an actor for the “PROPEL” action, which can be one of many different filler types (e.g.
“HUMAN”, “VEHICLE”, “MILITARY UNIT”, etc.). The substantiator looks in the text for a
span that can fill this role, and returns “plane” as the filler. Based on the evidence returned from
the substantiator, the predictor can now narrow down the set of possible event types to two possi-
bilities – either a vehicle hitting a person or a vehicle hitting some physical object. Accordingly,
the predictor requests the substantiator to find evidence for what the plane hit, which must be
either of type “HUMAN” or of type “PHYSOBJ”. The predictor and substantiator continue such
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Figure 2.1: Example input text to FRUMP

efforts until the complete event template is extracted (see Figure 2.2 for the final result extracted
from FRUMP on this text).

Figure 2.2: Output results from FRUMP on Figure 2.1’s text

A key limitation of FRUMP is that it requires human-crafted knowledge in order to make
decisions. While a system like FRUMP can in principle perform very well on a domain where
much knowledge has been injected, it is impractical to port such a system to new domains. In
contrast, our proposed methods are designed to require a minimal amount of human effort by
comparison, and are much easier to apply to new domains of interest.
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Pattern Matching

The DARPA MUC program (1987-1997) brought considerable interest to the topic of document-
level event extraction. Each year of the MUC program focused on a single type of event template,
allowing for the study of complex structure and fillers within the event template (see Table 2.1 for
a complete list of event types considered). An example MUC template from the Latin American
Terrorism domain may be seen in Figure 2.3.

Year Event type
1987 Fleet Operations
1989 Fleet Operations
1991 Terrorist activities in Latin America
1992 Terrorist activities in Latin America
1993 Corporate Joint Ventures, Microelectronic production
1995 Negotiation of Labor Disputes and Corporate Management Succession
1997 Airplane crashes, and Rocket/Missile Launches

Table 2.1: Event types studied in the MUC program by year

Figure 2.3: Example MUC template from the Latin American Terrorism domain

Early methods developed during this time typically focused on handcrafted patterns [2, 69,
121]. The basic idea behind such approaches is to scan the text for particular expressions, which
can directly map pieces of the document into argument role slots. Several example patterns
included in the FASTUS system [2] for the Latin American terrorism domain may be seen below:

1. killing of 〈HumanTarget〉
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2. 〈GovtOfficial〉 accused 〈PerpOrg〉
3. bomb was placed by 〈Perp〉 on 〈PhysicalTarget〉
4. 〈Perp〉 attacked 〈HumanTarget〉’s 〈PhysicalTarget〉 in 〈Location〉 〈Date〉 with 〈Device〉
5. 〈HumanTarget〉 was injured

6. 〈HumanTarget〉’s body
where the parts contained inside the brackets reference particular argument slots in the event

template type. If we consider the sentence “Guerillas attacked Merino’s home in San Salvador
5 days ago with explosives”, we can see that this matches the above pattern “〈Perp〉 attacked
〈HumanTarget〉’s 〈PhysicalTarget〉 in 〈Location〉 〈Date〉 with 〈Device〉”. By matching the text to
this pattern, we can extract the following slots:

1. Perp: Guerillas

2. HumanTarget: Merino

3. PhysicalTarget: home

4. Location: San Salvador

5. Date: 5 days ago

6. Device: explosives
Note that such methods can extract multi-word phrases, such as “San Salvador” and “5 days

ago”, and are thus not limited to only individual words. A key limitation of such methods is that
this requires handcrafted human effort, which makes it extremely difficult to adapt systems to
new domains.

In response to this problem Riloff [105] designed a system called AutoSlog which automati-
cally generates extraction patterns given a corpus of annotated data. In order to avoid low-quality
patterns, a human was kept in the loop to manually check each discovered pattern, editing or re-
moving those that were deemed to be poor or incorrect. This process required 5 hours, and
resulted in a final set of 450 discovered patterns (from an original set of 1237 proposed patterns).
In their experiments on the MUC-4 dataset, they found that this gave nearly as good of perfor-
mance as a fully handcrafted system that required 1500 person hours to construct. A number of
similar systems for automatically learning patterns were also proposed, including PALKA [63],
CRYSTAL [116], and LIEP [54].

AutoSlog was later expanded to generate patterns without reliance on annotated text, given
only two separate corpora of relevant and irrelevant texts to the target domain [106]. The system,
called AutoSlog-TS, operates in a two-stage manner. First, it generates pattern candidates for
every noun phrase in the relevant corpus. In the second step, these patterns are applied to both
the relevant and irrelevant documents, and are ranked according to the following formula:

Pr(relevant text|text contains pattern i) =
rel − freqi
total − freqi

where rel − freqi is simply the number of times the pattern was activated in the relevant
documents, and total−freqi is the number of times the pattern was activated across both corpora.
The general idea is that some phrases will occur frequently regardless of domain (e.g. “was
reported”) whereas others are more domain specific (e.g. “was kidnapped”).
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A human was then used to review the top patterns according to this ranking; they stopped after
analyzing the top 1970 patterns as few remaining patterns were of high quality. This resulted in
a total of 210 extracted patterns. Evaluation on MUC-4 documents against AutoSlog showed
improved performance on precision and F1, but lower recall.

Yangarber et al. [2000] proposed an alternative to AutoSlog-TS called EXDISCO. Given a
small seed set of patterns, EXDISCO operates using the following procedure:

1. Apply the patterns to all documents in the collection. Separate documents into relevant
and non-relevant based on whether any patterns were matched within the text.

2. Generate new candidate patterns from the relevant documents. Rank them by relevance
scores (similarly to AutoSlog-TS).

3. Given the ranked list of generated patterns, add the top pattern to the seed set

4. Repeat from step 1
The key difference from AutoSlog-TS is that EXDISCO does not require having human judge-
ments for relevant and non-relevant documents, as these are automatically categorized based on
the seed set of patterns.

Other work has also considered the task of automatically generating patterns from unanno-
tated text. Sudo et al. [2001, 2003] consider patterns based on chains and subtrees from de-
pendency parsing output. Yangarber [2003] explore stopping conditions for automatic pattern
generation algorithms, which over time begin to generate fewer and fewer high-quality patterns.
Patwardhan and Riloff [2006] expand the AutoSlog-TS model to identify additional patterns
from unannotated data from the Web. Later work by Patwardhan and Riloff [2007] combines au-
tomatic generation of patterns with a self-trained relevance classifier for sentences1. Patterns are
thresholded into primary and secondary patterns – at test time, primary patterns are used to ex-
tract information from all sentences, while secondary patterns are extracted only from sentences
deemed to be relevant by the classifier.

Classification

While most of the information extraction community during the 1990s was focused on knowledge-
based approaches, there was some effort to move toward machine learning models, which had
the advantage of being much more adaptable to new domains. However, such models were not
able to outperform the results obtained by knowledge-based approaches [4, 69].

The first classification-based method shown to achieve competitive performance with pattern-
based methods on the MUC data was that of Chieu et al. [2003], via a system called ALICE (Au-
tomated Learning-based Information Content Extraction). ALICE begins by first preprocessing
input documents with NLP software for sentence segmentation, tokenization, part-of-speech tag-
ging, named entity recognition, parsing, and entity coreference. Event arguments are obtained
via independently trained classifiers for each slot, and the final templates are created using the
output of these classifiers along with some simple heuristic rules designed to catch common
failure cases. The authors experimented with multiple types of classifiers (maximum entropy

1While this method does utilize classification techniques, the final extractions are still done via pattern matching,
hence why the overall technique falls under the pattern matching category of algorithms
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models, support vector machines (SVMs), Naive Bayes, and decision trees), ultimately finding
the best performance using the maximum entropy model.

In their evaluation results on the MUC-4 dataset, they found that ALICE was able to out-
perform nearly all pattern-based methods. While they could not beat the current state of the art
model, an important distinction to note is that the top-performing model had required 10.5 person
months of effort. In contrast, a learning-based approach takes far less time to develop.

Patwardhan and Riloff [2009] propose a classification-based model that divides the problem
into two separate subproblems: plausible role-filler recognition and sentential event recognition.
In the plausible role-filler recognition, the goal is to identify candidate event arguments from
noun phrases. In the sentential event recognition problem, the goal is to identify the subset of
sentences that are focused on a relevant event. By combining these two components together,
the hope is to be able to extract event arguments that are central to the event of interest, while
avoiding arguments that refer to more generic, off-topic events. In their experiments, they apply
Naive Bayes to the plausible role-filler recognition problem, and they consider both Naive Bayes
and SVMs for the sentential event recognition problem.

Huang and Riloff [2011] decompose the problem further into a multi-stage pipeline of classi-
fiers. They consider separate classifiers which analyze the text at increasingly fine-grained levels
of granularity. Specifically, their model includes document classifiers, event sentence classi-
fiers, role-specific context classifiers, and role filler extractors. SVMs are used for each of these
individual classifiers.

Later work by Huang and Riloff [2012] consider the problem from a different perspective.
They decompose the problem into two subparts: 1.) a set of independent classifiers which iden-
tify argument role fillers, and 2.) a sentence relevance model. The independent classifiers used
are identical to the same role filler extractor SVMs used in their previous work [2011]. The
sentence relevance model is a conditional random field applied over the sequence of sentences
to identify the subset of relevant sentences. The final templates are formed by filtering out any
argument role fillers that are not found in relevant sentences.

Recently, neural networks have begun to be considered for use in classification-based ap-
proaches to document-level event extraction. Boroş et al. [2014] apply unsupervised neural
networks to create word embeddings, which are subsequently used as features for randomized
decision trees. However, a key limitation of this method is that it does not incorporate any
deep learning techniques for directly training event extraction models, as neural networks are
only used for separately learning word embeddings. In their experiments, the authors found this
model to outperform all previous baselines.

2.1.2 Sentence-Level Extraction
The task of sentence-level event extraction differs from document-level extraction primarily
along the axis of granularity. While document-level extraction assumes the presence of a sin-
gle primary event, sentence-level extraction can have an unbounded number of events present
within the text, each one associated with any number of event arguments. As a consequence of
this, there is no notion of a “primary” event in sentence-level extraction. A side-effect of this is
that human analysts are unable to determine the importance of different events without reading
through the original text themselves.
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Historically, the task of sentence-level event extraction originates with the ACE program
[32]. A key difference with the types of events that have been studied at the sentence-level
compared to document-level research is the generalizability of event types. Event types studied
at the sentence-level have focused on more general themes, such as conflicts, transportation of
people/items, and life events (see Table 2.2 for a complete list of events considered). This has
allowed sentence-level work to capture a much wider range of event types than has been seen
under MUC-centric document-level analysis.

Terminology

Let us begin by addressing common terminology seen in the literature for sentence-level event
extraction.

• An event is something that happens in the world at a particular place and time.
• An event mention is a particular occurrence of an event in a document. An event may be

mentioned multiple times within the same document, or the same event may be mentioned
across a set of documents.

• An event trigger is a particular word or phrase that signifies the existence of an event.
• An event argument is an entity that fulfills some role within a particular event. The set of

valid roles for an event depends on the type of event, including roles such as Agent, Place,
and Time.

• An event argument mention is a particular textual instance of an event argument.

Sequential Pipelines

The classic approach to sentence-level event extraction is to break the problem down into a
pipeline of individual subtasks – namely, trigger identification, trigger classification, argument
identification, and argument classification. We describe each of these tasks below:

• Trigger identification – for every word in the document, the system must make a binary
prediction as to whether or not the word triggers an event (of any type)

• Trigger classification – given the words that have been identified as event triggers, classify
each of them into specific event types (e.g. Attack, Demonstration, etc.)

• Argument identification – given a set of candidate entity mentions (for example, obtained
from Named Entity Recognition) and the set of classified event triggers, identify which
entity mentions are associated with which events

• Argument classification – given the set of entities associated with each event trigger, clas-
sify the relationship within each (entity, event trigger) pair into a specific argument type
(e.g. Buyer, Seller, Attacker, Place, Time, etc.)

In some approaches, identification and classification steps are merged into a single classifier,
resulting in a two-stage pipeline instead.

Notably, almost all methods for sentence-level event extraction utilize machine learning
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methodologies. While early systems utilize some pattern matching for trigger predictions [43]2,
the vast majority of systems rely solely on machine learning techniques for classification. This
is a vast departure from document-level event extraction, where nearly all early methods relied
on handcrafted rules or pattern-matching approaches, with classification only becoming popular
in later years.

Structured Prediction

A key problem with using sequential pipelines is that errors can propagate between components.
For example, suppose the event trigger identification step failed to detect some particular trigger
word. The system will not only suffer a loss on failing to detect the trigger word, but also a
loss on any associated event arguments attached to this trigger, as it will become impossible to
identify these in later steps.

A pipelined approach can also result in more subtle failure cases. Consider the following
sentences:

1. The cannon was fired accidentally, causing three people to receive injuries.

2. The CEO fired his secretary.
The word fired is clearly an event trigger in both sentences, but in one case signals a Con-

flict.Attack event, whereas in the other sentence it signals a Business.End-Position event. In the
first case, analysis of the argument candidate three people may suggest that Conflict.Attack is the
right choice, while in the second case, the argument candidates CEO and secretary imply that
Business.End-Position is the event type. However, if event trigger classification is performed
prior to considering arguments, the model may mistakenly select the wrong type of event and be
unable to correct itself later on when new evidence about the arguments is analyzed.

Another key observation to make about the pipelined model is that it makes argument pre-
dictions in isolation of each other. In practice, knowing information about one argument may
provide strong evidence for additional argument decisions. Consider the following example sen-
tence:

1. A robber in a Boston bank last night attacked the on-duty security guard, who has since
been hospitalized for his injuries.

There are two events in this example, an instance of Conflict.Attack and an instance of
Life.Injure. If we identify that the robber fulfills the Attacker role in the Conflict.Attack event,
this strongly implies that the robber will also fulfill the Agent role in the Life.Injure event. How-
ever, this type of inference requires global knowledge – a pipeline of independent classifiers will
be unable to take such evidence into account at prediction time.

These types of failure cases are central to the motivation of the work of Li et al. [2013],
who apply a structured perceptron to the task of sentence-level event extraction. The input
to the model is formulated as x = 〈(x1, x2, ..., xs), E〉, where each xi is the ith word in the
sentence, and E is the set of argument candidates. The output structure takes the form y =
(t1, a1,1, ..., a1,m, ..., ts, as,1, ..., as,m), where ti is the event trigger assignment to word i and ai,k
represents the event argument relationship existing between xi and argument candidate ek.

2Furthermore, even these methods do not solely use pattern matching, and have some reliance on classification-
based approaches
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The structured perceptron algorithm operates as follows. At each iteration, the algorithm
generates its best assignment to the output variables given the input and its current parameters. If
the output correctly matches the gold standard, no additional actions are taken. If not, the model
parameters are updated as follows:

w = w + f(x, y)− f(x, z)

where z is the output produced by the model, and y is the gold standard output according to
annotated data.

Subsequent work by Li et al. [2014] expand this model to jointly perform entity extraction,
relation extraction, and event extraction in a single model. The overall problem is to learn an
information network y = (V,E), where the nodes are either entity mentions or event triggers,
and the edges are either extracted relations or event argument roles. The model is learned either
by using a structured perceptron (as in their previous work [2013]), or via k-best MIRA, an
algorithm for online large-margin learning [86].

Yang and Mitchell [2016] consider the problem of jointly learning event triggers, event ar-
guments, and entity mentions. They model the overall problem as three interconnected subprob-
lems: 1.) within-event structure learning, 2.) event-event relationship learning, and 3.) entity
extraction.

Let us begin by considering the within-event structures, which are modeled using the factor-
graph representation seen in Figure 2.4. ti represents the event type of trigger candidate i, a1...am
represent possible entity candidates in the same sentence as i, and each ri,j represents the argu-
ment role type existing between i and aj . The joint distribution over these variables can be
written as:

pθ(ti, ri., a.|i, Ni, x) ∝ exp
(
θT1 f1(ti, i, x) +

∑
j∈Ni

θT2 f2(ri,j, i, j, x) +
∑
j∈Ni

θT3 f3(ti, ri,j, i, j, x)

+
∑
j∈Ni

θT4 f4(aj, j, x) +
∑
j∈Ni

θT5 f5(ri,j, aj, j, x)
)

where θ1...θ5 are parameter vectors, f1...f5 are feature extractors, and Ni is the set of entity
candidates a1...am. The model parameters are learned by optimizing the following objective
function using the L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) algorithm
[78], a quasi-Newton method for optimization:

θ∗ = arg max
θ

L(θ)− λ||θ||22

L(θ) =
∑
i

log pi(ti, ri., a.|i, Ni, x)

The second subproblem is to consider event-event relationships. The motivation for this is
that the presence of one event type may provide evidence either for or against the presence of
other event types. For example, Conflict.Attack events are often correlated with the existence of
Life.Injure events.

15



Figure 2.4: Factor graph for within-event structures used by Yang and Mitchell [2016]. ti rep-
resents the event type (e.g. Life.Injure, Conflict.Demonstration) of trigger candidate i. a1...am
represent the entity candidates occurring within the same sentence as trigger candidate i. ri,j
represents the argument role type (if any) existing between i and aj (e.g. Place, Time, Attacker).

Given a pair of trigger candidates (i, i′), the probability of their event types (ti, ti′ are modeled
as:

pφ(ti, ti′|x, i, i′) ∝ exp
(
φTg(ti, ti′ , x, i, i

′)
)

where φ is a parameter vector and g is a feature function. As with the previous model,
parameters are learned using L-BFGS.

The final subproblem is to identify entity candidates, which are used to fill up argument roles.
A linear-chain conditional random field is trained to handle entity extraction.

The final task is to combine these models together for joint inference. The model for this is
defined in the following manner:

max
t,r,a

∑
i∈T

E(ti, ri., a.) +
∑
(

i, i′ ∈ T )R(ti, ti′) +
∑
j∈N

D(aj)

E(ti, ri., a.) = log pθ(ti|i, Ni, x) +
∑
j∈Ni

log pθ(ti, rij|i, Ni, x) +
∑
j∈Ni

log pθ(rij, aj|i, Ni, x)

R(ti, ti′) = log pφ(ti, ti′|i, i′, x)

D(aj) = log pψ(aj|j, x)

where T is the set of trigger candidates, and pψ(aj|j, x) is the marginal probability from the
entity extraction CRF.

This problem can be framed as an integer linear program, and is solved using AD3 (Alternat-
ing Directions Dual Decomposition) [85].

Neural Approaches

Nguyen and Grishman [2015] consider the problem of event trigger classification via convolu-
tional neural networks (ConvNets3) [62, 66]. For each word in the document, they categorize the

3The abbreviation “CNN” is frequently used in the literature to refer to convolutional neural networks, however,
this same term can also refer to the broadcast news network. To avoid confusion, we will use the term “ConvNet”
to refer to the neural network model, and “CNN” to refer to the news network.
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word into one of a set of predefined event trigger types, or “NONE” if the word is not a trigger.
The overall model may be seen in Figure 2.5. At the input layer, the target word xi and its

nearby context words xi−w...xi−1, xi+1...xi+x are each transformed into real-valued vectors using
embedding lookup tables for the word, position relative to the target word, and entity mention
information. The resulting vectors from each of these tables are concatenated into a single vector,
and the set of vectors comprising the target and context words form a matrix x. A convolutional
layer is then applied to this matrix, followed by a max pooling layer and fully connected layer. In
their experiments, they found that this model was able to slightly outperform existing baselines.
However, a notable limitation of this model is that it is unable to detect event arguments.

Figure 2.5: ConvNet model used by Nguyen and Grishman [2015]. The convolutional layer
allows the model to construct feature maps from words and their contexts. The motivation for
the use of ConvNets is to capture information reflecting higher-level semantics, as opposed to
solely individual word-level features

Chen et al. [2015] apply a pipeline of convolutional neural networks to first perform event
trigger classification, followed by event argument classification. Their overall model architec-
ture, seen in Figure 2.6, is very similar to the model of Nguyen and Grishman [2015]. The below
description is the more general model used for argument classification – converting to trigger
classification requires only minor modifications to the model.

The model begins with embedding the target and context words into a real-valued matrix.
The embeddings consist of lookups for the word, position relative to the target word, and the
event trigger output of the word (from the trigger classification network). The resulting matrix is
then fed into a dynamic multi-pooling layer, rather than a max pooling layer as seen in Nguyen
and Grishman [2015]. The behavior of this layer is almost identical to that of a max pooling
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layer, except that instead of collapsing an input feature map into a single value, it instead divides
the feature map into three portions and performs a max pooling operation over each (resulting
in three output values, rather than one). At the final layer, the dynamic multi-pooling output is
combined with the original input word embeddings, and a fully connected layer is applied to
perform the final classification of argument roles.

The experimental results for this model show improved performance compared to non-neural
methods on both trigger and argument classification. Both neural models perform about the same
on event trigger classification.

Figure 2.6: ConvNet model used by Chen et al. [2015]. The overall intuition is the same as in
the model of Nguyen and Grishman [2015], but is additionally applied to argument extraction,
whereas the Nguyen and Grishman model is only used for trigger extraction.

2.1.3 Event Extraction in Non-English Languages
There are some cases in which event extraction algorithms have been deployed to additional
languages beyond English. The MUC-5 conference considered event templates in Japanese for
both the joint ventures and micro-electronics domains [55, 56]. Sentence-level event extraction
has been applied to Chinese and Spanish [13, 14, 18, 19, 49, 50, 51, 70]. However, the majority
of event extraction work focuses exclusively on English texts.

2.1.4 Event Extraction in Video
In addition to textual event extraction, there exists a large body of work applying event extraction
to video [80, 82, 83, 89, 101, 102, 120, 126, 127]. While video event extraction is outside
the scope of this thesis, we believe macro-event extraction techniques could prove useful for
creating template-based summaries of multimedia. Just as in texts, videos also have the problem
of identifying 1.) the main event, 2.) the participants in the event, and 3.) the various argument
roles to which each participant belongs. For example, consider the video feed from a security
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camera. While most of the video may be unimportant, it is highly desirable to be able to concisely
summarize any content containing a major event, such as an attack or robbery. In order to provide
a complete video summary, it is necessary to identify who is involved in the event, and what roles
they fall under (e.g. attacker, victim, police) – all of which closely parallels the content seen in
macro-event templates for texts.

Event Type Event Subtypes
Conflict Attack, Demonstrate
Life Be-Born, Die, Divorce, Injure, Marry
Movement Transport
Contact Meet, Phone-Write
Transaction Transfer-Ownership, Transfer-Money
Business Declare-Bankruptcy, Start-Org, End-Org, Merge-Org
Personnel Start-Position, End-Position, Nominate, Elect
Justice Sentence, Charge-Indict, Fine, Acquit, Pardon, Trial-Hearing, Convict, Appeal,

Release-Parole, Execute, Extradite, Sue, Arrest-Jail

Table 2.2: Event types and subtypes considered in the ACE program

2.2 Machine Reading Comprehension

The field of machine reading comprehension seeks to create algorithms that can read, understand,
and reason about texts. Machine reading comprehension can be seen as a specific case of the
question answering problem, where the available knowledge to the system is restricted to a single
source (e.g. a single document or passage), rather than having access to the entire web. A system
that is able to succeed on such a task should be in principle well suited to event extraction (and
more broadly, information extraction), as any system that can reason about documents should be
able to also extract relevant entities, relations, and events from the texts.

Machine text comprehension is not a new problem. For decades, researchers have attempted
to develop models that can read a text and answer questions about its content [11, 12, 36, 48, 103,
103, 107]. However, these systems were severely limited by the amount of available annotated
data – typically only in the hundreds of examples.

The field has recently exploded in popularity due to advances in deep learning and recent
development of massive corpora for machine reading comprehension. Hermann et al. [44] intro-
duced the CNN/Dailymail corpora – two massive datasets generated automatically by harvesting
article summaries from online news stories. These datasets contain hundreds of thousands of
examples, and are vastly larger than any other machine reading comprehension datasets created
before then. The experiments of Hermann et al. on this data with deep learning models showed
vastly superior performance compared to non-neural models. Since then, numerous advances
have been made, both in terms of additional available datasets [45, 93, 100] and more sophisti-
cated deep learning models [16, 28, 31, 60]. Additional details on the field of machine reading
comprehension are discussed later in Chapter 6.
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2.3 Summarization
The goals of summarization closely match those of our proposed macro-events, as both tasks
seek to provide a high-level, concise view of a document. Summarization methods fall into
two categories: abstractive and extractive summarization. Abstractive summarization focuses on
generating natural language summaries that can describe the document in a shorter or simpler
form [38, 39, 40, 59, 79, 88, 98, 110, 111]. Extractive summarization avoids the problem of
natural language generation by instead extracting subsets of the original text in order to create a
summary [8, 9, 27, 35, 76, 77, 90, 91, 99, 125].

Ultimately however, neither abstractive nor extraction summarization meets the goal of our
problem, as both methods simply produce an unstructured natural language text. The unstruc-
tured nature of such summaries are often useful for casual users, but are unsuitable for consump-
tion by professional analysts or downstream processing (such as question answering or knowl-
edge base population). In contrast, our proposed framework does not seek to generate natural
language summaries, but instead template-based structured summaries, which we believe can
offer quicker access to the information needs of users and more importantly, feed downstream
automated analytic capabilities.

Some works on text summarization have considered how to incorporate events into sum-
maries. Filatova and Hatzivassiloglou [37] extracted relationships between entities and frequent
nouns to represent events, and used these as features for extractive summarization. Ji et al. [58]
explored using an information extraction system to identify entities, relations, and events, and
utilize these to reweight candidate sentences in an extractive summarization system. However,
these kinds of studies are ultimately still considering the task of generating natural language
summaries, rather than template-based summaries.

2.3.1 Extractive Summarization
The extractive summarization problem can be viewed under the following formulation: given a
document D containing sentences (s1, s2, ..., sn), select a subset of k sentences that best summa-
rize the text. The most well known method for extractive summarization is Maximum Marginal
Relevance (MMR) [8]. MMR operates by greedily selecting sentences one at a time, using a
scoring function based on a combination of relevancy and redundancy:

scoreMMR(si) = λrel(si)− (1− λ) max
sj∈S

sim(si, sj)

where λ is a scalar on the interval [0, 1], rel(si) is the relevance of sentence si, S is the set
of sentences selected so far, and sim(si, sj) is the similarity between sentences si and sj (e.g.
cosine similarity). At each iteration of the algorithm, all of the remaining possible sentence
candidates are ranked according to their score, and the top sentence is added to the summary.
The algorithm continues in this fashion until the desired number of sentences has been obtained.

Another popular approach for extractive summarization is to create a graph of sentences,
and apply PageRank [94] to determine the most central subset of sentences. TextRank [91] and
LexRank [35] are two popular algorithms based on this idea. In both algorithms an undirected
graph G = (V,E) is constructed, where V is the set of sentences, and E is a set of edges
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connecting together semantically similar sentences. PageRank is applied to the graph structure,
and the overall summary is then constructed from the top scoring sentences.

2.3.2 Abstractive Summarization
Abstractive summarization techniques often begin similarly to extractive summarization tech-
niques, by identifying the key phrases and sentences in the source text that describe the main
event. In contrast to extractive summarization however, abstractive summarization does not sim-
ply generate summaries by concatenating sentences together, and instead relies on techniques for
natural language generation.

McKeown et al. [1999] developed a system which first analyzes the text to identify phrases
containing information that will be central to the summary. A parser is applied to the sen-
tences containing these phrases to obtain predicate-argument structures, which are then used
by FUF/SURGE [34, 108], a tool for natural language generation. The generated language from
FUF/SURGE serves as the final constructed summary.

Jing and McKeown [2000] present a system inspired by “cut and paste” techniques seen
in human-generated abstracts. They begin by extracting a set of key sentences which describe
the main points of the text, and then edit these sentences down in order to generate a more
natural, concise summary. The generation of these summaries is done by using handcrafted
rules for sentence reduction and sentence combination. Sentence reduction involves removal of
unnecessary phrases from individual sentences, while sentence combination takes information
from separate sentences and merges them into a single sentence.
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Chapter 3

Macro-Events

3.1 Definition
In this chapter, we introduce the concept of “macro-events”. A macro-event is a structured
template providing a summarization of a single document through argument slot filling. The
goal of such a template is to provide a high-level view of a document’s content, focused solely
on the primary event described in the text.

As is typical in information extraction, we formulate our objective as the problem of filling
up a predefined template with particular strings from the text. This can be broken down into three
key subproblems: 1.) determining the primary event of interest in the document, 2.) classifying
the event type into one of several predefined types, and 3.) extracting entities associated with
each argument slot. This is notably different from the paradigms studied in MUC and ACE.
In MUC, the event type for each year was always given, so there was no need to determine
the correct template to use for any particular document. In ACE, it was necessary to determine
the type of event template to use for each template, but participants did not have to distinguish
between the main event of the document and any secondary events that might also be mentioned
in the text.

More formally, a macro-event takes the form of the template seen in Table 3.1. It consists
of a macro-event type, a set of argument roles, and a set of named entity fillers for each of these
roles.

Macro-Event Type
Argument Type 1 Named entity fillers
Argument Type 2 Named entity fillers
... ...
Argument Type N Named entity fillers

Table 3.1: A macro-event template prototype. A macro-event consists of a type, argument roles,
and argument fillers. Each of the argument fields in a completed macro-event may be filled by
zero, one, or more textual fillers.

The type of the macro-event template is simply the ontological class to which the event be-
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longs. This corresponds exactly to the notion of an event type in ACE. Example event types that
one might want to model include attacks, natural disasters, transactions, elections, or demon-
strations.

The argument roles of the macro-event template are the specific roles that define an event of
this type. For instance, if considering an attack event, the event could be well-defined by roles
of location, time, perpetrators, and victims. Additionally, among the victims, we might want to
further categorize into injured victims and dead victims.

For some events, such as attacks, it can be desirable to organize the argument roles into a
hierarchy. For instance, continuing the attack example, we can define a two-layer macro-event
template, where the first layer includes the location, time, perpetrators, and victims, and the
second layer includes the roles of injured and dead as children of the victims role. See Figure 3.1
for a visualization of this example, and Figures 3.2 and 3.3 for an examples of the election and
transaction template structure.

Attack

Victims

DeadInjured

PerpetratorsTimeLocation

Figure 3.1: Hierarchy defined by the attack macro-event type

The hierarchy structure allows for easy definition of constraints among the entity fillers. Sib-
ling relationships between roles in the hierarchy imply mutually-exclusive relationships. Thus,
in the attack macro-event, any filler that is used in the victim slot cannot also be used in the
perpetrator slot.

The parent-child relationship is also meaningful. Any filler of a child role must also be a
filler of a parent role. In the attack macro-event, this means that any injured victim must also be
included in the more general category victim.

Each argument filler corresponds to a specific span of text from the original document. In
general, an arbitrary number of entities could fill any particular role, although in practice some
may typically be filled by just a single text span. For example, time and location for an election
typically have just a single value, while nominees will in most cases require multiple fillers.

Overall, this kind of hierarchical structure provides a very simple and clean way to define any
sorts of constraints that arguments may be subject to within an event of interest. As an example,
consider the following text, and the corresponding macro-event template that would be extracted
(Figure 3.2:
• HUNTSVILLE, Texas Condemned killer Johnny Ray Conner asked for forgiveness and

said he’d be waiting in heaven for loved ones, including his victim’s relatives, as he became
the 400th Texas inmate executed since the state resumed carrying out the death penalty a
quarter-century ago.
...
He received lethal injection for the slaying of Kathyanna Nguyen, 49, during a failed rob-
bery at her Houston convenience store in 1998. Conner’s two sisters were among people
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watching through a window as he died. Nguyen’s daughter and a sister were among those
watching through another window.
...

The perpetrator argument is filled using the full name of Johnny Ray Conner as seen in the
first sentence of the text. Later mentions of this person in the document use either pronouns or
just his surname, but for the purposes of the macro-event it is important to fill the slot with the
most identifying form of his name. The victim slot is filled by Kathyanna Nguyen, and this same
filler is used for the dead slot. This reflects the nature of the parent-child relationship amongst
argument nodes described previously. The other child node, injured remains unfilled, as there
were no other victims in this attack. The time and location slots are similarly filled to include
1998 and Houston respectively.

Attack Macro-Event
Perpetrators Johnny Ray Conner
Victims Kathyanna Nguyen
Victims – Dead Kathyanna Nguyen
Victims – Injured (None)
Time 1998
Location Houston

Table 3.2: An example filled macro-event template for the attack domain.

Not all macro-event templates are as simple as this example. Consider the following text and
macro-event (Figure 3.3):
• Authorities charged accused Kalamazoo, Michigan, shooter Jason Brian Dalton on Mon-

day with six counts of murder, two counts of assault with intent to commit murder and
eight firearms violations.
...
The gunman shot eight people in three different parts of the county Saturday evening, au-
thorities said.
...
Authorities named the first victim as Tiana Carruthers, who was shot in front of her chil-
dren before 6 p.m. Saturday.
Next were Richard Smith, 53, and his son Tyler, 17, who were looking at a vehicle at a car
dealership when both were shot and killed, police said.
Tyler’s girlfriend, also 17, witnessed the shootings from the back seat of their car, accord-
ing to Hadley, the Kalamazoo public safety director.
...
The last shooting happened in the parking lot of a Cracker Barrel restaurant. Authori-
ties say four women were killed as they sat in two cars: Dorothy Brown, 74; Barbara
Hawthorne, 68; Mary Lou Nye, 62; and Mary Jo Nye, 60.
A 14-year-old girl who was in the passenger seat of one of the vehicles was also struck.
Her family identified her Monday as Abigail Kopf.
Hadley said Sunday the girl was in ”very, very critical condition.” A day later, he said the
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girl is ”still holding on” and responding to verbal commands.
...

In this example, an individual shooter committed multiple murders in the same evening be-
fore being arrested. While sentence-level extraction would treat each attack as a separate event,
we instead model the entire evening’s attacks via a single macro-event template. In order to
correctly fill this template, we need to analyze the entirety of the text. While some information,
such as the perpetrator and location are found very early in the document, the identity and status
of the victims is not provided until much later in the text.

Attack Macro-Event
Perpetrator Jason Brian Dalton
Victims Richard Smith

Tyler
Dorothy Brown
Barbara Hawthorne
Mary Lou Nye
Mary Jo Nye
Tiana Carruthers
Abigail Kopf

Victims – Dead Richard Smith
Tyler
Dorothy Brown
Barbara Hawthorne
Mary Lou Nye
Mary Jo Nye

Victims – Injured Tiana Carruthers
Abigail Kopf

Time Saturday
Location Kalamazoo

Table 3.3: A more complicated attack macro-event. This document describes a shooter who
killed multiple people in one night, and injured several others. The macro-event structure at-
tempts to summarize the entire attack, rather than treating each individual incident as a separate
event (as would be done in sentence-level extraction).

Election

Running-Mates

LosersWinner

Parties

LosersWinner

Nominees

LosersWinner

PositionTimeLocation

Figure 3.2: Hierarchy defined by the election macro-event type
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Transaction

Participants

SellerBuyer

MoneyItemTimeLocation

Figure 3.3: Hierarchy defined by the transaction macro-event type

3.2 Event Ontology
We have designed structures and collected data for a variety of macro-event types, in order to
demonstrate the generalizability of both the macro-event paradigm and our algorithms to a vari-
ety of domains. In this section, we will describe each of the studied domains and their respective
macro-event templates. In the following section, we will describe the process by which we obtain
gold standard annotations for these events.

3.2.1 Attacks
The attack macro-event consists of the following argument roles:
• Location – where the attack took place. In annotation, we prioritize city name first; if this

does not exist then state, then country, then any applicable named entity.
• Time – when the attack took place. In annotation, we mark the most informative single

span of text in the document.
• Perpetrators – the person(s) instigating the attack
• Victims – the person(s) who received physical harm as a result of the perpetrators’ actions
• Injured – the subset of victims who were injured, but not killed as a result of the attack
• Dead – the subset of victims who died as a result of the attack
The hierarchical structure for attacks can be seen in Figure 3.1.

3.2.2 Elections
The election macro-event consists of the following argument roles1:
• Location – where the election took place.
• Time – when the election took place.
• Title – the position the election was for (e.g. President, Senator)
• Nominees – the candidates nominated for the election
• Winner – the candidate who won the election
• Losers – the candidates who lost the election

1For Spanish data, we consider only a subset of these slots, due to lack of available information in Spanish
Wikipedia election infoboxes (see Section 3.3.1 for details)
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• Parties – the political parties associated with the election
• Party-Winner – the political party of the winner
• Party-Loser – the political parties of the losers
• Running-Mates – the running mates for the election
• Running-Mate-Winner – the winning running mate
• Running-Mates-Loser – the losing running mates
The hierarchical structure for elections can be seen in Figure 3.2.

3.2.3 Sporting Events

The sporting-event macro-event consists of the following argument roles:
• Location – where the sporting event took place
• Time – when the sporting event took place
• Competitors – the people and/or teams participating in the event
• Winner – the people and/or team that won the event
• Losers – the people and/or teams that lost the event
The hierarchical structure for sporting-events can be seen in Figure 3.4.

Sporting-Event

Competitors

LosersWinner

TimeLocation

Figure 3.4: Hierarchy defined by the sporting-event macro-event type

3.2.4 Criminal Trials

The criminal-trial macro-event consists of the following argument roles:
• Location – where the trial took place
• Time – when the trial took place
• Defendant – the person under trial
• Verdict – whether the defendant won or lost the trial
• Sentence – the punishment (if any) that the defendant must serve
The hierarchical structure for criminal-trials can be seen in Figure 3.5.
One notable difference with the criminal-trials macro-event compared to the previously seen

macro-event types is the presence of classification-based slots in addition to extraction-based
slots. In particular, the verdict and sentence slots are all classification-based slots, so in these
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templates, the macro-event extraction algorithm must select one argument label from a set of
predefined possibilities.

For the verdict slot, there are three possible argument labels:
• Innocent/Acquittal – the defendant was found not guilty of the crime
• Guilty – the defendant was found guilty of the crime
• Incomplete/Mistrial – the trial is either incomplete, or ended in a mistrial
For the sentence slot, there are six possible argument labels:
• Prison – the defendant was sentenced to a prison term
• Execution – the defendant received a death sentence
• Other – the defendant received some sentence other than imprisonment or execution (e.g.

community service)
• Unknown – the defendant was found guilty, but the document does not state what the

sentence was
• Incomplete (no sentence) – the trial is not complete, and thus no sentence has been given

yet
• Acquittal (no sentence) – the defendant was found not guilty, and thus received no sentence

Criminal-Trial

SentenceVerdictDefendantTimeLocation

Figure 3.5: Hierarchy defined by the criminal-trial macro-event type

3.3 Annotation
In this section, we will describe the process by which we obtain gold standard annotations for
macro-events. We have utilized several techniques for obtaining gold-standard annotation, with
the technique used for each particular event type dependent on the availability of existing human-
curated resources for the target domain. Corpus statistics for our five datasets may be seen in
Table 3.5.

3.3.1 Leveraging Online Resources for Annotation
For some domains, it is possible to leverage existing human-curated resources for use as gold-
standard information. In particular, we have looked at Wikipedia infoboxes, which are a rich
resource containing key information for their respective documents.

Wikipedia infoboxes are template-based structures containing slots and fillers, typically used
to summarize key entities and relationships within an article. For example, the Wikipedia infobox
associated with the 2008 United States Presidential Election (see Figure 3.6) contains informa-
tion about the presidential candidates, the vice-presidential candidates, their political parties, the
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number of electoral votes received, and so on. In 2010, it was estimated that approximately one
third of Wikipedia articles contained infoboxes [65].

Figure 3.6: Example Wikipedia infobox and its corresponding document

For certain domains, the coverage of infobox template fields is sufficiently broad to contain all
of the information needed to fill macro-event templates. In such cases, gold standard annotations
for documents can be obtained by simply parsing their infoboxes (see Table 3.4 for an example
macro-event template extracted from an infobox). We applied this process to create macro-event
annotated data for elections (including both English and Spanish data) and sporting-events.

For the elections data, we use a different subset of macro-event slots between English and
Spanish. This is due to the fact that Wikipedia does not use a consistent schema for infoboxes
across languages. As a result, certain slots may be available readily on one language, but not
another. For English, we use the full set of slots seen in Figure 3.2. For Spanish, we use all of
the slots except the title and running-mate slots.

Election Macro-Event
Title President
Nominees Barack Obama

John McCain
Winner Barack Obama
Losers John McCain
Time November 4, 2008
Location United States

Table 3.4: A gold-standard macro-event template extracted from the infobox seen in Figure 3.6.
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3.3.2 Internal Annotation
For domains without sufficiently detailed existing resources, we have conducted human anno-
tation of documents via Amazon Mechanical Turk2, a popular service for crowdsourcing work.
Specifically, we apply this process to documents for the attacks and criminal-trials domains.
Source documents for our domains are collected from http://murderpedia.org/, a collection of
news articles and court documents for famous murder cases.

At annotation time, the user is provided with the full text of a document, and is asked to
provide the slot fillers for each of the argument slots belonging to the main event of the text. To
ease the burden of annotation, we do not require the annotators to identify entities themselves,
and instead provide them with multiple choice questions where the answers are generated via
automatic named entity recognition. While in principle this means that some answers may be
missed, this has the added benefit of making the task easier for the workers to complete reliably
(e.g. avoids the risk of spelling mistakes).

An important concern in annotating fillers is that many entities have multiple forms used
within the same document (e.g. “Obama”, ”Barack Obama”, “Barack Hussein Obama”). In
such cases, the annotator is asked to only mark the most complete, canonical form of the entity
in question. For example, if a document mentions both “Barack Obama” and “Obama”, the
annotator would only fill in “Barack Obama”, which is the more complete form of his name.

During annotation, some rules based on the hierarchical structure may automatically be ap-
plied to ease the process. For instance, when annotating attack macro-events, any fillers marked
under the “injured” slot may automatically be marked under “victims” as well. The annotator is
not required to separately identify these slots.

2https://www.mturk.com/
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Corpus Statistics

Attacks
Elections
(English)

Elections
(Spanish) Sporting-Events Criminal-Trials

Total # of
documents 535 1420 1631 3168 402

Average words
per document 434.20 481.85 319.73 468.96 434.8

Maximum words
per document 1488 16930 7847 9162 1488

Average fillers
per document 4.37 11.8 17.4 5.77 3.19

Maximum fillers
per document 12 45 102 7 4

Average fillers
per slot 0.73 0.98 2.9 0.96 0.53

Maximum fillers
per slot 8 9 42 6 1

Table 3.5: Statistics for macro-event corpora
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Chapter 4

Learning to Search

Intuitively, jointly learning all of the fillers for each slot in the template is the optimal way to
solve this problem, as it provides the most constraints and dependencies. Knowing the name of
one person involved in an attack should make it easier to identify other people who were also
involved. Similarly, knowing the position field in an election should make it easier to identify
the nominees. In general, using global information about the rest of the template in this way is a
more informative way of filling up a template than by simply making independent decisions.

However, a naive approach to joint inference is computationally prohibitive. Suppose we
wish to fill up just a single slot in a template, and are given n entity candidates that could be
used to fill in the slot. The true answer could be that all of the candidates are fillers, that none of
them are fillers, or any subset of them are fillers. Thus, to consider even just a single slot means
considering the power set of entity candidates: 2n possible combinations. Further expanding this
problem to fill in all of the slots in a template becomes even more expensive.

4.1 Our Proposed Model

In order to leverage global information, while maintaining computational intractability, we adopt
the Learning to Search framework for structured prediction. The main idea of Learning to Search
is to reframe the problem of structured prediction as a reinforcement learning problem [61, 122].
Let us begin by defining some key terminology. Formally, a policy π is a mapping from any state
st (represented by document-related features plus historical decisions) at step t to the action at
of filling a particular slot with a specific entity candidate. In practice under this framework, the
policy is simply represented by a classifier that determines the correct action to take (among a
fixed set of possible choices), conditioned on the current state. The system will transit to its next
state after taking each action. To measure the effectiveness of π, a reward will be triggered at
each action at if the action results in the inclusion of a correct argument filler. Our overall goal
is to learn a policy that maximizes the rewards of the system. We can improve beyond our initial
policy by allowing the system to explore the data. The main benefit of exploring the data is that
it allows the system to be more robust at test time to classification paths unseen in the original
training data.

More specifically, we follow the AggreVaTe model of Ross and Bagnell [109], and apply it to
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the task of macro-event extraction as follows. For each document, we start by collecting all entity
candidates (via named entity recognition), and pairing each one with all possible argument roles
in the macro-event structure (e.g. (time, Sunday), (injured, JohnDoe), (location,Boston)
for an attack macro-event). For each of these pairs, we need to decide to either include or
exclude the pair from the final event template. These decisions can be made independently, but
doing so may result in violating the constraints defined by our macro-event template hierarchy.
Instead, for each decision, we consider not only local features about the pair, but also all of the
past decisions made by our model on previously seen (entity,argument) pairs (see Table 4.1 for
our full feature set). By doing so, we are able to take past decisions into context when filling up
the template.

Algorithm 1: Learning to Search for Macro-Events Algorithm. π∗ is an oracle policy which
directly follows the gold standard annotations. We use βi = I(i = 1), as recommended
from the work of the AggreVaTe authors.

Data: D, a collection of documents annotated for macro-events
Result: Policy π̂ for prediction of macro-events on test data

1 Initialization of π̂1 to any policy in Π, X ← ∅
2 for i = 1 to N do
3 Let πi = βiπ

∗ + (1− βi)π̂i
4 Generate k new datapoints using the following procedure:
5 for j = 1 to m do
6 Sample a document d uniformly at random from D
7 From d, generate sequence of candidate (entity, argument role) pairs for extraction;
8 Sample a timestep t ∈ 1, 2, ...T , where T is the total number of candidate pairs
9 for k = 1 to t− 1 do

10 Apply policy πi to include/exclude candidate pair k from macro-event template
11 end
12 Explore all possible policy actions for candidate pair t, for each measuring the

total loss obtained via π∗ for steps t+ 1...T .
13 Generate a new training example from the state at timestep t, using the action

minimizing total loss
14 end
15 Merge new training examples with previous examples: X ← X ∪Xi

16 Train a classifier as the new policy π̂i+1

17 end
18 return π̂N

The overall algorithm can be seen in Algorithm 1. We begin by creating an initial training
set of (entity candidate, argument role) pairs from our training documents, and learn a classifier
(i.e. our policy π̂) to predict the correct argument roles for each candidate. This can be seen as
the first iteration of the loop at line 2 of the algorithm pseudocode. We then expand our training
set with additional examples, obtained by exploring the training data in the following fashion:

1. Randomly sample one of the documents from the training set and generate the sequence of
candidate pairs (lines 6-7)

2. Follow the current learned policy πi on this document until a randomly sampled step t
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(lines 8-11)

3. Generate a new training example using state st, where the reward for each possible action is
determined by the final loss achieved when rolling out with the optimal policy π∗ provided
by an oracle. Add the new training example to the training set. (lines 12-13)

4. After generating k new examples, retrain the policy using the new training set, and jump
back to step 1. (lines 15-16)

One major point to note regarding this algorithm is that the exploration on each document
(lines 6-13) can branch from any point in the sequence of decisions. This allows the algorithm
to consider new training examples generated from a wide variety of possible cases.

A key advantage of this approach is that we can consider the entire action history of a doc-
ument while still remaining computationally tractable. By contrast, a linear chain conditional
random field would be unable to draw upon the entire action history (due to the Markov prop-
erty), and higher-order conditional random fields would become prohibitively expensive.

Local Features:
Entity name
Names of coreferent entities
Whether the entity is the first mention of a specific NER type
Paragraph number the entity occurs in
Gazetteers for common time expressions
Manually constructed context keyword lists for the target domain
Word embedding vectors
Dependent/governor information from dependency parsing

Global Features:
Previous classification decisions with the same entity on a different argument slot
Previous classification decisions on the same argument slot with other entities
Shared context words with entities from previous classification decisions

Table 4.1: Features used in our Learning to Search for Macro-Events model

4.2 Connections to Policy Gradient

In this section, we elucidate the connections of our proposed approach to policy gradient and the
classic REINFORCE algorithm [124].

πθ is parameterized by the parameters θ of the classifier, hence our goal is to find θ∗ which
maximizes the expected reward Jθ:

θ∗ = argmaxθ Jθ (4.1)
= argmaxθ Eπθ [r(s0, a0, · · · , sT , aT )] (4.2)
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where r is a binary reward function defined as

r(·) =

{
1 {at}Tt=0 leads to the correct answer
0 otherwise

(4.3)

Let RT be output of r(·) at the last step. Taking the gradient w.r.t. the above objective function
yields (using the log-derivative trick [124]):

∇θJθ =Eπθ [∇θ log pθ(s0, a0, · · · , sT , aT ) ·RT ] (4.4)

where pθ stands for the probability for rolling out experiences s0, a0, · · · , sT , aT under our cur-
rent policy πθ. Terms inside the derivative can be further factorized according to the Markov
property:

log pθ ·RT = log
T∏
t=0

pθ (st, at)RT (4.5)

=
T∑
t=0

log pθ (st, at) yt (4.6)

where we have defined y0 = y1 = · · · = RT .
Equation (4.6) suggests maximizing Jθ is equivalent to minimizing the negative log-likelihood

loss over the union of the original training data and newly generated pseudo-training examples
{(st, at, yt)}, where st, at and yt denote the features of the training instance, the entity candidate
and slot type (category) that we are currently looking at, and its associated label, respectively. As
an example, when applying logistic loss for each category, the negative log-likelihood becomes

− log pθ(s, a)
def
= log (1 + exp(−〈θa, s〉)) (4.7)

where 〈·, ·〉 denotes the inner product; θa parameterizes the decision boundary for slot type a.
We would like to point out two differences between our implementation and the above anal-

ysis. First, the logistic loss is replaced with hinge loss due to its stronger empirical performance.
Second, we relaxed the constraint that y0, y1, ..., yT have to be identical, allowing each action
to have their individual reward based on its immediate feedback (namely whether the answer
is correct for a particular slot). Unlike traditional supervised learning under the i.i.d. assump-
tion, decisions made by our system are no longer independent as the state s dynamically evolves
during the Markov process, which is crucial for capturing the structure both among and within
different slot types.
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Chapter 5

Deep Learning for Macro-Event Extraction

Traditionally, neural networks were not widely used models for classification and extraction
tasks, due largely to the complexity in training such models. In recent years, however, deep
learning has become massively popular for almost all machine learning problems, in part due
to major increases in both computing power and availability of large training datasets. In this
chapter, we explore the application of deep learning techniques to supervised macro-event ex-
traction. In the following chapter (Chapter 6), we will explore deep learning methods for cases
where little to no annotated macro-event training data is available.

5.1 Comparisons to Existing Work

Deep learning has been applied to a wide variety of machine learning and NLP tasks, including
part-of-speech tagging [26, 112, 132], parsing [15, 25], named entity recognition [22, 26, 113],
machine reading comprehension [16, 28, 31, 44, 60], and computer vision [64, 114, 123] – often
resulting in state-of-the-art performance on these tasks.

To date however, deep learning has not been well-studied to the task of document-level event
extraction. The closest work to this is that of Boroş et al. [2014]. In their work, they generate
word embeddings with a single-layer neural network from unlabeled, on-domain data, and then
subsequently use the resulting embeddings as features in an ensemble of randomized decision
trees to fill template slots. The goal of this procedure is to automatically learn features that
represent the semantic meanings of words, rather than to use human-engineered features.

A key limitation of this method is that no deep learning techniques were actually applied to
the main task of event extraction. Neural networks were only used in an unsupervised fashion to
obtain word embeddings, and were learned completely separately from the argument prediction
classifier. In contrast, in this work we aim to directly solve the task of document-level event
extraction with deep learning models, using a multi-layer neural network trained on macro-event
annotated data.
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Figure 5.1: Architecture for neural network-based macro-event extraction. Input features are
extracted from the document and current (entity,role) pair. The input is then fed through multiple
hidden layers with ReLU activation functions to add nonlinearity. At the output layer, a binary
decision is made to either include or exclude the candidate pair from the macro-event template.

5.2 Model Details
The overall problem we address remains the same as in previous chapters – to fill a document-
level event template focusing on the main event in the text. Given an input text and a set of
candidate argument fillers, we attempt to fill up a macro-event template by making binary pre-
dictions of whether to include or disclude each (entity candidate, argument role) pair in the final
template.

Figure 5.1 provides an illustration of our model architecture. The input layer consists of fea-
tures for our model, extracted in the same manner as seen in the previous chapter (see Table 4.1,
local features only). The model includes two hidden layers, followed by an output layer, which
provides a probability score for whether the pair should be included in the final template. The
motivation for using multiple layers is to allow the model to learn more complex interactions
amongst the input features.

Let us consider in more detail exactly how the model operates. Starting at the input layer, we
first apply a linear transformation W of the data to a lower-dimensional hidden vector (where the
weights of W are parameters to be learned).

After applying this transformation, the hidden vector is then passed through a non-linear
transformation, which allows the network to model more complex decision boundaries. Popular
choices for non-linear transformations include the sigmoid, hyperbolic tangent, and rectified
linear unit (ReLU). The equations for each of these are seen below (corresponding graphs may
be seen in Figures 5.2, 5.3, and 5.4.

sigmoid(x) =
1

1 + e−x
(5.1)

tanh(x) =
ex − e−x

ex + e−x
(5.2)
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Figure 5.2: Visualization of the sigmoid function

ReLU(x) = max(0, x) (5.3)

In our experiments, we use rectified linear units, which gave the best performance on valida-
tion.

This process is subsequently repeated for the additional layers, until we reach the final layer.
At the final layer, we apply a softmax transformation over the data, which converts the scores for
each possible output decision into a set of probabilities:

softmax(xi) =
exi∑
j e

xj
(5.4)

Algorithm 2 shows the process by which we train our model parameters. The overall process
occurs over k epoches. Each epoch involves the following steps. We first apply the model to each
individual training example. For each training example, we run the data through the network to
obtain a prediction using the current parameters. We then compare this to the true label, and run
backwards through our network, updating each parameter using the backpropagated gradient.
Once the parameters have been updated, the model moves on to the next training example.

After the model has been applied to all of the training examples, we evaluate the current
model using a held-out set of validation data. If the current model parameters provide the highest
performance seen so far on the validation parameters, we store these parameters as the new
best parameters. At the end of the k epoches, the parameters that provided the best validation
performance are returned, and applied to the test data. Selection of a value for k is dependent on
much one wants to balance between efficiency and model performance. Too small of a value for
k may result in suboptimal performance, while too large of a value for k will lead to a training
process that is much longer than necessary1. In our experiments, we found that k = 10 gave

1After a certain number of iterations, the model is likely to start overfitting the training data, hence there is little
to be gained from subsequent epochs.

39



−6 −4 −2 0 2 4 6

−0.5

0

0.5

1

Figure 5.3: Visualization of the hyperbolic tangent function
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Figure 5.4: Visualization of a rectified linear unit (ReLU)
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good performance.
Algorithm 2: Training procedure for our model in Figure 5.1. The model is trained over k
epoches. In each epoch, a prediction is made for each training example given the current
parameters, and the weights are updated via backpropagation of the loss. After all training
examples have been visited, we evaluate the current model using validation data. At the end
of the algorithm, the parameters with best performance on the validation set are returned.

Data: X = x1, x2, ...xN training examples, Y = y1, y2, ...yN training labels,
V = v1, v2...vM validation examples, Z = z1, z2...zM validation labels

Result: Model parameters W for neural network
1 Initialization of W using random samples from uniform distribution, F1best ← 0;
2 for i = 1 to k do
3 for j = 1 to N do
4 loss← L(f(xj,W ), yj)
5 W ← backpropagation(loss,W )

6 end
7 F1← eval(V, Z,W )
8 if F1 > F1best then
9 Wbest ← W

10 F1best ← F1

11 end
12 end
13 return Wbest

The overall optimization method used for this process is stochastic gradient descent. An
important hyperparameter in the model is the learning rate for the optimization. Too large of a
learning rate causes the model to vary wildly from iteration to iteration, as it overshoots desired
local minima. Too small of a learning rate can cause the model to converge slowly, and also
runs the risk of getting stuck in local minima, rather than reaching the global minimum. In our
experiments, we tune our learning rate using the validation set.

We additionally apply dropout to the input layer during training [47]. Dropout is a popular
technique for training deep learning models, where a random number of neurons are set to zero
during each round of training. The purpose of this is to avoid overfitting the model to the training
data, and can be seen as a form of regularization. At test time, no dropout is applied to the
network.
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Chapter 6

Neural Machine Reading Comprehension

A key disadvantage of both rule-based methods and learned classifiers is that significant hu-
man effort is required to deploy these methods to any new domain. For rule-based methods, this
involves time to design and curate rules and patterns for extraction; for classification-based meth-
ods, this means large-scale annotation of documents. Both are undesirable for rapid deployment
to a new domain of interest.

In this chapter, we propose a novel algorithm that avoids the costs associated with both rule-
based and machine learning approaches to event extraction. In particular, we introduce a method
which leverages existing large-scale machine reading comprehension corpora to train a general-
purpose question answering system, and apply the resulting model directly to the task of macro-
event extraction. The overall time to deploy such a model to a new event-extraction domain is
vastly reduced compared to the substantial human effort required by past approaches to event
extraction.

Central to our approach is the Gated-Attention (GA) reader [31]. The GA reader is a deep
learning model that uses a multi-hop architecture combined with an attention mechanism, achiev-
ing high performance on multiple benchmark machine reading comprehension datasets. The
multi-hop architecture simulates a human reading the document over several passes, each time
refining the current understanding of the text. The attention mechanism serves to keep the reader
focused on a given question while reading the text, allowing the model to assign greater impor-
tance to sections of the text that are of higher relevance.

6.1 Model Details

Figure 6.1 provides an illustration of the GA reader. The document and query are read over K
layers, with each layer k taking the previous document embeddings from layer k − 1 as input.
The motivation for using k layers is to allow the model to build up a more complex represen-
tation of the input document tokens, with each layer providing focused attention on a different
aspect of the query. Layer-specific document and query embeddings are each independently
transformed using bi-directional Gated Recurrent Units (GRU) [23], and then combined using a
Gated-Attention module. The Gated-Attention module is applied to each word embedding di in
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Figure 6.1: Architecture for the GA Reader. Embeddings for both the query and document
words are obtained via look-up tables, and then passed through bi-directional GRUs to obtain
a transformed representation. Each “GA” box represents a Gated-Attention module, which ap-
ply query-focused attention to the document representation. After repeating this process over
multiple layers, a score is computed for each word in the document. These scores are converted
to a probability distribution over the words, and probabilities for repeated words in the text are
aggregated. The final resulting probability distribution is used to select answers for the query.

the document, in the following manner:

αi = softmax(QTdi)

q̃i = Qαi

xi = di � q̃i
(6.1)

where Q is the query embedding representation and � is the Hadamard product.
At the final layer, the document and query representations are combined using an inner-

product, and then run through a softmax layer to obtain a probability distribution over the tokens
in the document. Probabilities are aggregated and renormalized for tokens that appear multiple
times in the document, and the final answer is obtained by selecting the candidate with maximum
probability:

Pr(c|d, q) ∝
∑

i∈I(c,d)

si

a∗ = arg max
c∈C

Pr(c|d, q)
(6.2)

whereC is the set of candidate answers, s is the softmax probability vector, and I(c, d) designates
the indexes of document d that correspond to candidate c.
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6.2 Training Data
A variety of large-scale corpora for machine reading comprehension have been developed in
recent years, including the CNN/DailyMail [44], CBT (Children’s Book Test) [46], SQuAD
(Stanford Question Answering Dataset) [100], and WDW (Who Did What) datasets [93]. Each of
these datasets contain (document, query, candidates, answer) tuples that can be used for training
and evaluating machine reading comprehension techniques. Notably, the scale of each of these
datasets is on the order of hundreds of thousands of examples. Any of these datasets can be used
for training the GA Reader.

Let us briefly describe some popular machine comprehension datasets studied in the litera-
ture.

6.2.1 CNN/DailyMail

The CNN and DailyMail datasets were the first major large-scale datasets for training machine
comprehension model. Prior to their development, previous corpora were at a scale of merely
hundreds of examples, and thus could not be used to train data-intensive models.

The approach for creating this dataset was quite simple. First, a large number of articles
were collected from the CNN and DailyMail websites (93k and 220k respectively from each
source). Of key importance is that articles from both websites contain human-generated bullet-
point summaries of the documents, which serve as short, abstractive summaries of the texts. For
each bullet point, a (document, query, answer) tuple was generated by replacing one randomly
selected entity with a placeholder. An example of this may be seen in Figure 6.2.

6.2.2 CBT

Similarly to the CNN/DailyMail datasets, the CBT dataset is generated automatically from texts
without reliance on human annotation. In this dataset, the source documents come from publicly
available children’s books.

(document, query, answer) pairs are generated using the following procedure. For each chap-
ter in a book, the first 20 sentences are used as the source document. The question and answer
are created by taking the 21st sentence, and randomly replacing one word with a placeholder.

Beyond the true answer, additional candidate answers are generated by selecting words at ran-
dom from the source document. The randomly selected words must belong to the same category
of word as the true answer – one of Named Entities, Common Nouns, Verbs, or Prepositions.
These categorizations are obtained by applying automatic tools for part-of-speech tagging and
named entity recognition.

6.2.3 SQuAD

The SQuAD dataset is another well-known, popular dataset for machine reading comprehen-
sion. Unlike the CNN/DailyMail datasets, SQuAD was generating using crowdsourced human
answers, rather than replacement of entities in bullet point summaries.
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Figure 6.2: Process by which (document, question, answer) tuples are generated for CNN data.

First, passages from Wikipedia were obtained for use as the source documents in the dataset.
From a collection of 10,000 articles with highest PageRank scores, 536 articles were sampled
randomly. The articles were filtered to remove information such as graphs, tables, or figures, and
split into individual paragraphs.

The resulting 23,215 paragraphs were then provided to crowdsourced workers, who were
asked to create and answer questions based on the content of their assigned paragraph. To fa-
cilitate the creation of high quality question/answer pairs, workers were provided with an ex-
ample paragraph and samples of both good and poor question/answer pairs. The resulting ques-
tion/answer pairs from this crowdsourcing make up the datapoints in the SQuAD dataset.

6.2.4 WDW
The WDW dataset, similarly to the CNN/DailyMail datasets, does not rely on using human
annotation to produce (document, query, answer) tuples. Unlike these datasets, however, the
process for creating these tuples does not rely on using bullet point summaries of articles, instead
choosing to use two separate articles that both focus on the same event. A key advantage to this
approach is that is enables the creation of datasets for machine reading comprehension which
may not have human-generated summaries available.

The overall process for creating the WDW dataset is as follows. First, an article is randomly
sampled from the Gigaword corpus, and the first sentence is selected for use as the source of the
question. From this sentence, one named entity is randomly selected, and the entire noun phrase
containing this entity is removed with a placeholder.
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Once the question is obtained, the only remaining step is to obtain a corresponding passage
for use as the source document. A source document is obtained from Gigaword with an informa-
tion retrieval system, using the first sentence from the original document as the query.1

6.2.5 Comparison of Datasets

Information on each of these datasets can be seen in Table 6.1. The largest of these is the
DailyMail dataset, at nearly 1 million questions. However, none of the datasets can be considered
small – even the smallest dataset (SQuAD) consists of more than 100k example questions.

Almost all of the datasets avoid the issue of human annotation by creating questions through
entity replacement. Only the SQuAD dataset uses actual human annotation (of both questions
and answers).

One of the most important considerations when comparing the datasets is the type of ques-
tions included in the data. CBT only includes questions generated from children’s books, which
is a very limited domain. As such it is not well-suited to our domains of interest. SQuAD consists
of Wikipedia articles, which allows it to cover a broad range of topics, ranging from music to
history to mathematics. However, as our task is focused specifically on news, the broad coverage
of this data is not necessarily an advantage, as this means fewer questions are likely to be relevant
to our target domains.

The remaining three datasets (CNN, DailyMail, WDW) all consist of questions generated
from news stories. This domain is a strong match for our domains of interest, and models trained
on such data would be well-equipped to handle macro-event extraction. Of these models, we
select the WDW dataset for our experiments. There are two main reasons for selecting this
dataset over either CNN or DailyMail. The first is the difficulty of the questions among these
datasets. The questions in WDW are generally considered to be more challenging, in that they
require more semantic analysis to properly solve. In contrast the CNN and DailyMail datasets
have much closer syntactic similarity between the questions and source documents, making the
learned models focus more on sentence similarity than semantic relatedness. The second rea-
son is that the CNN and DailyMail datasets artificially increase the difficulty of problems by
anonymizing named entities in the questions and documents. While this could be argued to
make the problem more interesting from a machine learning perspective, as it prevents systems
from using background knowledge about named entities, in practice it would not be beneficial
for a real-world system to limit itself in such a manner. With our goal of macro-event extraction,
there is no reason to block the use of background knowledge in our system.

6.3 Macro-Event Extraction

In order to run the GA Reader on a document, we need a natural language question and a set of
candidate answers. The candidate answers are easily obtainable via entity recognition, leaving
only the task of obtaining natural language questions. As the GA Reader is trained only on an

1Some restrictions are applied during the search – for example, the new document must have a publication date
within 2 weeks of the original document, and the named entity answer must be contained within the selected article.
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Dataset Number of Questions Source of Documents Human Annotation Required
CNN 387420 News No
DailyMail 997467 News No
CBT 687343 Children’s Books No
SQuAD 107785 Wikipedia Articles Yes
WDW 147786 News No

Table 6.1: Information on each of the major datasets for machine reading comprehension.

off-domain corpus and does not see any annotated macro-event data, the model itself has no
knowledge of either the macro-event structure or the roles that it needs to fill.

To overcome this, we handcraft natural language questions to pose to the GA Reader for
each of the slots. Notably, as each macro-event type has a pre-defined structure, there are only
a finite number of macro-event roles that the reader needs to account for, and therefore, only a
finite number of natural language questions that need to be generated. For example, the election
macro-event type only requires generating 6 different questions, and the attack macro-event only
requires generating 5 questions. As a result, even though each argument role requires some
human effort to create a question, it is in practice many orders of magnitude faster to accomplish
this than to create on-domain training data through annotation. Example macro-event questions
can be seen in Table 6.2.

GA Reader Questions

Attack
Dead @placeholder was killed or died in the attack or shooting
Injured @placeholder was wounded or injured in the attack or shooting
Time the attack or shooting occurred at @placeholder

Election
Winner @placeholder won the election
Loser @placeholder lost the election
Nominee @placeholder was nominated to office

Table 6.2: Sample handcrafted questions passed to the GA Reader for macro-event extraction
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Chapter 7

Experimental Results

In this section, we will describe our experimental results for macro-event extraction. We ap-
ply macro-event extraction experiments to the following domains: attacks, elections, sporting-
events, and criminal-trials. (See Figures 3.2, 3.1, 3.4, and 3.5 for their respective hierarchical
structures). Furthermore, for the elections domain, we report results on both English language
documents and Spanish language documents. We use the same macro-event datasets described
in Chapter 3.

7.1 Baselines

We evaluate performance on our dataset using a variety of methods:

• First mention baseline – for each argument role, assigns the first named entity with valid
entity type (e.g. a PERSON entity cannot fill the Time argument role)

• Most frequent baseline – for each argument role, assigns the most frequently mentioned
named entity with valid entity type

• Aggregated Sentence-Level Event Extraction – runs ACE-style event extraction using joint
inference of event triggers and arguments [71, 72, 73]. We directly use the implementa-
tion provided via the RPI Joint Information Extraction System1. To match our annotation
scheme, we only consider arguments that are named entities.

• QA Neural Networks – our proposed neural machine reading comprehension model for
macro-events described in Chapter 6

• Independent SVMs – linear SVMs using using the local features described in Chapter 4
• Learning to Search for Macro-Events – our proposed model described in Chapter 4
• Independent Neural Networks — our proposed deep learning model trained directly on

macro-event training data, described in Chapter 5

1http://nlp.cs.rpi.edu/software/
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Supervised? Requires On-Domain Training Data?
First Mention Baseline No No
Most Frequent Baseline No No
Aggregated Sentence-Level Yes Yes
QA Neural Networks Yes No
Independent SVMs Yes Yes
Learning to Search for Macro-Events Yes Yes
Independent Neural Networks Yes Yes

Table 7.1: Training data requirements for macro-event extraction algorithms

7.2 Experimental Setup
For each dataset, we randomly partition the data into separate training, validation, and testing
sets. Preprocessing of each document is done using Stanford CoreNLP2 [84] to obtain POS tags,
named entities, entity coreference, and dependency parsing for our features.

Different methods have different requirements for training data, as seen in Table 7.1. The first
mention and most frequent baselines do not require any training data. All other methods require
available training data, but differ in the type of training data required. The aggregated sentence-
level event extraction approach requires sentence-level annotated data for all target domains, and
is trained using the ACE 2005 data for our experiments. The QA Neural Network does not
require any on-domain training data for target events, and can be trained using any large machine
comprehension corpus. In our experiments, we train our model using the WDW data. Lastly,
the independent SVMs, Learning to Search, and independent neural network methods all require
on-domain macro-event annotated data, and are trained using the training set from our annotated
data.

Our independent SVMs and Learning to Search methods are both trained using LIBSVM34

[10]. Our independent neural network approach is implemented using PyTorch5.
For the aggregated sentence-level approach, we combine arguments from multiple types of

sentence-level events based on the domain. For the attack dataset, we combine argument re-
sults from the Conflict.Attack, Life.Injure, and Life.Die event types into a single event tem-
plate. For the elections dataset, we combine argument results from the Personnel.Elect and
Personnel.Nominate event types. For the criminal-trials domain, we combine argument results
from the Justice.Trial-Hearing, Justice.Charge-Indict, Justice.Convict, Justice.Sentence, and Jus-
tice.Acquit events. We do not apply this method to the sporting-events domain, due to lack of
sentence-level annotations, nor do we apply this method to the Spanish elections data, as the RPI
Joint Information Extraction System does not include functionality for Spanish extraction.

Parameters for all methods are tuned using the held out validation set. We evaluate all models
using micro and macro-averaged F1 (the harmonic average of precision and recall).

2https://stanfordnlp.github.io/CoreNLP/
3https://www.csie.ntu.edu.tw/ cjlin/libsvm/
4In principle one could use any binary classifier (e.g. logistic regression, perceptron) for both the independent

classifiers and Learning to Search methods. Empirically, we found SVM gave the best performance.
5http://pytorch.org/
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7.3 Results
Let us begin by considering the experimental results on each individual dataset. We will then
proceed to discuss general trends observed over these experiments

7.3.1 Attacks
On the attacks domain, we find that the aggregated sentence-level method performs the worst by
far. This performance clearly indicates that sentence-level methods are insufficient to solve the
macro-event extraction task. The first mention and most frequent baselines are the next lowest
performers on both macro-averaged and micro-averaged F1. QA Neural Networks shows a sub-
stantial increase in performance over these baselines, with a 41.6% increase in micro-averaged
F1 over the most frequent baseline, and a 28.2% increase in macro-averaged F1 over the most
frequent baseline. The methods trained directly on macro-event data are the strongest perform-
ers, with even the worst methods showing 26.1% improvement on micro-averaged F1 and 18.5%
improvement on macro-averaged F1 compared to the QA Neural Networks. On micro-averaged
F1, independent SVMs and independent neural networks perform at about the same level, with
Learning to Search showing an additional 8.3% improvement over the next best method. On
macro-averaged F1, independent neural networks and Learning to Search perform approximately
the same, with independent SVMs lagging slightly behind both.

Micro-Averaged Macro-Averaged
Precision Recall F1 Precision Recall F1

First Mention Baseline 24.2 26.6 25.9 25.3 24.7 24.7
Most Frequent Baseline 26.2 29.1 27.6 26.3 27.7 26.2
Aggregated Sentence-Level 5.3 3.5 4.2 4.8 3.6 3.9
QA Neural Networks 28.0 64.7 39.1 25.6 52.8 33.6
Independent SVMs 54.8 44.9 49.4 44.4 36.6 39.8*
Learning to Search for Macro-Events 60.1 48.2 53.5* 45.8 37.3 40.7*
Independent Neural Networks 54.7 44.8 49.3 45.2 38.0 40.6*

Table 7.2: Results from macro-event extraction on the attacks domain. Numbers in bold represent
the best F1 performance among all methods. Entries with * represent no significant difference
(at α = 0.05) compared to the best method.

7.3.2 Sporting-Events
On sporting-events, we find the first mention baseline to be the lowest performer. This time,
however, there is a substantial difference between first mention performance and most frequent
performance, with most frequent showing a 53.4% increase on micro-averaged F1, and a 62.8%
increase on macro-averaged F1. These results indicate that on this domain, slot fillers are much
more likely to be mentioned repeatedly in the document compared to results on the attack do-
main.
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QA Neural Networks perform only slightly better than the most frequent baseline on macro-
averaged F1, and slightly worse on micro-averaged F1. The reason for the weaker performance
on this data compared to the stronger results on attacks is likely due to the fact that the sporting-
events domain focuses primarily on ORGANIZATION named entities, rather than PERSON
named entities. This creates a larger gap between the target domain and the source dataset,
which focuses mainly on people and their actions.

The next best method is the independent SVMs approach, which is the weakest of the three
methods directly trained on macro-event annotated data. Compared to the next best approach,
we see a massive increase in performance even with just independent SVMs – 104.7% improve-
ment on micro-averaged F1 and 93.3% improvement on macro-averaged F1. The reason for this
substantially larger improvement compared to the attacks domain is due to the much larger pool
of annotated training data available for the sporting-events domain.

On both micro-averaged F1 and macro-averaged F1, we find that the independent neural
networks approach is the top performing method, with Learning to Search performing slightly
behind it.

Micro-Averaged Macro-Averaged
Precision Recall F1 Precision Recall F1

First Mention Baseline 20.7 27.5 23.6 19.6 25.4 21.5
Most Frequent Baseline 30.3 45.0 36.2 30.7 43.6 35.0
QA Neural Networks 24.2 68.5 35.7 28.5 66.9 37.4
Independent SVMs 74.4 73.9 74.1 72.4 72.4 72.3*
Learning to Search for Macro-Events 76.8 72.0 74.3 75.7 71.2 73.2*
Independent Neural Networks 80.4 73.0 76.5* 78.4 70.1 73.4*

Table 7.3: Results from macro-event extraction on the sporting-events domain. Numbers in bold
represent the best F1 performance among all methods. Entries with * represent no significant
difference (at α = 0.05) compared to the best method.

7.3.3 Criminal-Trials
The criminal-trials domain differs from the other macro-event types in that it includes classification-
based slots in addition to extraction-based slots. For those methods which do not utilize anno-
tated macro-event training data (e.g. first mention baseline), classification slots are filled using a
baseline of randomly selecting among the possible answers.

The worst performing method for criminal-trials is the aggregated sentence-level method,
which is far lower than any of the competing approaches. The next lowest performance is seen
with QA Neural Networks, followed by the first mention and most frequent baselines. A key
factor for the comparatively high performance of the heuristic methods is that the criminal-trials
domain has a much lower number of fillers per slot compared to other domains. On datasets
with higher numbers of argument fillers, the first mention and most frequent baselines typically
undergenerate on extracted arguments, rendering these methods less competitive against methods
that can choose a dynamic number of argument fillers for any given input.
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The methods trained directly on macro-event data all once again show superior performance
compared to the previous algorithms. The weakest of these (independent SVMs) shows a 65.5%
improvement over the most frequent baseline on micro-averaged F1, and an improvement of
25.7% over the same baseline on macro-averaged F1. The best method for micro-averaged F1 is
the Learning to Search method, followed by independent neural networks. On macro-averaged
F1, the best method is the independent neural networks, with Learning to Search coming in
second place.

Micro-Averaged Macro-Averaged
Precision Recall F1 Precision Recall F1

First Mention Baseline 31.9 37.8 34.6 31.5 37.4 33.8
Most Frequent Baseline 32.5 40.0 35.9 32.4 50.2 35.4
Aggregated Sentence-Level 18.3 14.0 15.8 11.8 12.1 11.9
QA Neural Networks 32.6 34.7 33.6 30.3 31.9 31.0
Independent SVMs 70.9 51.1 59.4 46.9 42.8 44.5
Learning to Search for Macro-Events 70.4 54.1 61.2* 49.7 45.8 47.3
Independent Neural Networks 73.5 50.5 59.8* 63.4 44.6 51.8*

Table 7.4: Results from macro-event extraction on the criminal-trials domain. Numbers in bold
represent the best F1 performance among all methods. Entries with * represent no significant
difference (at α = 0.05) compared to the best method.

7.3.4 Elections

Let us begin first by considering performance on the English election documents. As seen on the
other datasets, the aggregated sentence-level method performs far worse than any other method.
On micro-averaged F1, the heuristic methods are the next worst, as usual. QA Neural Networks
show a very large improvement (53.5%) over these methods, and independent SVMs shows a
further 51.5% improvement over the QA Neural Networks. Independent neural networks perform
slightly better than independent SVMs, and Learning to Search provides an even further gain.

On macro-averaged F1, the situation is slightly different. The bottommost method (apart
from the abysmal sentence-level approach) is the QA Neural Networks, followed closely by the
heuristic methods. The main reason for this is because the QA Neural Networks are strong on
the argument roles with many fillers, but very weak on the rare argument roles – namely the ones
focused on either political parties or running-mates. For political parties, the low performance
results from the same issue as in the sporting-events domain – the source-training data is not as
well equipped to handle ORGANIZATION named entities as compared to PERSON named enti-
ties. On running-mates, the model has difficulty distinguishing running-mates from the primary
candidates, who are typically the more central focus of election-themed documents.

Performance from the remaining methods follows similar patterns to the previous datasets.
Independent SVMs show a 78.5% improvement compared to the first mention baseline, and in-
dependent neural networks show a slight improvement beyond that. The top-performing method
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for macro-averaged F1 is the Learning to Search method, showing a 8.1% improvement over the
next best method.

Now, let us consider performance on Spanish texts. On Spanish, the most frequent baseline
is the bottommost performer, at 29.8 micro-averaged F1 and 28.4 macro-averaged F1. The first
mention baseline provides a slight improvement of 6.0% on micro-averaged F1 and 5.3% on
macro-averaged F1. On micro-averaged F1, the next best performer is the independent SVMs
method, followed by the independent neural networks. On macro-averaged F1, the situation
is flipped, with independent SVMs showing a stronger performance than independent neural
networks. The top performing method for both micro-averaged and macro-averaged F1 is the
Learning to Search approach, which shows an improvement of 1.9% on micro-averaged F1 and
an improvement of 5.0% on macro-averaged F1 over the next best scores for each.

Note that we do not apply the QA Neural Networks to the Spanish election documents, as the
source training data for the method does not contain Spanish data.

Micro-Averaged Macro-Averaged
Precision Recall F1 Precision Recall F1

First Mention Baseline 21.0 41.6 27.9 21.8 27.0 22.2
Most Frequent Baseline 22.8 48.7 31.0 22.7 33.4 25.1
Aggregated Sentence-Level 63.2 11.4 19.3 16.3 8.1 9.9
QA Neural Networks 43.5 52.5 47.6 17.2 30.0 20.7
Independent SVMs 78.5 66.7 72.1 52.9 41.7 44.8
Learning to Search for Macro-Events 75.2 73.1 74.1* 50.6 49.7 49.6*
Independent Neural Networks 81.7 67.0 73.6* 52.7 43.3 45.9

Table 7.5: Results from macro-event extraction on the elections domain, English documents.
Numbers in bold represent the best F1 performance among all methods. Entries with * represent
no significant difference (at α = 0.05) compared to the best method.

Micro-Averaged Macro-Averaged
Precision Recall F1 Precision Recall F1

First Mention Baseline 27.4 37.4 31.6 27.7 35.6 29.9
Most Frequent Baseline 25.8 35.3 29.8 26.0 34.6 28.4
Independent SVMs 54.0 46.9 50.2 50.1 44.1 46.3
Learning to Search for Macro-Events 55.7 50.0 52.7* 50.9 48.3 48.6*
Independent Neural Networks 61.1 44.8 51.7* 61.1 40.6 45.1

Table 7.6: Results from macro-event extraction on the elections domain, Spanish documents.
Numbers in bold represent the best F1 performance among all methods. Entries with * represent
no significant difference (at α = 0.05) compared to the best method.
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7.4 Discussion of Results
Across all datasets, we consistently find that the aggregated sentence-level approach performs
poorly. Although it is not surprising that a sentence-level focus would not be optimal for a
document-level task, it is surprising to see that this method can be easily beaten by even simple
heuristic approaches.

We find that the heuristic methods are typically the next lowest performing methods on both
micro-averaged and macro-averaged F1. This is not surprising given the simplicity of these
models. QA Neural Networks typically perform somewhere in between the heuristic methods
and the models trained directly on macro-event annotated data. This indicates that for domains
with sufficient training data, it is better to directly train a macro-event extractor than to utilize a
model trained on off-domain data.

Among the three algorithms that are trained directly on macro-event annotated data, the in-
dependent SVMs are clearly the weakest. This method fails to achieve the top performance for
any macro-event domain on either micro-averaged or macro-averaged F1.

On micro-averaged F1, the Learning to Search method performs strongest on all domains
except for criminal-trials. On macro-averaged F1, the Learning to Search method performs
stronger on attacks and elections, while the independent neural networks perform stronger on
criminal-trials and sporting-events.

7.5 Error Analysis
Let us now consider more detailed analysis of results via the elections domain. Figure 7.1 shows
the distribution of training examples over the 12 different slots contained within the election
macro-event type. Some argument types, such as nominee and winner have many training exam-
ples. Other argument types have far fewer examples, as is the case with the party and running-
mate slots.

As one would expect, the availability of training data can be a limiting factor for argument
detection. The most extreme case of this is seen in the running-mate, running-mate-winner, and
running-mate-loser slots. None of the top performing models are able to perform accurate ex-
tractions for these slots. Similarly, we see that the next rarest slots (party-winner and party-loser)
also have noticeably lower scores than other slots, albeit much higher than the aforementioned
running-mate slots. In contrast, the nominee slot, which has by far the most training examples,
consistently sees F1 performance in the mid to upper 70s across all three methods.

However, training data alone is clearly not the only factor involved in determining the per-
formance of our models on rare categories. Consider the time and location slots, which achieve
substantially higher F1 scores than nominee, despite having hundreds fewer of examples. The
time slot reaches F1 scores into the mid-80s, while the location slot does even better with F1
scores into the 90s. By comparison, the nominee slot only can achieve an F1 in the mid-70s.
The reason for these slots achieving such high scores despite having less training data is due to
the semantic difficulty of the slot itself. Times and locations for elections are typically very easy
to identify within a Wikipedia article, often occurring within the first paragraph or even the first
sentence. In contrast, discussion of the nominees may be delayed until later in the document,
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particularly for nominees who did not win the election, who in general receive less focus than
the winners.

One particular strength of the Learning to Search approach can be seen in its ability to ex-
tract arguments that are child nodes of another argument. Compared to the independent SVMs
method, the Learning to Search approach is consistently able to achieve higher F1 scores for
argument slots that belong to a parent-child relationship (with the exception of the running-mate
slots – as discussed previously, none of the top models are able to extract well for these slots).
Among the party, party-winner, and party-loser slots, Learning to Search shows far better per-
formance than independent SVMs, especially in the cases of the party-winner and party-loser
slots, which have far fewer training examples. Among the nominee, winner, and loser slots, a
similar pattern is seen, albeit with a smaller improvement among the winner and nominee slots.
This difference in performance between the independent SVMs and Learning to Search methods
can be explained by the global modeling performed by the Learning to Search algorithm. In the
Learning to Search approach, predictions on the party-winner slot can consider how the party
and party-loser slots have been filled thus far. Finding evidence for an entity belonging to the
party slot can boost confidence in belonging to either of the child slots, while finding evidence
for an entity belonging to either of the child slots can reduce support for membership in the
sibling (e.g. an organization cannot be both a party-winner and party-loser).

To a lesser degree, we find that this pattern remains true when comparing the independent
neural networks approach to Learning to Search. While independent neural networks show
slightly stronger performance on the winner and party-winner slots, the Learning to Search ap-
proach continues to show massive improvement on the loser and party-loser slots compared to
independent neural networks, as well as slight improvements on the nominee and party slots.

As a second example, let us now consider similar analysis on the attacks domain. The number
of available training examples for each of the 6 slots for the attack macro-event type may be seen
in Figure 7.3. As a whole, we find that this event type has a less varied distribution of examples
over the different slots, with the exception of the injured slot, which has only a very small number
of examples.

Detailed results from our top methods on the attacks domain may be seen in Figure 7.4. As
was the case in elections with the running-mate categories, we find that none of these methods are
able to identify arguments for slots with extremely low amounts of training data. The difficulty
of the injured slot is further compounded by the semantic difficulty of the slot itself. In articles
about attacks, typically the main focus is on the perpetrators or people who were killed. Injured
survivors tend to receive less focus in texts than deceased victims, so it is much more difficult to
accurately extract such arguments.

The strength of Learning to Search on arguments belonging to parent-child relationships is
is seen once again in the attacks domain via the dead and victim slots. More generally, however,
it is clear that Learning to Search provides a strong benefit across all of the person-type slots:
perpetrator, victim, and dead. Intuitively, this makes sense because each of these slots have close
semantic relations to each other. Perpetrators cannot be victims, and by extension cannot be dead
victims. Any argument filling the dead slot must be included within the victim slot. By taking
into account global information when filling each of these slots, we can ultimately produce a
more accurate final prediction.
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Figure 7.1: Number of training examples for each category in the elections domain.

7.6 Experiments with Limited Training Data

Our experiment results so far show relatively poor performance of the QA Neural Networks
compared to even simple methods like independent SVMs. However, a notable strength of the
algorithm is that it has no reliance whatsoever on having annotated training data for the target
macro-event domains. This is particularly useful for scenarios where rapid deployment is desired
for a new domain of interest, and little or no time at all is available to annotate documents for the
target domain.

To illustrate this strength, we conduct experiments on the attacks training data where we
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Figure 7.2: Performance by the top three methods on individual categories in the elections data.

vary the amount of training data made available to the machine learning algorithms, up to 100
documents. We compare performance from our four strongest methods: QA Neural Networks,
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Figure 7.3: Number of training examples for each category in the attacks domain.

Independent SVMs, Learning to Search for Macro-Events, and Independent Neural Networks.
Results for micro-averaged F1 and macro-averaged F1 may be seen in Figures 7.5 and 7.6

respectively. On micro-averaged F1, we find that only the Learning to Search method can outper-
form the QA Neural Networks under this setting, and even then only when at least 90 documents
of training data are made available to the system. The independent SVMs and independent neu-
ral networks are even weaker, and are completely unable to match the performance of the QA
Neural Networks. When training data becomes extremely limited, the difference is made even
more clear, with performance across all three of these methods dropping to abysmal levels of
performance. In contrast the QA Neural Networks, having no reliance on macro-event training
data, consistently achieve a micro-averaged F1 of 39.1.

On macro-averaged F1, we see a very similar situation, except this time none of the compet-
ing methods are able to exceed the QA Neural Networks. This once again illustrates the strength
of the QA Neural Networks for domains with limited training data. The lower performance
of the competing methods here also serve to emphasize the difficulty in training extractors for
rare classes, as macro-averaged results give equal weight to both commonly seen argument roles
(such as perpetrators) and rarely seen argument roles (such as injured victims).
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Chapter 8

Conclusion

In this thesis, we have proposed the macro-event framework, a new paradigm for event extraction
designed to support structured summarization of news articles. Our goal is to push toward event
extraction models capable of creating document-level summaries that can be useful to real-world
users.

We have shown that existing frameworks for event extraction do not yet realize this goal,
and introduced three methods for addressing this problem: 1.) a structured model that jointly
learns the argument slots of a macro-event, 2.) a feedforward neural network trained directly
on annotated macro-event data, and 3.) a neural machine reading comprehension model that
requires zero available training data in the target domain. Our experimental results show that
structured prediction and feedforward neural models for this task can achieve significantly im-
proved performance over independent SVMs and other baseline methods, while applying deep
neural networks for machine reading comprehension can achieve high performance for domains
with little available training data.

The overall contributions of this thesis advance the state-of-the-art for document-level event
extraction in multiple ways. First, we introduce a number of algorithms for macro-event ex-
traction which use much more sophisticated machine learning techniques that have been seen
to date for document-level extraction. Second, we demonstrate the generalizability of these
techniques to multiple general-purpose domains (as opposed to the extremely specific domains
studied through MUC). Third, we demonstrate that these techniques are not limited to English
language documents, as we have shown that such algorithms can be easily ported to different
languages while retaining high quality results. Finally, we introduce the use of notion of ap-
plying deep machine reading comprehension models to the event extraction problem, which can
allow for rapid deployment to new domains without any reliance whatsoever on target domain
annotated training data.

We envision multiple promising directions in which future research can expand upon this
work. One very natural extension would be to consider the problem of multi-document event
extraction. The work contained in this thesis treats each document as a separate unique event.
However, in the real world, events are often described in many different news articles, with
each one potentially containing new information that was unseen in previous documents. This
is particularly true for breaking news, where limited information may be available in the initial
reporting document, with later documents containing more detailed, specific information. Future

63



work into macro-event extraction may wish to consider such cases by development of macro-
event coreference across documents.

A further area for future development is in cross-lingual macro-event extraction. In this
thesis, we have shown that our algorithms are easily capable of handling non-English texts,
provided the availability of training data. However, we have not explored the idea of using
training data from one language in order to boost performance in another language. Given the
recent success of cross-lingual NLP for a variety of tasks, including part-of-speech tagging [24,
115], dependency parsing [1, 24, 87, 131], and named entity recognition [104], this could be
another promising area of development for future research.

There are also promising research directions to explore outside of traditional news articles.
One such direction could be to examine other genres of written text, including microblogs and
other forms of social media. Even more interesting would be to explore related problems in audio
and visual analysis. For example, consider the problem of applying macro-event extraction to
broadcast news, rather than written news articles. Although the input format differs from what
has been studied in this thesis, one could develop techniques for combining speech recognition
techniques with macro-event extraction in order to create template-based summaries of broadcast
news.

More ambitiously, one could consider a multimodal macro-event extraction system, which
would build upon all of the aforementioned ideas. In the real-world, news is typically found
via multiple sources – written news articles, social media posts, broadcast news audio, and live
footage just to name a few. To truly understand the key details of a newsworthy event, one
may need to analyze multiple sources of data, as any individual source may not contain all the
necessary information (this is especially true in the case of breaking news, where additional
information becomes available as the event is ongoing). A multimodal macro-event extraction
system could be highly valuable to analysts seeking to understand complex, newsworthy events.
To successfully do so however, would require advances in cross-document event extraction (to
merge information across multiple documents), cross-lingual event extraction (documents may
be written in different languages), audio event extraction (need to be able to understand spoken
dialogue), and video event extraction (need to be able to understand footage of an event and
identify key actors).

In addition to advances in multi-modal macro-event extraction, there is also room for future
work on the machine learning techniques used for macro-event extraction. One such direction to
explore is via the field of cross-domain transfer learning. As noted in this thesis, a major chal-
lenge for rapid deployment of macro-event extraction algorithms to new domains is the limited
amount of available training data. We have shown that machine reading comprehension mod-
els can offer substantial benefits over directly supervised methods in such scenarios. However,
the current approach for machine reading comprehension does not utilize any on-domain macro-
event annotated data. In practice, even for cases of rapid deployment, there may still be some
annotated data available, even if only on the order of dozens rather than hundreds or thousands of
documents. Using this small amount of on-domain data to tune a general-purpose model toward
the target domain may be able to result in additional boosts in performance.

Additional improvements may also be observed by exploring alternative classifiers for use in
our Learning to Search algorithm. In our experiments, we utilized SVMs, however in general
any classifier could be used as the base classifier of a Learning to Search algorithm. Using
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other techniques for classification, such as directly supervised neural networks or even machine
comprehension networks, could result in further improvements to macro-event extraction. In
particular, an approach that could be useful is to use machine comprehension networks as the
base classifier during the initial deployment to a new domain (when little data is likely to be
available), and subsequently transition to more data-hungry models (such as Learning to Search)
as new annotated data for the domain becomes available. The point of transition between models
could be determined via approaches similar to DUAL (Dual Strategy Active Learning) [33],
or one could use a weighted vote among various models, where the weights for the directly
supervised methods start low and increase as annotated data becomes more readily available.
Such approaches would allow extraction to be robust to both data-rich and data-poor scenarios.

Beyond these suggestions, ensemble techniques could prove useful in general for macro-
event extraction. As seen in our experimental analysis, the best performing method for each
individual argument slot often varies. The best overall performance is likely to be achieved by
some combination of models (for example, applying Learning to Search for semantically-related
slots, machine comprehension to slots with little or no training data, and independent neural
networks for the remaining slots).
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