

Everything You Ever Wanted To
Know About Functional Global

Variables

Nancy Hollenback
Field Architect

Agenda

• What is a functional global variable (FGV)?

• Does the FGV prevent race conditions?

• Is the FGV better than the global variable?

• Which use cases are a good fit for FGVs

• Is there a better way? (DVRs)

Why Do We Need Functional Global
Variables?

User
interface

Control
Model

Data
Logger

IO Engine

•A large application usually has many processes
executing concurrently
•Processes need to share data or send and receive
messages.

Alarm
Engine

Inter Process Communication

–Store Data

–Stream Data

–Send Message

Typically
straightforward use
cases with limited
implementation options

Many more variations,
permutations, and design
considerations

Store Data

– Data is stored and made “globally” accessible
– Storage mechanism holds only the current value
– Other code modules access the data as needed
– The potential for race conditions must be considered

UI Process 1
Headless
Process 1

Headless
Process N

Use Cases

Configuration data
Slowly changing
data
Non-critical
messages

“Global Data”

Functional Global Variables – Benefits

– Provide global access to data while also providing
a framework to avoid potential race conditions.

– Encapsulate data so that debugging and
maintenance is easier

– Facilitate the creation of reusable modules which
simplifies writing and maintenance of code

– Program becomes more readable.

Functional Global Variable - Review

• The general form of a functional global
variable includes an uninitialized shift
register (1) with a single iteration For or
While Loop

8

Functional Global Variables

– A functional global variable usually has an
action input parameter that specifies which
task the VI performs

– The VI uses an uninitialized shift register in a
While Loop to hold the result of the operation

9

Best Practices for Documentation

• The action/method control should be a type
defined enum.

• Make “get” the default action/method.
• Consider making the action/method required.
• Include this in the label.
• Wire to the top connector

Functional Global Variables – History

• (LV2 Style Global, Action Engine, VIGlobals,
USRs, Components)

– Global data storage mechanism prior to the
introduction of the global variable in LabVIEW 3

– Foundational programming technique that has
been in extensive use in the LabVIEW community

Note: The behavior of an uninitialized shift register was not defined in LabVIEW 1.0

Replacing Global Variables with FGVs

• This is a common initial use case.

DEMO
Main – Using a Global

DEMO
Main – Using a Simple Set-Get FGV

Do FGVs Eliminate Race Conditions?

• What if the FGV includes only set and get
methods?

What happens when 2 VIs call the get and both modify
the data before either has called the set?

Modify
Data

Modify
Data

VI-1.vi

VI-2.vi

DEMO
Race Condition with a Set-Get Functional Global Variable

Use FGVs to Protect Critical Sections of
Code

• Identify a critical section of code, such as the
modification of a counter value or a timer
value.

• Identify the actions that modify the data
(increment, decrement)

• Encapsulate the entire get/modify/set steps in
the FGV

 This is commonly called an Action Engine. It is a
special type of FGV.

FGV – Action Engine Protects Critical
Sections of Code

• This action engine wraps the “get/modify/set”
around the critical section of code.

FGV Counter.vi

Get Set Modify

Sidebar: Execution Properties – Non
Reentrant Execution

– VIs are non reentrant by default

– The LabVIEW execution system will not run
multiple calls to the same SubVI simultaneously

Sidebar: Reentrant vs. Non-Reentrant

• Non reentrancy is required for FGVs
• Reentrancy allows one subVI to be called

simultaneously from different places.
– To allow a subVI to be called in parallel
– To allow a subVI instance to maintain its own state

Data
Space

Data
Space

Data
Space

State (or the data that
resides in the
uninitialized shift
register) is maintained
between all instances
of the FGV

Non Reentrant VIs Block Other Calls

• These two VIs are non reentrant by default

• They cannot run simultaneously

• One will run until completion and block the
other from running until completed.

Action Engines Protect Critical
Sections!

The FGV will block other instance from running until it has
completed execution. Therefore, encapsulating the entire
action prevents the potential race condition.

Modify
Data

Modify
Data

VI-1.vi

VI-2.vi

VI-1.vi

VI-2.vi

DEMO
Action Engine FGV

Avoid Race Conditions!!! Fully encapsulate the
get/modify/set.

Globals vs FGVs

• Globals are significantly faster.

• FGVs allow for extra code to check for valid
data.

Encapsulated Global
• Create a global variable

• Add it to a project library and set access scope to
private

Private VIs
cannot be
used outside
the .lvlib

Encapsulated Global

• Create the VI in the lvlib, that will act on the
privately scoped global variable.

DEMO
Encapsulated Global

Consider locking and password protecting the .lvlib

Reusable components with FGVs

• Recall that FGVs encapsulate the data and
functionality and as such are a good design
pattern for building reusable components

• Consider using a FGV as a look-up table.

 Name Password

John 66ford90

Mary spring2012

Array of names has corresponding array
of values or datasets

Name Value Look Up Table

• Define the data type of the value that is associated with the
name.

• Modify the method to include all actions to perform related
to adding, getting, and deleting items from the list.

• Add code to ensure whether data is valid

FGV – Resource Storage

Design pattern for a key-
value look up table.

• Array of names
has a one-to-one
correspondence to the
array of data sets

• Does not protect
against race conditions

• Allows for the
qualification of valid
data

DEMO
FGV Password Storage

Resource Storage FGVs

• Build drop-in reusable components.

• Provide protection and validation of data.

• Susceptible to race conditions.

• Can be used to store:
– References (User Events, DVRs, etc)

– Information about devices

– Paths for data storage

– Operator information

– Anything that requires a name-value lookup

What if You Need Multiple Counters…

– Reentrant functional global?

– Array manipulation of the functional global data?

– Perhaps there is a better way…

?

Review of Queues and References

• Reference is a pointer to the
data

• The wire contains the
reference, not the
data.

• Forking the wire creates a
copy of the reference, not a
copy of the data

• Access data through
methods (VIs)

• Developer controls the
creation and destruction of
the data

What is the Data Value Reference
(DVR)?

• This is a simple way to wrap a reference
around any type of data.

Create & Destroy Modify

Data Value Reference (DVR) Library

• Create a constructor and destructor.
• Create a template for the methods.
• Create a method for each case that will modify the data.

Creating a DVR from an FGV

• If you already have an FGV, you can easily transform it
into the more flexible DVR library.

• Create the constructor and destructor.

• Create a method (VI) for each case that was in the FGV.

Data Value Reference (DVR) - Library

• Reference acts
as a pointer to
the data

• Create unlimited
instances

• Easily expand
the library

DEMO
Using a DVR Library

DVR Library Design Issues

• Easily add new methods (VIs) to the library as
needed.

• Create a library that has a similar look and feel
to native APIs (Queues, Notifiers,
Semaphores)

• Identify the owner of the library who will
update and maintain the library.

• Anyone with Core 1 & Core 2 understanding
can use the DVR library.

DEMO
Add a Method to the DVR Library

What Else Do I need to Know?

–Store Data

–Stream Data

–Send Message

Typically
straightforward use
cases with limited
implementation options

Many more variations,
permutations, and design
considerations

Various Inter-process Communication Methods

Same target
Same application instance

Same target, different application
instances OR
Different targets on network

Storing -
Current
Value

• Single-process shared
variables

• Local and global variables
• FGV, SEQ, DVR
• CVT
• Notifiers (Get Notifier)

• Network-published shared variables
(single-element)

• CCC

Sending
Message

• Queues (N:1)
• User events (N:N)
• Notifiers (1:N)
• User Events

• TCP, UDP
• Network Streams (1:1)
• AMC (N:1)
• STM (1:1)

Streaming • Queues • Network Streams
• TCP

Foundational APIs for Storing &
Messaging

• 1:1, 1:N

• Full API

• Lossy

• Named

• Pointer to Data

• 1:1,1:N,N:1,N;N

• Full API (DVR)

• 1:1,N:1,1:N,N:
N

• Secure

• Flexible

• Lossless (option)

• Buffered

• Full API

• 1:1, N:1

• Named Queues
User

Events

Notifiers
DVRs

FGVs

Where to Go Next…

• What are your next training options?

