LabVIEW

Input ivus
(D) ms
()
b dt W\ Error M
b2, - 7
A g X E&i 50| Current Temperatyrs e %ﬂ
TC~ Analog 10 DBL per 1=
NChan LSam
ue =)) 5
* = oo x -y |0 k3
e 1 5 m | o i
\
Encoder Reading \
| =
source \
ib . = &
P e i EiS 2 il rony factor=029% =T o
erometer ¥ Reference | Analog DBL DR peed= " conv_fack
Analog Edge 1Chan LSamp e v

7 NATIONAL

Everything You Ever Wanted To
Know About Functional Global
Variables

Nancy Hollenback

Field Architect

LabVIEW IV INSTRUMENTS

Agenda

 What is a functional global variable (FGV)?
* Does the FGV prevent race conditions?

* |sthe FGV better than the global variable?
* Which use cases are a good fit for FGVs

* |s there a better way? (DVRSs)

LabVIEW VINSTRUMENTS

Why Do We Need Functional Global
Variables?

*A large application usually has many processes
executing concurrently

*Processes need to share data or send and receive
messages.

User .
interface 10 Engine

i @

Control
Model

i)

i)

LabVIEW IV INSTRUMENTS

Inter Process Communication

Typically
—[Store Data J< straightforward use
d

cases with limited
—Stream Dat

implementation options
Many more variations,
—Send Message permutations, and design
considerations

LabVIEW b INSTRUME!

’ INSTRUMENTS"

Store Data

— Data is stored and made “globally” accessible

— Storage mechanism holds only the current value

— Other code modules access the data as needed

— The potential for race conditions must be considered

4) 4)

< —— 4 Use Cases

N / - Configuration data
— Slowly changing
data

Non-critical
messages

LabVIEW IV INSTRUMENTS

“Global Data”

Functional Global Variables — Benefits

— Provide global access to data while also providing
a framework to avoid potential race conditions.

— Encapsulate data so that debugging and
maintenance is easier

— Facilitate the creation of reusable modules which
simplifies writing and maintenance of code

— Program becomes more readable.

LabVIEW VINSTRUMENTS

Functional Global Variable - Review

* The general form of a functional global
variable includes an uninitialized shift

register (1) with a single iteration For or
While Loo

Function Global Mariahle Code

LabVIEW IV INSTRUMENTS

8

Functional Global Variables

— A functional global variable usually has an
action input parameter that specifies which
task the VI performs

— The VI uses an uninitialized shift register in a
While Loop to hold the result of the operation

e L T | "SEt"J DEFauIt .'P -J-J-J-J-J-J-J-J-J-J-J-J-Jéi

LabVIEW TVINSTRUMENTS

9

Best Practices for Documentation

Action (Get)

#+Increment *

Initialize (132} v

FI32 |

COUNHT

Current Value

* The action/method control should be a type

defined enum.

* Make “get” the default action/method.
* Consider making the action/method required.

* |nclude this in the label.

* Wire to the top connector

LabVIEW

¢ NATIONAL
’ INSTRUMENTS'

Functional Global Variables — History

e (LV2 Style Global, Action Engine, VIGlobals,
USRs, Components)

— Global data storage mechanism prior to the
introduction of the global variable in LabVIEW 3

— Foundational programming technique that has
been in extensive use in the LabVIEW community

Note: The behavior of an uninitialized shift register was not defined in LabVIEW 1.0

LabVIEW VINSTRUMENTS

Replacing Global Variables with FGVs

* Thisis a common initial use case.

N
Value|[33ZF Fay
i

Value SETIGET
LI32} & Count >

#Get -

Value out Value out

& Count k|32] 'FG%' {32]

EEEEEEE

LabVIEW VINSTRUMENTS

Main — Using a Global

DEMO

LabVIEW IV INSTRUMENTS

Main — Using a Simple Set-Get FGV

DEMO

LabVIEW TVINSTRUMENTS

Do FGVs Eliminate Race Conditions?

 What if the FGV includes only set and get

methods? VI-Lvi
* et ¥ #Set *
Fay MOdIfy Fay
] Data o
SETMIET SETMIET
VI-2.vi
*Get - W+ 5et -
Modify
Fay Fay
3 Data 3
SETMIET SETMIET

What happens when 2 Vls call the get and both modify
the data before either has called the set?

LabVIEW VINSTRUMENTS

Race Condition with a Set-Get Functional Global Variable

DEMO

LabVIEW TVINSTRUMENTS

Use FGVs to Protect Critical Sections of
Code

* |dentify a critical section of code, such as the
modification of a counter value or a timer

value.

* |dentify the actions that modify the data
(increment, decrement)

* Encapsulate the entire get/modify/set steps in
the FGV
This is commonly called an Action Engine. It is a

special type of FGV.
LabVIEW VINSTRUMENTS

FGV — Action Engine Protects Critical
Sections of Code

~ FGV Counter.vi

o]
L v
. I, T B B

Get Modify Set

* This action engine wraps the “get/modify/set”
around the critical section of code.

LabVIEW IV INSTRUMENTS

Sidebar: Execution Properties — Non
Reentrant Execution

— Vls are non reentrant by default
— The LabVIEW execution system will not run

ﬂ‘u'lprcuperties | 3 |
Category ‘ Execution IE”
Priority Preferred Execution System
nnnnn | priority El same as caller El
[#] Allow debugging Enable automatic error handling
[] Reentrant execution] [Run when opened
Share clones between instances [T Suspend when called
(reduces Y LS |
e s [C] Clear indicators when called
& Preallocate clone for each instance Ao remal® s =1 e
(rnaintains state for each instance)
nline subVI into calling VIs
[Clinline subVIi lling VI
oK] [Cancel] [Help]

LabVIEW VINSTRUMENTS

Sidebar: Reentrant vs. Non-Reentrant

* Non reentrancy is required for FGVs

* Reentrancy allows one subVI to be called
simultaneously from different places.
— To allow a subVI to be called in parallel

— To allow a subVI instance to maintain its own state

Stat (the data that / ITIL LITIL \ LTIL LITIL
a‘e O_r € data tha MO RE- MO RE- RE- RE-
resides in the EMTRHT EMTRHT EMTRHT EMTRHT

uninitialized shift

register) is maintained \ /

between all instances

L 3 b\/ | EW NATIONAL

’ INSTRUMENTS"

Non Reentrant Vs Block Other Calls

#Increment +Increment

FiaY Fia!

COUNT COUNT

* These two Vs are non reentrant by default
* They cannot run simultaneously

* One will run until completion and block the
other from running until completed.

L 3 b\/ | EW ¢ NATIONAL

’ INSTRUMENTS'

Action Engines Protect Critical

Sections!

~ VI-1.i

#+[ncrement *

Figy

COUNT

VI-1.vi
et * W+ 56t *
Fay MOdIfy Fay
Data
SETMIET SETMIET
VI-2.vi
et * W+ 56t *
Modify
‘FG'.' Data ‘FG'.'
SETMIET SETMIET

~ VI-2.i

#[ncrement

Fial

COUNT

The FGV will block other instance from running until it has
completed execution. Therefore, encapsulating the entire
action prevents the potential race condition.

LabVIEW

‘7 NATIONAL
’ INSTRUMENTS'

Avoid Race Conditions!!! Fully encapsulate the
get/modify/set.

Action Engine FGV

DEMO

LabVIEW b INSTRUME!

’ INSTRUMENTS"

Globals vs FGVs

* Globals are significantly faster.

* FGVs allow for extra code to check for valid
data.

LabVIEW VINSTRUMENTS

Encapsulated Global

Create a global variable

 Add it to a project library and set access scope to
private

13 Encapsulated Global....[= | =& [[s£3a] 3 Untitled 5 Block D... [= || = |[&2 |

File Edit View Project Operate Too File Edit View iject Gper Private Vls
Iterns | Files .{5 @ g cannot be
Project Items used outside
EI-E; Encapsulated Global.lvlib — th Ivlib
e .l

@ Action Items.ctl
Eﬂ. Counter.vi
- o

Details

This VI cannot access the referenced itemn because of library access scope, Itemns in
Globa private scope can be accessed only from the following locations:

1} from inside the owning library or LabVIEW class

2} from inside a library contained by the owning library.

LabVIEW TVINSTRUMENTS

Encapsulated Global

 Create the VI in the Ivlib, that will act on the
privately scoped global variable.

EEncapsuIatEd GI...| = || [=] || EX |

File Edit View Project Operate

Items

Files

Project ltemns

= [& Encapsulated Global.lvlib
= Action Items.ctl

- .

.. [P GBL Count.vi

LabVIEW

CCCCC

LLLLLL

Action (Get) |00

v NATIONAL
’ INSTRUMENTS"

Consider locking and password protecting the .Ivlib

Encapsulated Global

DEMO

LabVIEW IV INSTRUMENTS

Reusable components with FGVs

* Recall that FGVs encapsulate the data and
functionality and as such are a good design
pattern for building reusable components

* Consider using a FGV as a look-up table.

Name paswod
John 66ford90
Mary spring2012

Array of names has corresponding array
of values or datasets

NATIONAL

LabVIEW)7INSTRUMENTS'"

Name Value Look Up Table

Method (Get DataSet) Name Password Valid Data Set?

ijﬁet DataSet [> | Bob | -
Add DataSet
Modify DataSet
/ Get DataSet MName Password Valid Data Set?
I -

Delete DataSet IMar}r IspringEUlE
Get All DataSets
Delete All DataSets

* Define the data type of the value that is associated with the
name.

 Modify the method to include all actions to perform related
to adding, getting, and deleting items from the list.

e Add code to ensure whether data is valid

NATIONAL

LabVIEW ""VINSTRUMENTS'”

FGV — Resource Storage

Design pattern for a key- W et Dt beaut
value look up table.

* Array of namesa/' N .
has a one-to-one IR YT B

correspondence to the
array of data sets Method (et DataSet] F I

* Does not protect
a ga i n S t ra C e CO n d i t i O n S E éﬂ£ .

Gl
5

5

* Allows for the
qualification of valid
data

LabVIEW TVINSTRUMENTS

FGV Password Storage

DEMO

LabVIEW IV INSTRUMENTS

Resource Storage FGVs

* Build drop-in reusable components.
* Provide protection and validation of data.
* Susceptible to race conditions.

* Can be used to store:
— References (User Events, DVRs, etc)
— Information about devices
— Paths for data storage
— Operator information
— Anything that requires a name-value lookup

LabVIEW VINSTRUMENTS

What if You Need Multiple Counters...

— Reentrant functional global?

— Array manipulation of the functional global data?

— Perhaps there is a better way...

LabVIEW

#+Increment *

Fiay

COUHT

¢ NATIONAL
’ INSTRUMENTS'

Review of Queues and References

 Reference is a pointer to the
d ata Thi Toop 1= the producer Toop.
E[-M[[0] "Enqueue Element™; ¥alue Change ~ F—
* The wire contains the
reference, not the]
data. neeial i
* Forking the wire creates a)
copy of the reference, not a n]
copy of the data -

e Access data through
methods (VIs)

 Developer controls the g
creation and destruction of .
the data

LabVIEW TVINSTRUMENTS

What is the Data Value Reference
(DVR)?

* This is a simple way to wrap a reference
around any type of data.

In Place Element Structure

Memaory Control £
-

‘[}" Learch Customize~™ i
O wmtl—
y MewBataValue Reference {3 bl |

1 ; —1 ink
|
[N

Create & Destroy Modify
L 3 b\/ | EW y NATIONAL

INSTRUMENTS'

Data Value Reference (DVR) Library

{3 DVR Countervlib* ... [= | B |[wf3m

File Edit View Project Operate Toc COUNT COUNT COUNT COUHT

FET
[:E:} CRLHT FECEF SE
- R

Items | Files

QETAIN

Project Iterns
= [& DVR Counter.hib

E [
[= Method.vit

- |l Obtain.vi
o it 1
|;ﬂ. Decrement.vi
|;ﬂ. Get Count.vi
- |l Release.vi

* Create a constructor and destructor.
* Create a template for the methods.
* Create a method for each case that will modify the data.

LabVIEW TVINSTRUMENTS

Creating a DVR from an FGV

* |f you already have an FGV, you can easily transform it
into the more flexible DVR library.

* Create the constructor and destructor.
* Create a method (VI) for each case that was in the FGV.

LabVIEW TVINSTRUMENTS

Data Value Reference (DVR) - Library

¢ Reference aCtS Eﬁih ———# & ||data value refnum
. error in (no Errnr]@ i b=z ||error out
as a pointer to

the data Q

* Create unlimited [COURT T | (e

QETAIN COUNT F‘Eﬁﬁ

inStanceS —mﬁm

e Easily expand g
t h e I i b ra ry data value refnum -y o data value refnum out

error in (o error) |[5=5 Kl :

LabVIEW TVINSTRUMENTS

Using a DVR Library

DEMO

LabVIEW IV INSTRUMENTS

DVR Library Design Issues

e Easily add new methods (Vls) to the library as
needed.

* Create a library that has a similar look and feel
to native APIs (Queues, Notifiers,
Semaphores)

* |dentify the owner of the library who will
update and maintain the library.

* Anyone with Core 1 & Core 2 understanding
can use the DVR library.

LabVIEW VINSTRUMENTS

Add a Method to the DVR Library

DEMO

LabVIEW TVINSTRUMENTS

What Else Do | need to Know?

Typically
—{Store Data J< straightforward use
d

cases with limited
—Stream Dat

implementation options

Many more variations,
—Send Message permutations, and design
considerations

LabVIEW b INSTRUME]

’ INSTRUMENTS"

Various Inter-process Communication Methods

Same target Same target, different application
Same application instance instances OR

Different targets on network

Storing - * Single-process shared * Network-published shared variables
Current variables (single-element)
Value * Local and global variables CCC
* FGV, SEQ, DVR
e CVT
* Notifiers (Get Notifier)
Sending * Queues (N:1) TCP, UDP
Message * User events (N:N) * Network Streams (1:1)
* Notifiers (1:N) « AMC (N:1)
e User Events e STM (1:1)
Streaming * Queues * Network Streams

. TCP

LabVIEW TViNsTRUMENTS

Foundational APIs for Storing &

I\/Iessaging

. Lossless (option)

\.

LabVIEW

e Buffered N
e Full API e Secure
e 1:1,N:1 * Flexible
.®* Named
4
¢ Pointer to Data e1:1, 1:N
¢ 1:1,1:N,N:1,N;N e Full API
e Full API (DVR) e Lossy

e 1:1,N:1,1:N,N:

e Named

J

™

NATIONAL
INSTRUMENTS"

Where to Go Next...

e
IIIIIIIIIII

LMIEW 4 Manasgaing
Lab\IEW Core 1 LabAVIEW Core 2 R LabMIEW Core 3 Lot EW

i
....... Saftware Engineering
i Dot f
Dreebiapar in LabVIEW
Carmidied
Lak'¥
Arclati
LalWVIEW Advancid
Connoctiviby Architecures for
LabWEW
LabVIEWY
Parfarm ancs
feco
e s o} 2-Clrirgiod D
[\ pional Courses d Frogramming
1] L 13 e L im LabAVIEYY

 What are your next training options?

LabVIEW TVINSTRUMENTS

